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Abstract— We demonstrate applicability of a general class of
multivariate probability density functions of the form e

−P (x),
where P (x) is an elliptic polynomial, to decentralised data
fusion tasks. In particular, we derive an extension to the
Covariance Intersect algorithm for this class of distributions
and demonstrate the necessary operations – diffusion, multi-
plication and linear transformation – for Bayesian operations.
A simulated target tracking application demonstrates the use
of these operations in a decentralised scenario, employing
range-only sensing to show their generality beyond Gaussian
representations.

I. INTRODUCTION

Probabilistic methods lie at the heart of many current
robotics applications. Descriptions of sensor data, expecta-
tions of sensor or actuator error and models of environmental
features are all regularly couched in terms of probability
distributions. The machinery to manipulate this information
is typically based on the Bayesian framework.

The Kalman filter, for example, is used for many current
robotics applications including tracking [1], simultaneous
localisation and mapping [2] and decentralised data fusion
(DDF) [3]. Its popularity can be attributed to its probabilistic
grounding and its efficiency. In its unadorned form, however,
the Kalman filter is limited by its linearity assumptions. With
some success, these assumptions have been overcome with
non-linear extensions such as the extended Kalman filter.

Central to the Kalman filter (and many other methods) is
the premise that uncertain quantities are Gaussian in nature;
that is, their uncertainty can be characterised by their mean
and covariance. While this assumption leads to efficiency
it comes at the expense of fidelity of representation. For
some applications this burden can be overcome by assuming
a Gaussian form of sufficient coverage (i.e., large covariance)
with associated loss of precision.

Particle filter methods [4] overcome the Gaussian lim-
itations inherent in the Kalman filter. For these methods,
uncertainty is represented not in terms of a direct description
of a probability distribution, but by a sample from the un-
derlying distribution. A necessary trade-off here is between
representational fidelity and computational efficiency.

A different approach has been to consider a more gen-
eralised description of distributions in the form of mixtures
of Gaussians [5] and Parzen density estimators (with Gaus-
sian kernels) [6], [7]. For both of these approaches, more
complex distributions are represented via an agglomeration
of Gaussian distributions. The major drawback to these
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techniques is that most operations between distributions,such
as multiplication, are performed pair-wise between the sets
of Gaussian components and produce anO(n2) number of
components in the resulting distribution, requiring expensive
resampling [5]. Particle filters also exhibit this behaviour, but
in that case the resampling step is more efficient [8].

The bandwidth limitations ofdistributed scenarios impose
an additional significant constraint, namely, that distributions
must be capable of being transmitted efficiently. The particle
filter approach suffers in these situations where the capacity
of the communication channel may not be capable of sup-
porting enough particles to represent distributions effectively.
Resampling strategies have been proposed [9], [10] but they
require compression, and hence distortion, of the distribution
as well as additional computation. Mixture of Gaussian and
Parzen density estimators obviate the need for resampling.
Distributed applications may also require a channel filter for
maintenance of common information between nodes [11].
In a Bayesian context, the channel filter involves a division
between distributions which requires approximation for the
three representations discussed here [7].

In a decentralised scenario (i.e., one which is both dis-
tributed and where there is no assumed knowledge of global
network topology) as information flows through the network
each node’s estimate loses independence from the others
[12]. It is therefore important when fusing information from
other nodes not to assume independence. The most popular
algorithm for conservative fusion is covariance intersect(CI)
[13]. Variants of CI exist for mixtures of Gaussians [14] and
particle filters, but require approximation and (sometimes
expensive) resampling.

In previous work [15] we introduced a class of functions
that can be used for representing non-Gaussian probabil-
ity densities. This class, which we have dubbed ExPoly,
comprises functions of the forme−P (x), whereP (x) is a
multivariate polynomial of even degree which is also elliptic
(that is, it approaches infinity in all directions). ExPoly
extends the set of Gaussian functions to those which are
multi-modal, skewed or otherwise exotic.

