
Analysis of Dynamical Recognizers

Alan D. Blair & Jordan B. Pollack

Dept. of Computer Science

Volen Center for Complex Systems

Brandeis University

Waltham, MA 02254-9110

blair@cs.brandeis.edu pollack@cs.brandeis.edu

September 7, 1995
(revised June 14, 1996)

Abstract

Pollack (1991) demonstrated that second-order recurrent neural networks

can act as dynamical recognizers for formal languages when trained on positive

and negative examples, and observed both phase transitions in learning and

IFS-like fractal state sets. Follow-on work focused mainly on the extraction

and minimization of a �nite state automaton (FSA) from the trained network.

However, such networks are capable of inducing languages which are not regu-

lar, and therefore not equivalent to any FSA. Indeed, it may be simpler for a

small network to �t its training data by inducing such a non-regular language.

But when is the network's language not regular? In this paper, using a low

dimensional network capable of learning all the Tomita data sets, we present

an empirical method for testing whether the language induced by the network

is regular or not. We also provide a detailed "-machine analysis of trained

networks for both regular and non-regular languages.

1

1 Introduction

Pollack (1991) showed one way a recurrent network may be trained to recognize

formal languages from examples. The resulting networks often displayed complex

limit dynamics which were fractal in nature (Kolen, 1993).

Alternative architectures had been employed earlier for related tasks (Jordan,

1986, Pollack, 1987, Cleeremans et al., 1989). Others have been proposed since

(Watrous & Kuhn, 1992, Frasconi et al., 1992, Zeng et al., 1994, Das & Mozer,

1994, Forcada & Carrasco, 1995) and a number of approaches to analysing recurrent

networks have been developed. One of the principal themes has been the use of

clustering and minimization techniques to extract a Finite State Automaton (FSA)

that approximates the network's behavior (Giles et al., 1992, Manolios & Fanelli,

1994, Ti�no & Sajda, 1995).

Casey (1996) showed that if the network robustly models an FSA, the method

proposed in (Giles et al., 1992) will successfully extract the FSA given a �ne enough
resolution. However in many cases the language induced by the network is not regular,
and therefore cannot be modeled exactly by any FSA. In order to analyse the behavior

of these networks, we need a method for testing empirically whether the network's
behavior is regular (i.e. it is modeling and FSA) or not.

In the present work, we show how to perform an analysis of the trained network at
high resolution by constructing a series of �nite state approximations which describe
its behavior at progressively more re�ned levels of detail. With this analysis we are

able to measure empirically when the network has crossed over the boundary between
regular and non-regular behavior.

2 Architecture

Our system is comprised of a gated recurrent neural network with two subnetworks
W0 & W1, a gating device and a perceptron P. For � = 0; 1 we denote by Wjk

�
the

real-valued weights of subnetwork W� and by w� the function it implements.
To operate the network, we �rst feed the initial vector x0 into the input layer.

Then, as each symbol of a binary string � = �1 : : : �n is read in, a gating device

chooses one of the two subnetworks W0 or W1, depending on whether the next symbol

�t is equal to 0 or 1. The current real-valued hidden unit state vector xt�1 is then
fed through this subnetwork W�t

to produce the next state xt = w�t
(xt�1) given by

x
j

t = tanh (Wj0
�t
+

dX
k=1

Wjk

�t
xk
t�1); for 1 � j � d; 1 � t � n:

This part of the architecture is equivalent to the second order recurrent networks used

in (Pollack, 1991) and (Giles et al., 1992), with a slightly di�erent notation.

After the whole string has been read, the �nal state xn is fed through a perceptron

P producing output

z = tanh (P0 +
dX

j=1

Pjx
j

n
);

2

xt

W0 W1

xt+1

6

P

6
z

��
��
b
b b
��
�
���

@
@@I

66

?

�

�

-

0
1
1
0
1

?

Figure 1: System architecture

where each Pj is a real-valued weight and z is the real-valued output.
To make the geometry more accessible, we use the interval [�1; 1] for network

activations and adopt the hyperbolic tangent as our transfer function, which is equiv-
alent by rescaling to the usual sigmoid function. The object of training is that the
output z should be close to +1 for accept strings and close to �1 for reject strings

(`close' meaning within, say, 0.4). The class of languages recognizable by such net-
works lies somewhere between the regular and recursive language families, and is
known to contain some languages that are not context-free (Siegelmann & Sontag,
1992). In the work reported here the state-space dimension d was always equal to
2, which gives the model a total of 17 free parameters { 3 for the perceptron, 6 for

each subnetwork and 2 for the initial point. As outlined below, this architecture was
adequate to the task of learning any of the data sets from (Tomita, 1982) within a

few hundred training epochs.

