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Abstract 
One of the basic requirements for autonomous 
navigation in an unexplored and often complex 
environment is to be able to lock on to natural 
features. This paper presents a method for 
extracting features distinctive enough to navigate 
with. The method consists of three parts. Firstly, 
it selects a set of interest points from the images 
which are invariant to most changes in 
conditions; secondly, it analyses the texture 
distribution of the local interest regions around 
interest points selected; thirdly, it picks out 
distinctive features from the original set of 
interest points. The method has been 
implemented within a SLAM framework 
designed for use in a texture-rich environment 
such as the Great Barrier Reef. The results have 
shown that this method has significant 
advantages over other widely used methods in 
this specific environment. The speed of 
implementation is faster and the number of 
features needed to process is reduced.  

1 Introduction 
Autonomous navigation in an unexplored environment is 
more challenging than in one that is controlled because of 
extra effort needed to make sense of sensor inputs. In 
particular, underwater environments are mostly 
unexplored and do not have GPS access. Therefore 
navigation in these environments requires the use of 
methods such as Simultaneous Localization and Mapping 
(SLAM) [Csorba, 1997; Williams et al., 2002]. However, 
most existing SLAM algorithms have relied on 
point-based artificial landmarks that do not exist in an 
unexplored environment. SLAM can be unreliable if 
natural landmarks are used when they lack descriptive 
representation. 
 Developments from computer vision research 
extract features with representations that are invariant to 
scaling, distortion and perspective [Carneiro and Jepson, 
2002; Mikolajczyk and Schmid, 2002; Tuytelaars and 
Van Gool, 2000]. These developments could potentially 
be used for robot navigation and are already capturing 

attention from the robotic communities [Kragic and 
Christensen, 2005]. In particular, Scale Invariant Feature 
Transformation (SIFT) [Lowe, 2004] was reported as a 
method robust in representing features. Its descriptors 
were claimed to be invariant under changes in scale, 
rotation, shift and illumination conditions.  
 A performance test comparing different feature 
extraction methods was reported by Mikolajczyk and 
Schmid [2005] that indicated SIFT generally performed 
the best amongst these methods. Moreover, there was a 
modification to SIFT using principle component analysis 
that improved its performance further [Ke and 
Sukthankar, 2004].   
 However, as these methods were mostly 
designed for non real-time object recognition purposes, 
computational efficiency may not have been the major 
concern. The methods tended to generate a large number 
of features that maximized accuracy and stability. For 
real-time SLAM applications, it is computationally 
infeasible to compare such large sets of features from a 
series of images that have been captured. 
 We presented Texture Analysis (TA) [Kiang et 
al., 2004] for feature extraction purposes that was 
designed to improve performance speed. The descriptors 
for TA represented the frequency distribution of the local 
interest region of an interest point. This method is 
potentially an appropriate choice of descriptor for a 
texture-rich environment such as found at the Great 
Barrier Reef because there are many textures to work 
with. However, TA is designed to be a generic solution 
and can also be used for navigating a mobile robot 
through a street, guiding an aircraft and negotiating 
wooded scenery. An improved version of TA is now 
presented in this paper.  
 Besides requiring representative features, SLAM 
also requires a selection method that can minimise the set 
of features picked for similarity matching. For this reason 
Distinctness Analysis (DA) was devised as a technique to 
minimize the number of features selected [Kiang et al., 
2005]. DA can extract the distinctively rare features from 
those initially selected that minimises the number that are 
needed for processing. 
 In this paper, besides presenting the improved 
version of TA, further work on combining TA and DA is 
presented. Moreover, results are presented that have been 



obtained from the implementation of the combined 
TA/DA method in a SLAM framework for use in an 
underwater environment.  