ExPoly has a number of properties that make it suitable
for application to DDF applications. Multiplication of dis-
tributions, as required for integration of new sensor data,
is straightforward. For distributed applications employing
a channel filter, division is likewise simple. Importantly,
representations of distributions, in the form of the coefficients
of the polynomial,P (x), are both compact and flexible and
can be efficiently communicated around a network.

Given a (linear) process model, an expected level of
process noise and a distribution representing the current



likelihood, the prediction step seeks to find the expected
likelihood at a future time. This operation can be considered
in two steps: a (linear) transformation of the distribution
and a diffusion (or spreading out). A major drawback for
ExPoly is that the class is not closed under diffusion. For
Gaussian and Gaussian-based representations this diffusion
is performed simply by increasing the covariance (or each
component’s covariance), but for ExPoly distributions an
approximation is necessary. Our former work [15] showed
that this approximation was most accurate for distributions
most resembling a Gaussian, and remained quite accurate
before breaking down for extreme, boundary cases.

In this paper we demonstrate the applicability of ExPoly
distributions to a simulated decentralised tracking task.We
describe the operations necessary for DDF as applied to
ExPoly. These include how CI can be extended to this class
of distributions and the creation of sensor models.

II. OPERATIONS ON EXPOLY

It is important to highlight the dual co-ordinate systems
that are typically used when considering Gaussian distri-
butions. These co-ordinate systems are based on either the
expectation parameters of the distribution (i.e., mean,µ, and
covariance matrix,Σ) or the coefficient parameters, also
known as the information parameters (i.e.,Y = Σ−1 and
y = Σ−1µ) [16]. For Gaussian distributions, it is simple to
translate back and forth between these co-ordinate systems.
For example, the Information filter is simply the Kalman
filter translated from expectation to information parameters.

While Gaussian distributions are completely parameterised
by the mean and covariance, ExPoly distributions, being
more flexible, require more parameters. Again, this param-
eterisation can be done in terms of either the expectations
or the coefficients (of the polynomialP (x)). Unlike Gaus-
sian distributions, there is no closed-form solution to the
relationship. Consider an ExPoly distribution ofn variables
defined by its coefficients,a[i], exp(−

∑

a[i]x
[i]) where [i]

represents a multi-index,i1, . . . , in, and x[i] =
∏n

k=1 xik

k .
The corresponding expectation parameters (the higher-order
moments) are given by

M [i] = < x[i] > =

∫

x[i]e−P (x)dx .

We can then approximate the transformation between the two
co-ordinate systems with a linear map

M + δM 7→ a + G−1δM

whereG is the Fisher information matrix given by

g( ∂
∂a[i]

, ∂
∂a[j]

) =

∫

∂P (x)
∂a[i]

∂P (x)
∂a[j]

e−P (x)dx

=

∫

x[i]x[j]e−P (x)dx = M [i+j]

and where[i + j] = (i1 + j1), . . . , (in + jn).
In principle this technique defines an iterative procedure

for finding a set of coefficients that define a distribution
having the given expectation parameters. In practice we find

that the process is numerically unstable, leading to non-
elliptic polynomials. For univariate functions this problem is
easily overcome by ensuring that the coefficient for the great-
est (even) exponent is always positive, but for multivariate
functions it is problematic to efficiently determine whether a
polynomial is non-elliptic and it is not obvious how best to
transform a distribution back into an elliptic form to allow
the iterative procedure to continue.

Fortunately the reverse process of deriving the expectation
parameters from the coefficients is straightforward, if time
consuming. The moments can be simply found by integrat-
ing x[i]e

−P (x) over the domain on which the function is
supported. For arbitrary distributions it is unclear wherethe
supporting domain is located. A Metropolis sampler [17] can
be used to provide an initial estimate.

