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Abstract— We demonstrate applicability of a general class of techniques is that most operations between distributsnd)
multivariate probability density functions of the form ¢~"*), a5 multiplication, are performed pair-wise between ths set
where P(z) is an elliptic polynomial, to decentralised data of Gaussian components and produceC?s(mQ) number of

fusion tasks. In particular, we derive an extension to the ts in th ltina distributi . .
Covariance Intersect algorithm for this class of distributons ~COMPONENIS In the resulting distribution, requiring exyea

and demonstrate the necessary operations — diffusion, mit resampling [5]. Particle filters also exhibit this behavidaut

plication and linear transformation — for Bayesian operations. in that case the resampling step is more efficient [8].

A simulated target tracking application demonstrates the se The bandwidth limitations odiistributed scenarios impose

of these operations in a decentralised scenario, employing 5 aqditional significant constraint, namely, that distitns

range-only sensing to show their generality beyond Gaussia th ble of being t itted efficiently. The oarti

representations. must be capable of being transmitted efficiently. The plertic
filter approach suffers in these situations where the capaci

I. INTRODUCTION of the communication channel may not be capable of sup-

Probabilistic methods lie at the heart of many currenporting enough particles to represent distributions ¢ffety.
robotics applications. Descriptions of sensor data, empec Resampling strategies have been proposed [9], [10] but they
tions of sensor or actuator error and models of environnhent@duire compression, and hence distortion, of the disfobu
features are all regularly couched in terms of probabilitps Well as additional computation. Mixture of Gaussian and
distributions. The machinery to manipulate this inforroati Parzen density estimators obviate the need for resampling.
is typically based on the Bayesian framework. Distributed applications may also require a channel filber f

The Kalman filter, for example, is used for many currenfnaintenance of common information between nodes [11].
robotics applications including tracking [1], simultamso [n & Bayesian context, the channel filter involves a division
localisation and mapping [2] and decentralised data fusid?etween distributions which requires approximation fag th
(DDF) [3]. Its popularity can be attributed to its probasiic ~ three representations discussed here [7].
grounding and its efficiency. In its unadorned form, however In a decentralised scenario (i.e., one which is both dis-
the Kalman filter is limited by its linearity assumptions.ti/i tributed and where there is no assumed knowledge of global
some success, these assumptions have been overcome WRHVOrk topology) as information flows through the network
non-linear extensions such as the extended Kalman filter. €ach node’s estimate loses independence from the others

Central to the Kalman filter (and many other methods) i§L12]. It is therefore important when fusing information rfino
the premise that uncertain quantities are Gaussian ineyatupther nodes not to assume independence. The most popular
that is, their uncertainty can be characterised by theirrmealgorithm for conservative fusion is covariance inter¢es)
and covariance. While this assumption leads to efficiendyt3]. Variants of CI exist for mixtures of Gaussians [14] and
it comes at the expense of fidelity of representation. Fd¥article filters, but require approximation and (sometimes
some applications this burden can be overcome by assumiggPensive) resampling.

a Gaussian form of sufficient coverage (i.e., large covagan  In previous work [15] we introduced a class of functions
with associated loss of precision. that can be used for representing non-Gaussian probabil-
Particle filter methods [4] overcome the Gaussian limily densities. This class, which we have dubbed ExPoly,

itations inherent in the Kalman filter. For these methodg;omprises functions of the forma=*(*), where P(z) is a
uncertainty is represented not in terms of a direct desoript Multivariate polynomial of even degree which is also eitipt

of a probability distribution, but by a sample from the un{that is, it approaches infinity in all directions). ExPoly
derlying distribution. A necessary trade-off here is batwe €xtends the set of Gaussian functions to those which are
representational fidelity and computational efficiency. multi-modal, skewed or otherwise exotic.

A different approach has been to consider a more gen- ExPoly has a number of properties that make it suitable
eralised description of distributions in the form of mixear for application to DDF applications. Multiplication of dis
of Gaussians [5] and Parzen density estimators (with Gaugibutions, as required for integration of new sensor data,
sian kernels) [6], [7]. For both of these approaches, moiié straightforward. For distributed applications emphayi
complex distributions are represented via an agglomerati@ channel filter, division is likewise simple. Importantly,