2 Interest Point Selection 
The method of feature extraction presented here consists 
of three stages, namely Interest Point Selection, Texture 
Analysis (TA) and Distinctness Analysis (DA). This 
section describes how interest points are selected. 
 Interest points should be invariant to rotation, 
shift, scale, illumination and affine transformation such 
that, when the examining region is to be analysed again 
under different conditions, the same points would be 
evident. Two ways of selecting interest points have been 
reported are Harris Corner [Harris and Stephen, 1988] and 
extrema in Difference of Gaussian (DOG) [Lindeberg, 
1994], which are the most widely used methods. But 
Mikolajczyk and Schmid [2005] have pointed out that the 
method of selecting interest points is independent of the 
choice of method for generating feature descriptors. In 
this paper, extrema of DOG, the method used in SIFT 
[Lowe, 2004], has been chosen for interest point selection 
and will now be briefly described. 
 A DOG image is computed by convolving the 
original image I(x,y) with a Gaussian function of 
standard derivation σ, to obtain a blurred version of  the 
original image B(x,y,σ). That is: 
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where * is the convolution operator in x and y plane. The 
Gaussian function G is applied to the resulting image B 
sequentially obtaining B(x,y,kσ) where kσ represents the 
number of convolutions applied to the original image. 
 The DOG image is then defined to be the 
difference of these two images. That is: 
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Note that the variable σ depends on the complexity of the 
image. 
 Besides applying Gaussian convolution, which 
results in a blurring effect, down-sampling is also applied. 
Images are downsized in ratios of two. A pyramid of 
DOG images is then constructed. From the pyramid, 
extrema can be selected directly by comparing each pixel 
with its neighbouring pixel in spatial and scale domain for 
a preset radius around the pixel. These DOG extrema 
become the interest points. 

3 Texture Analysis 
After selecting interest points, the local region of each 
point was treated as a feature candidate that required 
further analysis. The local regions were each limited to 32 
x 32 pixel rectangular segments. Even though the square 
segments were chosen to simplify Fourier Transform 
calculation, a Hanning window was applied on the 
transformed regions making them approximately circular 
and centred at an interest point such that invariant 
properties were preserved. 
 Different textures show up as different patterns 

in the Fourier Transform. TA used the Fourier Transform 
of the local regions of the interest points as a basis of its 
choice for descriptors. This choice is suitable for 
representing features from images of a texture-rich 
environment.  
 The Discrete Fourier Transform adjusted by a 
Hanning window was calculated as follow: 
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where W is the original local region and q(k) is the 
Hanning window function defined as: 
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The resulting transform, which is also an image, 
represented the distribution of frequency of the interest 
region. The Hanning window, besides generating a 
circular region, was also needed to smoothly correct the 
boundary effect of the Fourier Transform. 
 This transformed image was then partitioned into 
26 useful regions discarding area containing sparse 
information. Firstly, it was divided into concentric 
semi-annuli one pixel wide. Then for the second and third 
smallest annuli, they were further subdivided into 4 and 8 
angular sectors respectively. A diagram illustrating this 
partitioning scheme is shown in Figure 1. 
 The partitions were more densely distributed in 
the centre that represented the lower frequencies. The 
reason for this is that, in natural images, lower frequencies 
would nearly always contribute more than higher 
frequencies. A more detailed description of the lower 
frequencies is therefore important. Moreover, only half of 
the plane was needed to be analysed because Fourier 
Transforms are always symmetrical. 
 In order to have rotational invariance, the angular 
segmenting process for the inner circles was referenced to 
the mean gradient direction. The calculation process for 
this mean gradient direction was the same as in SIFT but 
without the need to resample the gradient image. 

 
Figure 1: The 26 Partitions of the Frequency Distribution. 

 



 Each value in the Fourier Transform was a 
complex number. Adding magnitudes of each of these 
complex values within a partition gave the strength of that 
partition. By applying the calculation to all 26 partitions, a 
frequency distribution was obtained. The resulting 26 
values that represented texture properties were then 
normalised and could then be used as the descriptors for a 
particular interest point. 