The Metropolis sampler seeks to draw samples from an
arbitrary distribution,P (s). It uses a ‘proposal’ distribution,
f(s), from which samples can be generated (e.g., Gaussian or
uniform), and maintains a statesi. A states̃i+1 is proposed
by perturbingsi with a value drawn fromf . This state is
accepted assi+1 if P (s̃i+1)/P (si) > r wherer is drawn
from the uniform distribution on(0, 1], otherwisesi+1 = si.

For ExPoly distributions the Metropolis sampler has two
useful characteristics that result from the need to compute
the ratio between distributions. Firstly, the distribution need
not be normalised. Secondly, their are numerical benefits
in using the ratio since it can be computed directly as
exp(−(P (s̃i+1)−P (si))). The ratio is usually well-defined
(and non-zero) and the algorithm can quickly find a mode of
the distribution irrespective of the initial state. The downside
to the Metropolis sampler is that all modes may not be
sampled, skewing estimates of the distributions properties.
However, if the covariance of a distribution is approximately
known, a conservative choice of the proposal distribution,f ,
can increase the likelihood that the sampler will traverse all
modes of the distribution.

For functions with high dimensionality it may be more
efficient to use the Metropolis sampler to directly estimate
the expectation parameters but, at least for bivariate func-
tions, we have found it more reliable and sufficiently fast to
use the sampler to provide an initial estimate which is then
refined via integration over the indicated region. Estimates of
mean and covariance will prove necessary for the diffusion
operator, discussed below.

A. Linear Transformation

Linear transformations of ExPoly distributions are one of
the core operations necessary to support Bayesian analysis.
We assume a (linear) process model,

xk+1 = Fk+1xk + Bk+1uk+1 + wk+1, (1)

wherewk+1 is drawn from a Gaussian distribution of zero
mean and covarianceQk+1. The current estimate of the
state is codified in terms of a probability density function
exp(−P (x̂k|k)) over states. Bayesian prediction is performed
by transforming the distribution according to (1), and diffus-
ing the distribution according toQk+1 (see following section



for details). This (linear) transformation involves generating
a new polynomial,̂P (x̂k+1|k) wherexk+1 is given according
to (1) ignoring the process noise. Thus, the new polynomial
becomes

P̂ (x̂k+1|k) =
∑

[i]

a[i](Fk+1xk + Bk+1u)[i]. (2)

The determinant ofF is used as a renormalising constant to
maintain the volume of the distribution.

The general (multivariate) solution has been given in
earlier work [15], but for a univariate distribution the co-
efficients ofP̂ become

âi =

n
∑

j=i

aj

(

j

i

)

F j−i(−Bu)j .

The number of coefficients for anlth degree polynomial of
n variables increases asO(

(

n+l
l

)

). The linear transformation

is quadratic in the number of terms, soO(
(

n+l
l

)2
). Conse-

quently, the number of coefficients can be a limiting factor
in practice and it may become important to compute this
linear transformation quickly. Implementations can compute
these coefficients by either solving the system for each new
coefficient individually (as for the univariate example given
above), or by expanding each term of (2) and summing the
expanded terms as appropriate. Our implementation takes the
first approach using a metaprogram to solve (2) and writing
the appropriate source code to perform the transformation
directly. While fast, this approach is practically limitedto
relatively simple functions (sixth order polynomials of three
variables).

B. Diffusion

For Bayesian-based systems, prediction is governed by the
Chapman-Kolmogorov equation which describes a convo-
lution between the linearly transformed likelihood and the
process noise distribution. For ExPoly we assume Gaussian
process noise and consider the differential form of the
diffusion equation rather than the integral form, which is
given by the Laplacian∆x. For multivariate functions the
Laplacian operator takes the form

∆ = −
∑

i,j

Di,j

∂2

∂xi∂xj

for a diffusion matrix,D. Note that∆ can be diagonalised
by changing co-ordinates (linear transformation) tou =
V Σ− 1

2 (x− x̂), whereV diagonalisesΣ− 1
2 DΣ− 1

2 to Λ such
that ∀i, 0 < λi,i ≤ λi+1,i+1.

