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Abstract—Internal Symmetry Networks are a recently developed

class of Cellular Neural Network inspired by the phenomenon of

internal symmetry in quantum physics. Their hidden unit

activations are acted on non-trivially by the dihedral group of

symmetries of the square. Here, we extend Internal Symmetry

Networks to include recurrent connections, and train them by

backpropagation to perform two simple image processing tasks.
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 I.  INTRODUCTION

Cellular Neural Networks (CNN) are a class of architecture
consisting of a large number of identical neural networks
arranged in a cellular array [1]. Recent years have seen a
growing interent in CNNs, particularly for image processing
tasks [2]. Generally, the weights of a CNN are determined by
hand-crafted design, or by global random search.
Comparatively little research has been done on the training of
CNNs by backpropagation [3]. Here, we report on the training,
by backpropagation, of a particular class of CNN known as
Internal Symmetry Networks (ISN), which employ a special
kind of weight sharing scheme inspired from quantum physics.
Feedforward ISNs have previously been trained by TD-
learning to perform move evaluation for the game of Go [4]. In
the present work, we extend the ISN framework to include
recurrent connections, and test it on two simple image
processing tasks – edge detection (using feedforward ISNs) and

a simplified image segmentation task (using recurrent ISNs). 

 I. INTERNAL SYMMETRY NETWORKS

Consider a Cellular Neural Network comprised of a large
number of identical recurrent neural networks arranged in a
cellular array (see Fig 1). For image processing tasks, each
pixel in the image will generally correspond to one cell in the
array. For clarity of exposition, we assume a square image of
size n-by-n, with n = 2k+1. The array can then be considered as

a lattice ! of vertices "=[a,b] with –k # a,b # k. It will be

convenient to denote by ! the “extended” lattice which

includes an extra row of vertices around the edge of the image,

i.e. ! = {[a,b]}-(k+1) # a,b # (k+1) .
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We can define a local neighborhood around any given
vertex "=[a,b] by specifying a set of increments or “offset”

values which determine the position, relative to ", of all

vertices in the neighborhood. Here, we will employ two such

neighborhood structures, denoted by M and N:

M = {[0,0], [1,0], [0,1], [-1,0], [0,-1]},

N = M $ {[1,1], [-1,1], [-1,-1], [1,-1]}

When viewed as offsets from a particular vertex, M
represents the vertex itself plus the neighboring vertices to its

East, North, West and South; N includes these but also adds the

diagonal vertices to the North-East, North-West, South-West and
South-East (see Fig 1).

Each cell " = [a,b] % ! will have its own set of input,

hidden and output units denoted by I
[a,b]

, H
[a,b]

 and O
[a,b]

. Each

off-edge cell " = [a,b] % !\! also has input and hidden units,

but no output. The entire collection of input, hidden and output

units I, H and O for the whole network can thus be written as:

I = {I
[a,b]

}[a,b]%!

H = {H
[a,b]

}[a,b]%!

O = {O
[a,b]

}[a,b]%!

Each cell " % ! is connected to its nine N-neighboring cells

(i.e. those in a local 3&3 neighborhood) with input-to-hidden

connections VHI , hidden-to-output connections VOH and input-

to-output connections VOI ; in addition, each cell is connected

to its five M-neighboring cells by recurrent hidden-to-hidden

connections VHH . We will use BH and BO to represent the
“bias” at the hidden and output units. The standard recurrent
neural network update equations then take this form:

Hnew
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"
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)
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+(µ%MVHH
µ
Hold

"+µ
)
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"
   ' O(I,Hnew)

"
 =  *  (BO+()%NVOI
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+()%NVOH
)
Hnew
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where * is the sigmoid function *(z)=1/(1+e
-z
).
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Figure 1. System Architecture

Figure 2. The dihedral group D4 with generators r, s

Figure 3. The five irreducible representations of D4

We assume that for the off-edge cells (" % !\!) the hidden

units H
"
 remain identically zero, while the inputs I" take on

special values to indicate that they are off the edge of the
image. We assume a discrete-time model, with the hidden unit
activations of all cells being updated synchronously.

Many image processing tasks are invariant to geometric
transformations of the image (rotations and reflections) as well
as being shift-invariant (with appropriate allowance for “edge
effects”). With this in mind, we design our system in such a
way that the network updates are invariant to these
transformations. A number of different weight sharing schemes
have previously been proposed [5]. In the present work, we
employ a recently developed weight sharing scheme known as
Internal Symmetry Networks [4], based on group
representation theory.