of Gaussian distributions. The major drawback to thesepresentations of distributions, in the form of the coedfits
of the polynomial,P(x), are both compact and flexible and
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likelihood, the prediction step seeks to find the expectetthat the process is numerically unstable, leading to non-
likelihood at a future time. This operation can be considereelliptic polynomials. For univariate functions this prebt is
in two steps: a (linear) transformation of the distributioreasily overcome by ensuring that the coefficient for thetgrea
and a diffusion (or spreading out). A major drawback foest (even) exponent is always positive, but for multivariat
ExPoly is that the class is not closed under diffusion. Fdiunctions it is problematic to efficiently determine whatlae
Gaussian and Gaussian-based representations this aliffuspolynomial is non-elliptic and it is not obvious how best to
is performed simply by increasing the covariance (or eadnansform a distribution back into an elliptic form to allow
component’s covariance), but for ExPoly distributions arnhe iterative procedure to continue.
approximation is necessary. Our former work [15] showed Fortunately the reverse process of deriving the expectatio
that this approximation was most accurate for distribigionparameters from the coefficients is straightforward, ifeim
most resembling a Gaussian, and remained quite accuransuming. The moments can be simply found by integrat-
before breaking down for extreme, boundary cases. ing a:me*Pm over the domain on which the function is

In this paper we demonstrate the applicability of ExPolysupported. For arbitrary distributions it is unclear whre
distributions to a simulated decentralised tracking ta8k. supporting domain is located. A Metropolis sampler [17] can
describe the operations necessary for DDF as applied e used to provide an initial estimate.
ExPoly. These include how Cl can be extended to this class The Metropolis sampler seeks to draw samples from an
of distributions and the creation of sensor models. arbitrary distribution,P(s). It uses a ‘proposal’ distribution,
f(s), from which samples can be generated (e.g., Gaussian or

Il. OPERATIONS ON ExPoLy uniform), and maintains a state. A states, ., is proposed

It is important to highlight the dual co-ordinate systemsy perturbings; with a value drawn fromf. This state is
that are typically used when considering Gaussian distraccepted as;. if P(5;11)/P(s;) > r wherer is drawn
butions. These co-ordinate systems are based on either fhem the uniform distribution orf0, 1], otherwises;; = s;.
expectation parameters of the distribution (i.e., mearand For ExPoly distributions the Metropolis sampler has two
covariance matrix,X)) or the coefficient parameters, alsouseful characteristics that result from the need to compute
known as the information parameters (i.%.,,= X~! and the ratio between distributions. Firstly, the distribatioeed
y = Y1) [16]. For Gaussian distributions, it is simple tonot be normalised. Secondly, their are numerical benefits
translate back and forth between these co-ordinate systerits using the ratio since it can be computed directly as
For example, the Information filter is simply the Kalmanexp(—(P(3;11)— P(s;))). The ratio is usually well-defined
filter translated from expectation to information param®te (and non-zero) and the algorithm can quickly find a mode of

While Gaussian distributions are completely parametdrisehe distribution irrespective of the initial state. The dwmide
by the mean and covariance, ExPoly distributions, being the Metropolis sampler is that all modes may not be
more flexible, require more parameters. Again, this paransampled, skewing estimates of the distributions propertie
eterisation can be done in terms of either the expectatioktowever, if the covariance of a distribution is approxinhate
or the coefficients (of the polynomidf(z)). Unlike Gaus- known, a conservative choice of the proposal distributifin,
sian distributions, there is no closed-form solution to thean increase the likelihood that the sampler will travelke a
relationship. Consider an ExPoly distribution wfvariables modes of the distribution.

defined by its coefficientsy;, exp(— " ajyzl?) where ] For functions with high dimensionality it may be more
represents a multi-index;, ..., 4,, and zl! = ITiy x}j efficient to use the Metropolis sampler to directly estimate
The corresponding expectation parameters (the higherordhe expectation parameters but, at least for bivariate-func
moments) are given by tions, we have found it more reliable and sufficiently fast to
use the sampler to provide an initial estimate which is then
M = < gl > = /:c[”e’P(””)dar : refined via integration over the indicated region. Estirnate

mean and covariance will prove necessary for the diffusion
We can then approximate the transformation between the twerator, discussed below.
co-ordinate systems with a linear map ) )

A. Linear Transformation

-1
M +6M —a+ G oM Linear transformations of ExPoly distributions are one of

whereG is the Fisher information matrix given by the core operations necessary to support Bayesian analysis
We assume a (linear) process model,
g2, 0 ) = / OP(x) OP(x) ,~P(x) gy
afi)’ Bay dap;) Bag; Tk1 = Frp12k + Brp1Ugs1 + Wi, Q)
= /x[i]x[j]e_P(m)d:v = Mlitd] wherew;; is drawn from a Gaussian distribution of zero
mean and covarianc€.;. The current estimate of the
and whereli + j] = (i1 + j1), .- -, (in + Jn)- state is codified in terms of a probability density function