For diffusion we decompose our distribution into a
Gaussian component, which can be diffused exactly, and
a ‘residual’ whose diffusion is approximated. Thus, for
exp(−P (u)) = exp(−(Q(u) + R(u))) we haveQ(u) =
1
2

∑n
i=1 u2

i andR(u) = P (u)−Q(u). In the case whereR(u)
is zero (i.e.,exp(−P (u)) is purely Gaussian), the diffusion
is given by

Pt(u) =
1

2
uT (I + tΛ)−1u.

This general pattern is extended to the residual term giving
the full diffusion as

Pt(u) =
1

2
uT (I + tΛ)−1u +

R((I + tΛ)−
1
2 )

(1 + tΛn)η
(3)

whereη is a free parameter which experimentation suggests
should be set at approximately2 + l

2 for an lth order
polynomial.

A small extension to (3) chooses a different decay factor
(here(1+tλn)η) for each term of the residual. Details of this
extension (and a more thorough description of the diffusion)
are described in detail elsewhere [15], but it is the extended
version we will use in the simulations in this paper.

The diffusion relies on a linear transformation of the
polynomial based on its mean and covariance to diagonalise
∆. As described earlier, the mean and covariance cannot be
directly inferred from the coefficients and must be estimated
via either sampling or integration. This inference causes
errors in the estimates to which the diffusion process may
be sensitive. Simulations suggest, however, that the accuracy
of the approximate diffusion process is relatively robust with
respect to small errors in these estimates, and that it may even
produce a marginally more accurate approximation when the
covariance is slightly underestimated.

C. Covariance Intersect

In a DDF system, each node maintains a likelihood. New
sensor data is integrated into this likelihood by multiplication
of the distributions. For ExPoly distributions this multiplica-
tion of distributions becomes an addition of the polynomials’
coefficients (as in the information filter). Likelihoods are
also propagated around the network. An important issue
is what happens when a node receives information: it is
quite possible that a node’s own previously communicated
information is embedded within information coming from
other nodes. Naive combination of an incoming likelihood
with a node’s own current estimate risks information re-use
which can lead to overconfidence. To alleviate this problem,
some distributed systems employ a known tree-architecture
and channel filters so that nodes can filter out the information
that they have previously sent [11]. These channel filters
require division of distributions which, for ExPoly, are trivial
involving simple subtraction of coefficients.

The covariance intersect algorithm (CI) [13] provides a
mechanism for conservatively combining distributions with
unknown cross-correlations. It provides a general solution for
combining information from possibly self-affected sources
which permits communication networks of arbitrary topology
of which nodes have only local information.

Essentially, CI computes a convex combination of the
two distributions using a weighting parameter,ω, chosen to
optimise some property of the combined distribution such
as the trace or determinant of the covariance. While CI is
typically described in expectation co-ordinates,

Σ−1
c = ωΣ−1

a + (1 − ω)Σ−1
b

Σ−1
c µc = ωΣ−1

a µa + (1 − ω)Σ−1
b µb



its equivalent in coefficient co-ordinates is arguably simpler,

exp(−Qc(x)) = exp(−(ωQa(x) + (1 − ω)Qb(x))). (4)

This form of CI suggests an immediate extension to ExPoly
distributions

exp(−Pc(x)) = exp(−(ωPa(x) + (1 − ω)Pb(x))). (5)

We offer no proof that (5) guarantees consistency in the
terms of [13], but experimentation suggests that it produces
sensible results.