4 Distinctness Analysis 

4.1 The Probability of Occurrence  
Numerous interest points were normally generated as 
features from the first selection process described in 
Section 2. In the literature, none of the feature extraction 
methods looked to minimizing this number after the 
interest points had been transformed into descriptors. This 
issue is addressed by DA proposed here and is described 
in this section. The term ‘distinctness’ has been used in 
reporting research referring to a special property of a 
particular type of interest point such as the extrema of 
DOG or Harris Corners. The special property usually 
refers to invariants in conditions and stability. It is 
however not related to the frequency of occurrence of 
such points within an image or an environment.  
 In these methods, the number of interest points is 
not necessarily minimized. Interest points such as the 
extrema of DOG are often common within an image. The 
number can be as high as thousands for a 640x480 pixel 
image. Usually, in object recognition, it is desirable to 
extract more rather than less interest points to enable 
robustness in matching. However, in real-time navigation, 
the computation time is a critical requirement. If all 
interest points are to be used as landmarks, since the 
computation time for most cases is proportional to O(N2), 
where N is the number of state variables needed to 
represent the landmarks and the robot pose, the 
computation time is greatly increased. Therefore the need 
to minimize the number of interest points while, at the 
same time, not penalising the performance of recognition 
is the main objective. 
 However, at the raw pixel level of an image, it is 
difficult to find a certain type of point that rarely occurs 
and is invariantly stable. On the other hand, feature 
transformation provided a more expressive representation 
for describing each interest point. Hence, it is preferable 
to select the distinctive set of interest points at the TA 
level of abstraction. 

 
 

Figure 2: Simple diagram of a distinctive object among other 
less distinctive objects. 

 
 The question then arises as to how a few relevant 
features out of a potentially large set should be selected. 
For example, in Figure 2, it would be best to remember 

the centre object because it is the only one that is unique. 
If one selects any of the other objects that are similar to 
each other, it will be hard to distinguish between them 
later on. 

Since the descriptors represent the features, they 
become elements of feature vectors in the descriptor 
parametric space. Distinctness can be judged from 
analysing and comparing these vectors. If we consider all 
of the descriptors in the feature vectors as independent 
random variables, the probability of occurrence for each 
feature can then be calculated by finding a model for its 
probability density function. In the simplest case, the 
distribution could be approximated to a multi-dimensional 
Gaussian. This approximation is to be justified in 
Subsection 7.2. The probability of occurrence of a feature 
can then be calculated as follows: 
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where µ is the mean vector: 
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and C is the covariance matrix: 
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 DA can then be made on the basis that the lower 
the probability, the more distinct a feature is judged to be. 

4.2 Global Distinctness 
DA is a process of minimizing the number of features 
while retaining stability of analysis. Stability refers to the 
ability to pick out the same feature invariant to any 
changes in shift, rotation, scale and illumination. 
However, since features detected in one image need not 
be the same as in subsequent images, DA must therefore 
range over many images to embody global distinctness. In 
doing so, it is then possible to select features that are both 
distinctive and likely to be found in multiple images in the 
environment captured at different times and locations. 
 Denoting the mean and covariance for the global 
distinctness by µt and Ct respectively and by µc and Cc 
for the current image, µt is obtained and updated using 
the following formula: 

)1(1 λλ ctt −×+×= − µµµ   (8) 
  

where λ is the innovation factor, which determines how 
much the system relies on history versus new data. Ct is 
obtained and updated using the following formula: 
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where E(XY) is the expectation value of the product of 
two dimensions X and Y, which can be calculated from: 
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E(XY)t-1 and E(XY)c can be obtained by rearrangement 
of the previous formulae using E(XY) as the subject with 
the appropriate µ and C. 
 Equations 8 and 9 are used for iteratively 
updating. To initialise µt and Ct , they are assigned to be 
equal to µc and Cc for the first input image. µt and Ct 
require the system to run over a series of images in order 
to converge to the true global distinctness. A practical 
solution is to take a safe walk in the environment of 
interest before using that data for exploring more of the 
environment. 