The group G of symmetries of a (square) image is the

dihedral group D4 of order 8. This group is generated by two
elements r and s – where r represents a (counter-clockwise)
rotation of 90° and s represents a reflection in the vertical axis

(see Fig 2). The action of D4 on ! (or !) is given by

         r [a, b] = [-b, a]

s [a, b] = [-a, b]  (1)

Assuming the action of G on N (or M) is also defined by

these equations, it is clear that for g % G, " % ! and ) % N,

g(" + )) = g(") + g()).

Any element g % G acts on the inputs I and output units O
by simply permuting the cells:

g(I) = { I
g[a,b]

 }[a,b]%!

g(O) = { O
g[a,b]

 }[a,b]%!

In addition to permuting the cells, it is possible for G to act

on some or all of the hidden unit activations within each cell, in
a manner analogous to the phenomenon of internal symmetry in
quantum physics. The group D4 has five irreducible
representations, which we will label as Trivial(T),
Symmetrical(S), Diagonal(D), Chiral(C) and Faithful(F). They
are depicted visually in Fig 3, and presented algebraically via
these equations:

r (T)   =  T,  s(T)  =   T

r (S)   = -S,  s(S)  =   S

r (D)  = -D, s(D)  = - D

r (C)  =  C,  s(C)  = - C

r (F)1 = -F2, s(F)1  = -F1

r (F)2 =  F1, s(F)2  =   F2

We consider, then, five types of hidden units, each with its own
group action determined by the above equations. In general, an

ISN can be characterized by a 5-tuple specifying the number of

each type of hidden node at each cell (iT,iS,iD,iC,iF). Because it
is 2-dimensional, hidden units corresponding to the Faithful
representation will occur in pairs (F1, F2) with the group action
“mixing” the activations of F1 and F2. The composite hidden
unit activation for a single cell then becomes a cross-product

H = T
iT & S

iS & D
iD & C

iC & (F1 & F2)
iF



Figure 4. Cross entropy training error (dotted) and test error (solid) per pixel,
for Canny edge detection task.

Figure 5. Example of original test image (left), target image (center)

and network output (right).

with the action of G on H given by

g(H) = {g(H
g[a,b]

)}[a,b]%!

We want the network to be invariant to the action of G in the

sense that for all g % G,

g(Hnew (I, Hold) = Hnew (g(I), g(Hold))

g(O (I, Hnew) = O (g(I), g(Hnew))

This invariance imposes certain constraints on the weights
of the network, which are outlined in the Appendix.

 I. EXPERIMENTS

We test the ISN framework on two simple image
processing tasks. For black and white images, the network has
two inputs per pixel. One input encodes the intensity of the
pixel as a grey scale value between 0 and 1. The other input is a
dedicated "off-edge" input which is equal to 0 for inputs inside
the actual image, and equal to 1 for inputs off the edge of the

image (i.e. for vertices in !\!). This kind of encoding could in

principle be extended to color images by using four inputs per
pixel (three to encode the R,G,B or Y,U,V values, plus the
dedicated "off-edge" input).

A. Edge Detection using Feedforward ISNs

For our first experiment, we test whether an ISN can be
trained to perform Canny Edge Detection [6]. In this case, there
is only one output unit for each pixel, and the aim is for the
network to reproduce, as well as possible, the result of a Canny
edge detection algorithm applied to the original image. This
experiment is intended as a “proof of concept”, and as a vehicle
for tuning the parameters of our system and exploring different
hidden node configurations, before introducing the additional
complexity of recurrent connections.

A number of combinations of parameters and hidden units
were tried. The best results were obtained using cross entropy

minimization, with a learning rate of 5&10
-9

, momentum of 0.9

and hidden unit configuration of (3,1,1,0,1). Cross entropy

means that, if O" is the output and T" is the target, then the cost

function to be minimized is

-(" T" log O" + (1-T" ) log(1-O" )

Fig 4 shows the training and test set error (per pixel) for
600,000 training epochs. Fig 5 shows the input, target and
network output for one of the test images.

A. Wallpaper Segmentation using Recurrent ISNs

It order to explore the recurrent dynamical aspects of the
ISN framework, we devised a "wallpaper segmentation" task.
This is a simplified version of image segmentation, where each
image is a patchwork of different styles of "wallpaper", each
consisting of an array of small motifs on an otherwise blank
canvass.

The training images and test image for this task are shown
in the top row of Fig 6. The network has 4 outputs - one for
each style of wallpaper. During training, the target value at
each pixel is 1 for the k

th
 output and 0 for the other outputs, if

the pixel belongs to a part of the image corresponding to the k
th

style of wallpaper. During testing, the largest of the 4 outputs
for each pixel is taken to be the network's prediction of which
style of wallpaper is present in that part of the image. The test
image combines all four styles, and the spacing between the
motifs is slightly larger for the test image than for the training
images.