An alternative approach, which does guarantee consis-
tency, would be to perform CI in terms of the mean and
covariance of the distributions. That is

1) compute (estimate) the means and covariances of the
two distributions,Σa, µa andΣb, µb

2) compute a new mean and covariance,Σc, µc according
to CI and weighting parameter,ω

3) compute a new ExPoly distribution using this weight-
ing parameter and (5)

4) compute (estimate) the mean and covariance of this
new distribution,Σ̂c, µ̂c

5) transform the new ExPoly distribution so that it has
mean and covarianceΣc, µc, that isx = ΣcΣ̂

−1
c (x̂ −

µ̂c) + µc.

This approach would guarantee the consistency of the mean
and covariance, but promises nothing with respect to the
higher order moments, though step (3) suggests that some
features should be inherited from the source distributions.

A clear problem with the alternative approach is appar-
ent when considering a range-only example. Suppose that
we have two range-only sensors. With a purely Gaussian
representation, the sensor likelihood for a range reading,
r, is a Gaussian centred on the sensor’s location with a
covariance ofrkI for some constantk. When combining
distributions from each sensor, one with covariancer1kI the
other with covariancer2kI, CI will always derive a copy
of the distribution with the smallest covariance (smallestr).
For a Gaussian representation, this may be the best possible
outcome. Consider, however, an ExPoly sensor model as
shown in Fig. 2. Since our alternative method performs CI
only on the mean and covariance the result is identical to
the Gaussian case, even though it seems likely that there is
a better solution. Indeed, as seen in the next section, our
original approach does yield attractive solutions.

For the original (Gaussian) CI, it was suggested thatω
be optimised with respect to the size of the covariance
(determinant or trace) [13]. Given the richer representations
of ExPoly new possibilities become apparent. A clear can-
didate would be to take the mostinformative distribution as
determined by the differential entropy or the Renyi entropy.

For distributions of many variables where numerical inte-
gration is impractical, it is still possible to use properties of
the covariance as the optimisation criterion to obtain a result
of the expected form. Unlike the Gaussian distribution in the
range-only example, when combining ExPoly distributions
with covariances of the formkI our extended version of CI

is capable of producing distributions with covariances that
are smaller than those of the source distributions.

As for CI, the optimised quantities of convex combina-
tions of ExPoly functions appear also to be convex in the
weighting parameter,ω. This property permits the use of
more advanced optimisation strategies. Efficient optimisation
is particularly important for ExPoly distributions since eval-
uation of eachω requires extensive sampling or integration
of a distribution which is computationally expensive.

III. R ANGE-ONLY EXAMPLE

In this section we demonstrate the theory outlined above
on a simple simulated tracking task with range-only sensors.
The system is comprised of four nodes,n1, . . . , n4 posi-
tioned at(2, 2), (1,−1), (−2,−2) and (−2, 1) respectively.
The communication network for the nodes forms a directed
ring: n1 → n2 → n3 → n4 → n1. It is hence likely that
information communicated from a node will at some future
point return to that node, requiring use of our extended CI
algorithm. The system aims to estimate the position,(x, y) of
the target which moves with a constant velocity of(0.5, 0.5)
but with large random movements in position of the same
magnitude as the velocity (i.e., the noise in the process model
has a covariance of0.52I).

A. Sensor Model

In the scenario we have described the key advantage of
ExPoly distributions is in their ability to represent a much
wider range of sensor likelihood models than their Gaussian
counterparts. In a Bayesian data fusion context, with state
xk, state estimatêxk and measurementzk, new sensor
information is integrated by

P (x̂k|zk) =
L(z = zk|xk)P (x̂k|zk−1)

P (zk|zk−1)

where the denominator can be disregarded as a normalising
constant. The sensor model describes a likelihood distribu-
tion over the target’s state for a given sensor reading. For a
range-only sensor this likelihood function takes on the form
of a ring where the probability mass is concentrated around
the measured distance from the sensor. In practice, deriving
accurate sensor models is a laborious task. For the purposes
of this example we assume that the band cross-section takes
on an approximately Gaussian shape, and that is constant
irrespective of the measurement (an unlikely assumption).
Since the function should be rotationally symmetric, we
can consider the one dimensional case and extend it by
substituting

