D.S. Balasooriya, A. Blair, C Wheeler & S. Chalup, 2024. Multi-Condition Multi-Objective Airfoil Shape Optimisation using Deep Reinforcement Learning Compared to Genetic Algorithms, International Conference on Optimization, Learning Algorithms and Applications (OL2A'24).
S. Mezza, W. Wobcke & A. Blair, 2024. Exploiting Dialogue Acts and Context to Identify Argumentative Relations in Online Debates, 11th Workshop on Argument Mining (ArgMining'24).
J. Gao, Q. Wu, A. Blair & M. Pagnucco, 2024. LoRA: A logical reasoning augmented dataset for visual question answering, Advances in Neural Information Processing Systems (NeurIPS 37).
J. Gao, A. Blair & M. Pagnucco, 2023. A Symbolic-Neural Reasoning Model for Visual Question Answering, International Joint Conference on Neural Networks (IJCNN'23).
S. Iyer, A. Blair, C. White, L. Dawes, D. Moses & A. Sowmya, 2023. Vertebral compression fracture detection using imitation learning, patch based convolutional neural networks and majority voting, Informatics in Medicine Unlocked 38, 101238.
S. Iyer, A. BLair, L. Dawes, D. Moses, C. White & A. Sowmya, 2022. Supervised and semi-supervised 3D organ localization in CT images combining reinforcement learning with imitation learning, Biomedical Physics & Engineering Express 8(3), 101238.
A. Long, W. Yin, T. Ajanthan, V. Nguyen, P. Purkait, R. Garg, A. Blair, C. Shen & A. van den Hengel, 2022. Retrieval Augmented Classification for Long Tail Visual Recognition, Computer Vision and Pattern Recognition (CVPR'22), 6959-6969. [22.CVPR])
S. Mezza, W. Wobcke & A. Blair, 2022. A Multi-Dimensional, Cross-Domain and Hierarchy-Aware Neural Architecture for ISO-Standard Dialogue Act Tagging, International Conference on Computational Linguistics (COLING'22), 542-552. [22.MWB]
X. Li & A. Blair, 2022. Eccentric Regularization: Minimizing Hyperspherical Energy without explicit projection, International Joint Conference on Neural Networks (IJCNN'22). [22.LB]
S. Iyer, A. Blair, C. White, L. Dawes, D. Moses, & A. Sowmya, 2022. Vertebral Compression Fracture detection using Multiple Instance Learning and Majority Voting, International Conference on Pattern Recognition (ICPR'22). [10.1109/ICPR56361.2022.9956309]
A. Long, A. Blair & H. van Hoof, 2022. Fast and Data Efficient Reinforcement Learning from Pixels via Non-Parametric Value Approximation, AAAI Conference on Artificial Intelligence (AAAI'22), 7620-7627. [arXiv:2203.03078]
N. Malecki, H.-Y. Paik, A. Ignjatovic, A. Blair & E. Bertino, 2021. Simeon - Secure Federated Machine Learning Through Iterative Filtering [arXiv:2103.07704]
S. Iyer, A. Blair, L. Dawes, D. Moses, C. White & A. Sowmya, 2021. Organ localisation using supervised and semi supervised approaches combining reinforcement learning with imitation learning [arXiv:2112.03276]
S. Iyer, A. Sowmya, A. Blair, C. White, L. Dawes & D. Moses, 2020. A Novel Approach to Vertebral Compression Fracture Detection Using Imitation Learning and Patch Based Convolutional Neural Network, International Symposium on Biomedical Imaging, 726 - 730.
A. Blair & A. Saffidine, 2019. AI surpasses humans at six-player poker, Science 365(6456), 864-5.
A. Hadjiivanov & A. Blair, 2019. Epigenetic evolution of deep convolutional models, IEEE Congress on Evolutionary Computation, 1478-86. [19.HB]
A. Long, J. Mason, A. Blair & W. Wang, 2019. Multi-hop Reading Comprehension via Deep Reinforcement Learning based Document Traversal [arXiv:1905.09438]
A. Blair, D. Collien, D. Ripley & S. Griffith, 2017. Constructivist simulations for path search algorithms, Conference of the Australasian Association for Engineering Education (AAEE'17), 990. [17.BCRG]
J. Soderlund, D. Vickers & A. Blair, 2016. Parallel Hierarchical Evolution of String Library Functions, Parallel Problem Solving from Nature (PPSN'16), LNCS 9921, 281-291. [16.SVB]
D. Real & A. Blair, 2016. Learning a multi-player Chess game with TreeStrap, IEEE Congress on Evolutionary Computation (CEC'16), 617-623. [16.RB]
A. Knittel & A. Blair, 2014. Coarse and Fine Learning in Deep Networks, International Joint Conference on Neural Networks (IJCNN'14), 792-799. [14.KB]
O. Coleman, A. Blair & J. Clune, 2014. Automated Generation of Environments to Test the General Learning Capabilities of AI Agents, Genetic and Evolutionary Computation Conference (GECCO'14), 161-168. [14.OBC]
A. Knittel & A. Blair, 2014. Sparse, guided feature connections in an Abstract Deep Network [arXiv:1412.4967]
A. Blair & G. Li, 2009. Training of Recurrent Internal Symmetry Networks by Backpropagation, International Joint Conference on Neural Networks (IJCNN'09), 353--358. [09.BL]
J. Veness & A. Blair, 2007. Effective use of transposition tables in stochastic game tree search, IEEE Symposium on Computational Intelligence and Games (CIG'07), 112-116. [07.VB]
B. Tonkes & A. Blair, 2007. Deriving Sensor Models and Non-Linear Filtering for Exponentials of Polynomials, Australasian Conference on Robotics and Automation (ACRA'07). [07.TBb]