In principle this technique defines an iterative procedurexp(—P(iy;,)) over states. Bayesian prediction is performed
for finding a set of coefficients that define a distributiorby transforming the distribution according to (1), and
having the given expectation parameters. In practice we findg the distribution according Q.1 (see following section



for details). This (linear) transformation involves geatérg  This general pattern is extended to the residual term giving
a new polynomial P(&41);) wherex is given according the full diffusion as
to (1) ignoring the process noise. Thus, the new polynomial

1 _ R((I +tA)~=)
becomes Pi(u) = zuT (I +tA)tu+ —>—7—2 (3
% (w) 5 U (I +tA)" u+ (A7 (3)
b _ . [ : _ _ _
P(Zgiay) = Zahl (Fit12k + Brau) ™. @ wheren is a free parameter which experimentation suggests
(7] should be set at approximately + . for an ith order
The determinant of is used as a renormalising constant taPolynomial.
maintain the volume of the distribution. A small extension to (3) chooses a different decay factor

The general (multivariate) solution has been given ifhere(1+tA,)") for each term of the residual. Details of this
earlier work [15], but for a univariate distribution the co-extension (and a more thorough description of the diffusion

efficients of P become are described in detail elsewhere [15], but it is the extdnde
n ) version we will use in the simulations in this paper.
a; = Za-j (J_)Fj—i(_Bu)j. The diffusion relies on a linear transformation of the
=i polynomial based on its mean and covariance to diagonalise

A. As described earlier, the mean and covariance cannot be
directly inferred from the coefficients and must be estimate

_ o 2 via either sampling or integration. This inference causes
is quadratic in the number of terms, 6%(",")"). Conse- errors in the estimates to which the diffusion process may
quently, the number of coefficients can be a limiting factope sensitive. Simulations suggest, however, that the acgur

in practice and it may become important to compute thigf the approximate diffusion process is relatively robuihw
linear transformation quickly. Implementations can cotepu respect to small errors in these estimates, and that it mety ev
these coefficients by either solving the system for each neytoduce a marginally more accurate approximation when the

coefficient individually (as for the univariate example @ covariance is slightly underestimated.
above), or by expanding each term of (2) and summing the

expanded terms as appropriate. Our implementation takes 6. Covariance Intersect

first approach using a metaprogram to solve (2) and writing |n 3 DDF system, each node maintains a likelihood. New
the appropriate source code to perform the transformatiqnsor data is integrated into this likelihood by multiation
directly. While fast, this approach is practically limitéd  of the distributions. For ExPoly distributions this multga-
relatively simple functions (sixth order polynomials ofék  tjon of distributions becomes an addition of the polynosiial
variables). coefficients (as in the information filter). Likelihoods are
I also propagated around the network. An important issue
B. Diffusion . ) . T
is what happens when a node receives information: it is
For Bayesian-based systems, prediction is governed by th@ite possible that a node’s own previously communicated
Chapman-Kolmogorov equation which describes a convenformation is embedded within information coming from
lution between the linearly transformed likelihood and thether nodes. Naive combination of an incoming likelihood
process noise distribution. For ExPoly we assume Gaussi@ith a node’s own current estimate risks information re-use
process noise and consider the differential form of th@hich can lead to overconfidence. To alleviate this problem,
diffusion equation rather than the integral form, which isome distributed systems employ a known tree-architecture
given by the Laplaciam\,.. For multivariate functions the and channel filters so that nodes can filter out the informatio

The number of coefficients for dth degree polynomial of
n variables increases @((”l“)). The linear transformation

Laplacian operator takes the form that they have previously sent [11]. These channel filters
92 require division of distributions which, for ExPoly, arésal
A=~ ZDW'W involving simple subtraction of coefficients.
i,j 10T The covariance intersect algorithm (CI) [13] provides a

for a diffusion matrix,D. Note thatA can be diagonalised mechanism for conservatively combining distributionshwit

by changing co-ordinates (linear transformation)«to=  Unknown cross-correlations. It provides a general saiftio
VY~ (z— ), whereV diagonalise£~ 3 DX~% to A such combining information from possibly self-affected sowgce
that Vi, 0 < Ais < Ait1it1. which permits communication networks of arbitrary topglog