√

x2 + y2 for x. Thus, for a given measurement
z we use a sensor likelihood model (in one dimension)
of the form exp(− a

z2 x4 + 2ax2) where a controls the
variance of the cross-section (see Fig. 1). This function
roughly approximates the summed Gaussian pair given by
exp(−(4a(x±z)2)). That is, two Gaussians having variance
1
8a

and means±z.
In two dimensions, this sensor model yields a function of

the form shown in Fig. 2. The distribution can no longer
be approximated by combining a symmetric pair of Gaus-
sian functions. While this form of the function describes a
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Fig. 1. Sensor model, in one dimension, for a range-only sensor. Shown are
the (non-normalised) sensor likelihoods for two sensors, one more accurate
(inner pair) than the other (outer pair) for measurements attwo ranges,
z = 5 (outer pair) andz = 4 (inner pair). For comparison, a Gaussian
distribution has been overlaid on the rightmost mode.
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Fig. 2. Sensor model, in two dimensions, for a range-only sensor. For this
function, z = 5 anda = 0.25.

distribution in sensor-centric co-ordinate space, a translation
(section II-A) shifts it to the global co-ordinate system.

B. Simulation Results

The nodes in the network operated on slightly different
schedules. All nodes performed a measurement every0.2s
andn1 andn3 communicated their distributions every0.35s
(to n2 and n4 respectively), whereasn2 and n4 communi-
cated every0.45s. (Where measurements and communication
fell at nominally the same time, measurements occurred
first.) The target’s initial position was(−1,−2).

The sensor for the simulations was configured to use
a = 2.0, and noise in the sensor was simulated by perturbing
the actual range with Gaussian noise of variance1

8a
(ap-

proximately matching the sensor noise distribution). When
fusing distributions our extended CI algorithm (5) was used
optimisingω with respect to the trace of the covariance.

To gauge the performance of our representation we moni-
tor the Renyi entropy (α = 2) of each node during the course
of the simulation (see Fig. 3) expecting that there should be
an overall decrease and a convergence in the entropy of each
node. Throughout the simulation, each node tracks the target
as expected, and fusion between nodes results in plausible
distributions (see Fig. 4).
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Fig. 3. Renyi entropy of each node in the DDF network. Note that, counter
to expectations, for some fusion events the entropy increases. This effect is
likely because for CI,ω was optimised with respect to the covariance and
not the measure evaluated for this figure.

IV. CONCLUSIONS

In this paper we have considered the ExPoly class of
probability density functions and outlined how to perform the
operations on it necessary in a DDF context. ExPoly provides
a natural extension to Gaussian representations providing
more complex distributions as in our range-only example.
ExPoly is aimed to sit alongside other non-Gaussian repre-
sentations (particle filters, mixtures of Gaussians and Parzen
density estimators) providing a different set of trade-offs for
potential applications with specific constraints.

Unlike other representations, sensor integration is simple
irrespective of the number of measurements taken (since re-
sampling is not required). Fusion between nodes is somewhat
more complicated, but is efficient in its use of bandwidth.
Perhaps the major disadvantage to ExPoly is the need to
estimate expectation parameters. Estimates of the mean and
covariance are required for time-diffusion (prediction step)
and fusion. For diffusion, the mean and covariance should
change as for a Gaussian, so expectations can be accurately
estimated from the previously estimated distribution. For
fusion, efficient methods need to be employed to optimise
ω with the fewest evaluations.

Another difficulty with ExPoly distributions is in building
sensor likelihood models. For other representations it is
reasonably straightforward to infer a distribution matching
observed data. While the model given here for a range-only
sensor was relatively straightforward, other cases are more
complicated. Further work needs to be done to make this task
easier; either by rectifying the iterative procedure outlined in
section II or by finding some entirely new approach.
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