5 Matching features across images 
Having obtained the distinctive set of features extracted 
from each image, it is then possible to match features 
across different images. Matching features requires 
calculating a notional distance between the two feature 
vectors. In this analysis, distance is defined as the 
Euclidean distance of the feature vectors. The matching 
strategy is defined by using a threshold function relating 
to the closest and second closest match of a particular 
feature as follows: 

tDDDD CABA <−− / .  (11) 
 
where DA is a feature vector on image one; DB and DC 
are closest and second closest feature vectors from 
another image respectively. If the above inequality is true, 
DA is considered to be the same as DB. 
 Since every feature is originally an interest point 
that is either a maximum or a minimum of DOG, this 
property could also be utilized for matching purposes. It is 
therefore beneficial to separately storing the maxima and 
minima and find matches only within the same type. 

6 Experimental 
A submersible vehicle (see Figure 3) which was used for 
capturing underwater images and acquiring sonar data 
simultaneously (courtesy of ACFR, University of Sydney, 
Australia) was chosen to be the source of images used in 
the present analysis. The configuration of the submersible 
was set such that the camera was always looking 
downwards onto the sea floor. This configuration 
minimised the geometrical distortion that could had been 
caused by different viewpoints. The vehicle acquired 
images and sonar data as it travelled underwater. Some of 
the images are shown in Figure 4. More details of the 
configuration of this vehicle and implementation can be 
found in [Williams and Mahon, 2004] where, using the 
sonar data and the images, the path that it travelled could 
be retrieved as shown in Figure 5. The original captured 
underwater images were transferred to an external 
computer for offline testing and to be available to research 
groups.  

In this paper, TA and DA were written in C++, 
running code that was embedded in such a way that it 
could run as the front end to SLAM-controlled guidance.  
A sequence of approximately 3000 images was used for 
testing the efficacy of the present technique. 

7 Results 
In the following experiments, TA presented in Section 3 
and DA presented in Section 4 are considered as two 
independent methods. For reference, some of the results 
presented here were compared with SIFT when 
applicable. TA is considered as an alternative to SIFT 
while DA is considered as an add-on to both TA and 
SIFT. 
 

  
 

Figure 3: The underwater vehicle. (Courtesy of ACFR, 
University of Sydney, Australia) 

 

  
 

Figure 4: Some Images captured. (Courtesy of ACFR, 
University of Sydney, Australia) 



 
 

Figure 5: A path of the underwater vehicle was plotted 
using the images and sonar data. The image frame 

numbers along the path is shown with selected images 
(Original data derived from [Williams and Mahon, 2004] 

and processed into graph form by the present authors). 
 

7.1 Matching Capability  
The Matching Capability of TA was tested first. Both 
SIFT and TA were used to find matches across the 
sequence of images. In order to have relatively few 
features on an image such that inspection of matching 
capability was kept efficient, DA was applied to both 
SIFT and TA. For example, one of these image pairs, 
which contained less than 10 feature matches, is shown in 
Figure 6. These features were matched using TA.  
 Figure 7 shows the results for a set of image 
pairs where the matching capabilities TA are tested. The 
results for SIFT are not shown because the false positive 
were zero. For TA, the percentage of correct matches was 
98.5%. The disadvantage of SIFT was the time required 
for processing whereas the processing time for TA was 
approximately 1/3 of that for SIFT. This was due mainly 
to the lower dimensionality of TA. Provided the number 
of distinctive features could be limited to around 10 per 
image, a 98.5% accuracy per match in TA was an 
acceptable level of matching capability and virtually 
equivalent to the capability of SIFT. 
 In Figure 8, the eigenvalues of the 26 
dimensional descriptors of TA and the 128 dimensional 
descriptors of SIFT are plotted and arranged in 
descending order. Since their dimensions were different in 
length, these dimensions were adjusted to fit the 
horizontal axis of the graph. This graph showed that the 
eigenvalues for TA were spread more evenly across 
descriptor space than for SIFT. This result suggested that 
the choice of the descriptors for TA conveyed more 
information than SIFT per descriptor. 
 