For diffusion we decompose our distribution into a°f Which nodes have only local information. =
Gaussian component, which can be diffused exactly, and ESsentially, CI computes a convex combination of the
a ‘residual’ whose diffusion is approximated. Thus, foffWo distributions using a weighting parameter,chosen to
exp(—P(u)) = exp(—(Q(u) + R(u))) we haveQ(u) = optimise some property of the combined distribution such
LS w2 andR(u) = P(u)—Q(u). In the case wher(u) ~ 2S the trace or determinant of the covariance. While CI is

is zero (i.e.exp(—P(v)) is purely Gaussian), the diffusion tyPically described in expectation co-ordinates,
is g'Ven by ] Egl — wz;l 4 (1 _ W)Zb_l
Py(u) = §UT(I +tA) "t Sotpe = Wi e+ (1 —w)S;

(&



its equivalent in coefficient co-ordinates is arguably denp is capable of producing distributions with covarianced tha
are smaller than those of the source distributions.
exp(=Qe()) = exp(—(wQa() + (1 = w)Qu(2))).  (4) As for Cl, the optimised quantities of convex combina-
This form of CI suggests an immediate extension to ExPolffons of ExPoly functions appear also to be convex in the
distributions weighting parametery. This property permits the use of
more advanced optimisation strategies. Efficient optitiisa
exp(—Pe.(z)) = exp(—(wP,(z) + (1 —w)Py(x))). (5) is particularly important for ExPoly distributions sinceag

. . uation of eachv requires extensive sampling or integration
We offer no proof that (5) guarantees consistency in thgf a distribution which is computationally expensive.

terms of [13], but experimentation suggests that it produce
sensible results. I1l. RANGE-ONLY EXAMPLE

An alternative approach, which does guarantee consis-In this section we demonstrate the theory outlined above
tency, would be to perform CI in terms of the mean an@n a simple simulated tracking task with range-only sensors

covariance of the distributions. That is The system is comprised of four nodes,,...,ns posi-
1) compute (estimate) the means and covariances of thiened at(2,2), (1, —1), (-2, -2) and (-2, 1) respectively.
two distributions, X, , p, and Xy, up The communication network for the nodes forms a directed
2) compute a new mean and covariancg, . according ring: n; — np — n3 — ny — ny. It is hence likely that
to Cl and weighting parameter, information communicated from a node will at some future
3) compute a new ExPoly distribution using this weight{oint return to that node, requiring use of our extended Cl
ing parameter and (5) algorithm. The system aims to estimate the positieny) of
4) compute (estimate) the mean and covariance of thibe target which moves with a constant velocity(6f5, 0.5)
new distribution,X., fi. but with large random movements in position of the same
5) transform the new ExPoly distribution so that it hagnagnitude as the velocity (i.e., the noise in the processanod
mean and covariance,, u., that isz = Zcigl(jz — has a covariance df.5%1).
frc) + e A. Sensor Model

This approach would guarantee the consistency of the mean . ihe scenario we have described the key advantage of

a_nd covariance, but promises nothing with respect to th@xPon distributions is in their ability to represent a much
higher order mome_nts, t_hough step (3) sugge_sts_ th"’?t SOWftier range of sensor likelihood models than their Gaussian
features should be m_hented from th_e source dlstrlbut|0ns counterparts. In a Bayesian data fusion context, with state
A clear probl_em.wnh the alternative approach is appar, - state estimatei, and measurement,, new sensor
ent when considering a range-only gxample. Suppose tr]ﬁ ormation is integrated by
we have two range-only sensors. With a purely Gaussian A
representation, the sensor likelihood for a range reading, Play|zr) = L(z = zu|aw) P(Tk|2z-1)
r, is a Gaussian centred on the sensor’s location with a P(zg|2k-1)
covariance ofrkl for some constank. When combining where the denominator can be disregarded as a normalising
distributions from each sensor, one with covariangel the constant. The sensor model describes a likelihood distribu
other with covariancekI, Cl will always derive a copy tion over the target's state for a given sensor reading. For a
of the distribution with the smallest covariance (smallgst range-only sensor this likelihood function takes on therfor
For a Gaussian representation, this may be the best possibfea ring where the probability mass is concentrated around
outcome. Consider, however, an ExPoly sensor model #se measured distance from the sensor. In practice, dgrivin
shown in Fig. 2. Since our alternative method performs Cccurate sensor models is a laborious task. For the purposes
only on the mean and covariance the result is identical tof this example we assume that the band cross-section takes
the Gaussian case, even though it seems likely that thereois an approximately Gaussian shape, and that is constant
a better solution. Indeed, as seen in the next section, orespective of the measurement (an unlikely assumption).
original approach does yield attractive solutions. Since the function should be rotationally symmetric, we
For the original (Gaussian) ClI, it was suggested that can consider the one dimensional case and extend it by
be optimised with respect to the size of the covariancsubstituting,/z2 + 32 for z. Thus, for a given measurement
(determinant or trace) [13]. Given the richer represeoisti > we use a sensor likelihood model (in one dimension)
of ExPoly new possibilities become apparent. A clear caref the form exp(—;%az:4 + 2az?) where a controls the
didate would be to take the moistformative distribution as variance of the cross-section (see Fig. 1). This function
determined by the differential entropy or the Renyi entropyoughly approximates the summed Gaussian pair given by
For distributions of many variables where numerical inteexp(—(4a(x 4 2)?)). That is, two Gaussians having variance
gration is impractical, it is still possible to use propestiof % and meanstz.
the covariance as the optimisation criterion to obtain altes In two dimensions, this sensor model yields a function of
of the expected form. Unlike the Gaussian distribution i ththe form shown in Fig. 2. The distribution can no longer
range-only example, when combining ExPoly distributionde approximated by combining a symmetric pair of Gaus-
with covariances of the formdI our extended version of Cl sian functions. While this form of the function describes a