K.-M. Kiang, R. Willgoss & A. Blair, 2006. Distinctness analysis on natural landmark descriptors, International Conference on Field and Service Robotics (FSR'06), 67-78. [06.KWB]
C. Phua & A. Blair, 2006. An improved minibrain that learns through both positive and negative feedback, International Joint Conference on Neural Networks (IJCNN'06), 812-819. [06.PB]
R. Harper & A. Blair, 2006. A self-selecting crossover operator, IEEE Congress on Evolutionary Computation (CEC'06), 1420--1427. [06.HBb]
R. Harper & A. Blair, 2005. A structure preserving crossover in Grammatical Evolution, IEEE Congress on Evolutionary Computation (CEC'05), 2537--2544. [05.HB]
M. Boden & A.D. Blair, 2003. Learning the dynamics of embedded clauses, Applied Intelligence 19, 51-63. [03.BB]
J. Thomas, A. Blair & N. Barnes, 2003. Towards an efficient optimal trajectory planner for multiple mobile robots, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'03), 2291-2296. [03.TBB]
A.D. Blair & J. Ingram, 2003. Learning to predict the phonological structure of English loanwords in Japanese, Applied Intelligence 19, 101-108. [03.BI]
S. Versteeg & A. Blair, 2001. Getting the job done in a hostile environment, 14th Australian Joint Conference on Artificial Intelligence, LNAI 2256, 507-518. [01.VB]
D. Shaw, N. Barnes & A. Blair, 2001. Creating Characters for Dynamic Stories in Interactive Games, International Conference on Application Development of Computer Games in the 21st Century. [01.SBB]
E. Sklar, A. Blair & J. Pollack, 2001. Training intelligent agents using human data collected on the Internet, in J.Liu, N. Zhong, Y. Tang & P. Wang (Eds.) Agent Engineering, World Scientific, 201-226. [01.SBP]
J. Wiles, H. Chenery, J. Hallinan, A. Blair, A. & D. Naumann, 2000. Effects of damage to the CDM Stroop model, Proc. 5th Conference of the Australasian Cognitive Science Society. [00.WCHBN]
A. Howard, A. Blair, D. Walter & E. Kazmierczak, 2000. Motion control for fast mobile robots: a trajectory-based approach, Australian Conference on Robotics and Automation (ACRA 2000). [HBWK00]
M. Bodén, J. Wiles, B. Tonkes & A.D. Blair, 1999. Learning to predict a context-free language: Analysis of dynamics in recurrent hidden units, International Conference on Artificial Neural Networks (ICANN'99), Edinburgh, 359-364. [99.BWTB]
E. Sklar, A.D. Blair, P. Funes & J.B. Pollack, 1999. Training intelligent agents using human Internet data, Proceedings of the First Asia-Pacific Conference on Intelligent Agent Technology, World Scientific, 354-363. [99.SBFP]
A.D. Blair & E. Sklar, 1999. Exploring evolutionary learning in a simulated hockey environment, IEEE Congress on Evolutionary Computation, 197-203. [99.BS]
B. Tonkes, A.D. Blair & J. Wiles, 1999. A paradox of neural encoders and decoders or Why don't we talk backwards? Second Asia-Pacific Conference on Simulated Evolution And Learning (SEAL) LNCS 1585, 357-364. [99.TBW]
A.D. Blair, E. Sklar & P. Funes, 1999. Co-evolution, determinism and robustness, Second Asia-Pacific Conference on Simulated Evolution And Learning (SEAL) LNCS 1585, 389-396. [99.BSF]
N. Ireland & A.D. Blair, 1999. Target signal selection for a neural network based financial classifier, ICSC Symposium on Soft Computing in Financial Markets. [99.IB]
A.D. Blair, 1999. Co-evolutionary learning - lessons for human education? Fourth Conference of the Australasian Cognitive Science Society, Newcastle, Australia. [99.B]
A.D. Blair & E. Sklar, 1998. The evolution of subtle manoeuvres in simulated hockey, Fifth Conference on Simulation of Adaptive Behavior (SAB'98), Zurich, 280-285. [98.BS]
B. Tonkes, A.D. Blair & J. Wiles, 1998. Inductive bias in context-free language learning, Ninth Australian Conference on Neural Networks, Brisbane, Australia. [98.TBW]
A.D. Blair & J. Ingram, 1998. Loanword formation: a neural network approach, Proceedings of the Fourth Meeting of the ACL Special Interest Group in Computational Phonology, Montreal, 1998, 45-54. [98.BI]
E. Sklar, A.D. Blair & J.B. Pollack, 1998. Co-evolutionary learning: machines and humans schooling together, Workshop on Current Trends and Applications of Artificial Intelligence in Education, ITESM, Mexico, 98-105. [98.SBP]
A. Blair & J. Pollack, 1997. Analysis of dynamical recognizers, Neural Computation 9(5), 1997, 1127-1142. [97.BPa]
J.B. Pollack, A.D. Blair & M. Land, 1997. Coevolution of a Backgammon player, Fifth International Conference on Artificial Life, MIT Press, 92-98. [97.PBL]
A.D. Blair & J.B. Pollack, 1997. Quasi-orthogonal maps for dynamic language recognition, Fourth International Conference on Neural Information Processing (ICONIP'97), 1065-1067. [97.BPb]
A.D. Blair & J.B. Pollack, 1997. What makes a good co-evolutionary learning environment? Australian Journal of Intelligent Information Processing Systems 4, 166-175. [97.BPc]
A.D. Blair, 1995. Adelic path space integrals, Reviews in Mathematical Physics 7(1), 1995, 21-49. [95.Bb]