 
 

Figure 6: Feature Matching using TA. 
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Figure 7: Correct Match and False Positive for Texture Analysis 
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Figure 8: Relative Eigenvalue magnitudes of SIFT and 

TA features. 
 

7.2 Distinctness 
The key assumption for testing DA was that the feature 
descriptors used were based on Gaussian distribution. If 
the distribution was not Gaussian, DA may not obtain a 
valid distinctness of an extracted feature. It is important to 
note that, provided the distribution was unimodal, the 
distinctness calculated would not significantly deviate 
from that obtained if the distribution was Gaussian. 
 In Figure 9, the distribution for a large set 
(~13000) of texture features generated from different 
underwater images in the series is plotted. Only the top 3 
principle directions of the distribution are shown limiting 
a principle component analysis to the most significant. It 
can be seen that the distribution was close to a Gaussian. 

 
 

Figure 9: The Distribution of a large list of features plotted in 
the top 3 principle directions of Texture Analysis. 

 
 For comparison, the same features for a SIFT 
analysis are plotted in Figure 10. As can be seen, SIFT is 
a bimodal distribution. Such a distribution was caused by 
the deviation between the two types of features generated 
by SIFT, namely maxima and minima of DOG. By 
ignoring the sign during SIFT gradient calculations, the 
new distribution can be replotted and is shown in Figure 
11. In so doing, the distribution of SIFT features, with the 
sign of the gradient ignored, turned out also to be 
approximately Gaussian. 

Based on the results presented, the distribution 
for both TA and SIFT could be assumed to be Gaussian.. 
Therefore DA could potentially be applied to any local 
descriptor-based feature extraction technique. 

 

 
 

Figure 10: Distribution of SIFT features in the top 3 
principle directions. 

 

 
 

Figure 11: Distribution of SIFT (Gradient sign ignored) 
features in the top 3 principle directions. 

 

7.3 Stability 
A final test was conducted to check on the stability of 
chosen features. It is re-emphasized that by stable, we 
mean that the same feature should be picked out invariant 
to any changes in shift, rotation, scale and illumination.  

A new series of image pairs were used and to 
which TA was applied. These image pairs contained 
overlapping regions such that DA had to range over 
images in which it was known features were continuous. 
DA was applied to each image and inspection made 
within overlapping regions to count the number of 
distinctive features that appeared within a few pixels in 
corresponding locations of the images. By comparing this 
number with the number of features that did not 
correspond in both of the images, a measure of stability 
was obtained. 
 Figure 12 shows the counts of features that were 
regarded as stable and unstable in overlapping parts of 
images. Approximately half of the features selected as 
distinctive in one image appeared in both images. This 
ratio is largely independent of the number of features 
detected and is significantly influenced by the stability of 
the initial selection process using extrema of DOG 
described in Section 2. The stability of the initial DOG 
selection process is of itself low and is a major factor in 
limiting the ratio shown in Figure 12.  Based on this fact, 
the ratio was deemed a relatively high hit rate for tracking 
distinctive features through image sequences. In a SLAM 
context, it only requires to match a few stable features 
correctly across two images to track from image to image 
and eventually enable loop closure. It was concluded that 
the results showed significant promise for enabling map 
building in a SLAM context. 
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Figure 12: An analysis of finding stable landmarks over 20 pairs 

of images. 
 

8 Conclusion 
The work presented in this report showed that 
Distinctness Analysis and Texture Analysis are suitable 
choices for use as feature extraction techniques especially 
in a texture-rich environment such as the Great Barrier 
Reef. Texture Analysis can be used for extracting features 
from natural images and represent them with invariant 
descriptors. Distinctness Analysis can then be used for 
reducing the set of features generated and maintaining the 
matching capability with an acceptable level of 
performance. Based on the results reported here, the 
opportunity of having a fast and robust feature extraction 
technique could be considered as feasible. 
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