Renyi Entropy

Time

Fig. 1. Sensor model, in one dimension, for a range-only@eStown are  Fig. 3. Renyi entropy of each node in the DDF network. Note, tbaunter
the (non-normalised) sensor likelihoods for two sensang, more accurate to expectations, for some fusion events the entropy ineseabhis effect is
(inner pair) than the other (outer pair) for measurementswvat ranges, likely because for Clw was optimised with respect to the covariance and
z = 5 (outer pair) andz = 4 (inner pair). For comparison, a Gaussian not the measure evaluated for this figure.

distribution has been overlaid on the rightmost mode.

IV. CONCLUSIONS

In this paper we have considered the ExPoly class of
probability density functions and outlined how to perfoima t
operations on it necessary in a DDF context. ExPoly provides
a natural extension to Gaussian representations providing
more complex distributions as in our range-only example.
ExPoly is aimed to sit alongside other non-Gaussian repre-
sentations (particle filters, mixtures of Gaussians anddpar
density estimators) providing a different set of tradesdfr
potential applications with specific constraints.

Unlike other representations, sensor integration is smpl
Fig. 2. Sensor model, in two dimensions, for a range-onlgserior this |rresp§ctl\_/e of the n!‘lmber of _measurements tak?n (since re-
function, z = 5 anda = 0.25. sampling is not required). Fusion between nodes is somewhat

more complicated, but is efficient in its use of bandwidth.
Perhaps the major disadvantage to ExPoly is the need to
distribution in sensor-centric co-ordinate space, a tadios  €stimate expectation parameters. Estimates of the mean and
(section 11-A) shifts it to the global co-ordinate system.  covariance are required for time-diffusion (predictioemt
and fusion. For diffusion, the mean and covariance should
change as for a Gaussian, so expectations can be accurately
estimated from the previously estimated distribution. For

The nodes in the network operated on slightly differenfusion, efficient methods need to be employed to optimise
schedules. All nodes performed a measurement ep@y w Wwith the fewest evaluations.
andn; andns; communicated their distributions evedy5s Another difficulty with ExPoly distributions is in building
(to no and n, respectively), whereas, andn, communi- Sensor likelihood models. For other representations it is
cated every).45s. (Where measurements and communicatiofeasonably straightforward to infer a distribution matchi

fell at nominally the same time, measurements occurredPserved data. While the model given here for a range-only
first.) The target's initial position waé—1, —2). sensor was relatively straightforward, other cases areemor

The sensor for the simulations was configured to useomplicated. Further work needs to be done to make this task

a = 2.0, and noise in the sensor was simulated by perturbirg?Sier; ither by rectifying the iterative procedure o in
the actual range with Gaussian noise of varialglge(ap- section Il or by finding some entirely new approach.
pro.ximafcely mgtching the sensor noise djstribution). When V. ACKNOWLEDGEMENTS
fusing distributions our extended CI algorithm (5) was used
optimisingw with respect to the trace of the covariance.
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Fig. 4. These figures show the posterior distributions dedéht nodes after various events. In each figure the noderwahsideration is shown in black
and the target is shown by an outlined box. The first two cokirsimow the posterior distribution of a node after sensogiat®n with the measured
range shown as a grey ellipse. The final columns show the nmstkstribution after fusion with information propagagi clockwise through the network.
Each row forms a triplet: the first two columns show the soutistributions and the rightmost column shows the resuéirdfte source distributions have

undergone a prediction step and then been fused. Within teigdét no other events occur between measurements anshfesher than prediction.
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