For each input image, the ISN is applied for 10 cycles. At
each cycle, the hidden unit activations for all cells are updated
synchronously, with the new values depending on the inputs
and (recurrently) on the values of neighboring hidden nodes at
the previous time step.

A purely feedforward CNN would not be able to perform
this task, because the output at each pixel would depend only
on the portion of the image in a small neighborhood of that
pixel, so the blank areas of the image would fail to be correctly
classified.

There have been many studies into the training of recurrent
neural networks by backpropagation for predicting or
recognizing symbol sequences [7]. Such training often leads to
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Figure 6. Training images and test image for wallpaper segmentation (top row)

and output of the network at epoch 890K for cycles 1 to 6 (middle rows)
and cycle 10 (bottom row).

Figure 7. Percentage of misclassified pixels on training images and test image,

for wallpaper segmentation task.

instabilities, where the task is continually learned but then
unlearned [8]. It has generally been found that the training is
more stable when the backpropagation is applied only for a
single time step and not “unrolled” [9,10]. This effect is even
more noticeable in the case of ISNs, where the activations
spread in two dimensions. In our early experiments, with
backpropagation unrolled to several previous cycles, we
observed a resonance effect occurring after a few thousand
epochs, in which the backpropagated differentials suddenly
blow up to very large values. To avoid this problem, we always
limit the backpropagation to a single cycle.

We found that the best results were obtained using cross

entropy minimization, with a learning rate of 5&10
-8

,

momentum of 0.3 and hidden unit configuration of (4,0,0,0,0).
Fig 7 shows the percentage of misclassified pixels during 1.5
million epochs of training. Misclassification on the training
images undergoes several initial fluctuations, but finally
reaches zero after 539K epochs and remains zero thereafter.
The number of misclassified pixels on the test image continues
to fall, reaching a minimum of 28 (from a total of 1444 pixels)
between 890K and 896K, but then increases to around 50.

Fig 6 shows the classification provided by the network at
epoch 890K, for cycles 1 to 6 and cycle 10. For the training
images, the network classifies all pixels correctly at cycle 4,
shows slight misclassification at cycle 5, but returns to correct
classification for cycles 6 to 10. For the test image, the number
of misclassified pixels continues to drop, reaching a minimum
of 28 pixels by Cycle 10.

Fig 8 plots the activations of three of the four hidden units,
at epoch 890K, for the training images (left) and the test image
(right) at cycles 1, 2, 5 and 10. Pixels belonging to Class

1, 2, 3, 4 are assigned the symbols &, +, , ,- (respectively).

The hidden unit activations for pixels of the test image
(right) follow similar trajectories to those of the training
images, but with some divergence. When we examine the
output at Cycles 5 and 10 in Fig 6 we see that, at Cycle 5, some
Class 4 pixels have been misclassified as Class 2 (for both the
training and test image) and that, at Cycle 10, several Class 4
pixels in the test image have been misclassified as Class 2 or 3.
The hidden unit activations for these pixels are visible as -’s in

Fig 8. In both cases, there appear to be overlaps between the
other symbols as well, which means that the network must be
using the remaining hidden unit, or the hidden units of
neighboring cells, in order to correctly classify these pixels.



Training, Cycle 1 Test, Cycle 1

Training, Cycle 2 Test, Cycle 2

Training, Cycle 5 Test, Cycle 5

Training, Cycle 10 Test, Cycle 10

Figure 8. Hidden unit activations of network at epoch 890K, for cycles 1, 2, 5 and 10.



 II. CONCLUSION

We have shown that Internal Symmetry Networks can be
successfully trained by backpropagation to perform two simple
image processing tasks. When recurrent connections are
included, stability becomes an issue; however, successful
training can be achieved, provided the learning rate is
sufficiently low (and the number of training epochs
correspondingly large).

For the edge detection task, a combination of different
types of hidden units was found to give the best result.
However, for the wallpaper segmentation task, a configuration
including only the Trivial type of hidden unit appeared to be
more effective. One possible reason for this is that the hidden
units were only connected to neighboring input cells within a
small (3&3) neighborhood. This small neigborhood, combined

with the symmetry constraints, meant that the Symmetrical and
Diagonal hidden units were connected to only 4 inputs each,
compared to 9 inputs for the Trivial hidden units. In ongoing
work, we are extending our approach to include connections to
a larger (5&5) neighborhood, in which case the Symmetrical

and Diagonal units would be connected to 16 inputs (compared
to 25 inputs for the Trivial units). We plan to test whether this
larger neighborhood would shift the balance in the relative
potency of the various hidden unit types.

APPENDIX – WEIGHT SHARING

A. Feedforward Connections
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B. Recurrent Connections
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