3 Analysis

Our purpose here is not only to train the network but also to gain some insight into

how it accomplishes its assigned task [see (Casey, 1996) for another, related approach
to this problem]. If the recurrent layer has d nodes, the state space of the system is
the d-dimensional hypercube X = [�1; 1]d. However we need not be concerned with

the whole state space, but only with that portion of it { which we call A0 { that is

accessible from the initial point x0 via repeated applications of the maps w0 & w1.

Formally, we may de�ne A0 thus:

3

(i) Y0 = fx0g

(ii) For i � 0, Yi+1 = Yi [w0(Yi) [w1(Yi) [Note: Yi+1 � Yi]

(iii) A0 = lim
i!1

Yi (3.1)

Once we have identi�ed the space A0 on which the dynamics take place, the next

step is to �nd an appropriate subdivision of this space { i.e. a �nite collection of

disjoint nonempty subsets which cover A0 { that is compatible with the maps w0 &

w1. The coarsest possible subdivision is provided by the perceptron, which dividesA0

into the subset Uacc of `accept' points and the subset Urej of `reject' points. So we

take as our �rst subdivision S1 = fUacc;Urejg. If S = fU1; : : : ;Umg is a subdivision,

the pre-image of S under w0 is

w�10 (S) = fw�10 U1; : : : ; w
�1
0 Umg n f;g;

where
w�10 Uj = fx 2 A0 jw0(x) 2 Ujg

[and similarly for w�11 (S)]. The join R _ S of two partitions R and S is

R _ S = fU \ V jU 2 R;V 2 Sg n f;g:

Using these tools, we de�ne a series of subdivisions fSigi�1 by

(i) S1 = fUacc;Urejg

(ii) For i � 1, Si+1 = Si _ w�10 (Si) _ w�11 (Si)

We are now ready to construct a series of non-deterministic FSA's fMigi�1 which
approximate the behavior of the network. For each i, let Mi be as follows:

(1) the states of Mi are indexed by the elements Uj in the subdivision Si
(2) the initial state is that Uj which contains x0
(3) the accept states are those Uj contained in Uacc
(4) an edge labeled by 0 connects Uj to Uk exactly when Uj \ w�10 Uk 6= ;

(5) an edge labeled by 1 connects Uj to Uk exactly when Uj \ w�11 Uk 6= ;

Each FSA in the series is a re�nement of the previous one which sketches out some

of the details of its non-determinism.

Proposition. If Mi is deterministic for some i then Mj will equal Mi for all j > i

and Mi will exactly model the network's behavior.

Proof: Suppose Mi is deterministic for some i and consider the input string � =

�1 : : : �n, with �j 2 f0; 1g for 1 � j � n. We must show that � is accepted by Mi

if and only if it is accepted by the network. Recall that x0 denotes the initial point
and let xj = w�j

(xj�1), for 1 � j � n. Recall that the states of Mi are indexed by

the elements Uk of subdivision Si and for 0 � j � n let U (j) be that subset Uk which

contains xj. Then in particular U (0) contains x0 and is therefore the initial state of
Mi. Since xj = w�j

(xj�1) we have

U (j�1) \ w�1
�j
U (j) 6= ;;

4

so U (j�1) is connected to U (j) with an edge labeled by �j. As Mi is deterministic, this

must be the only such edge emanating from U (j�1). By induction on j it follows that

Mi must be put into state U (j) when string �1 : : : �j is input. In particular, once the

whole string has been input, Mi will be in state U (n), so

� is accepted by Mi , U (n) � Uacc
, xn 2 Uacc
, � is accepted by the network.

To show that Mi+1 = Mi and no further subdivisions are made, suppose to the

contrary that there are two points x1 and x2 which lie in the same element Uj of the

partition Si, but in di�erent elements of Si+1 = Si _ w�10 (Si) _ w�11 (Si). Then it

must be for � = either 0 or 1 that w�(x1) lies in some Uk 2 Si while w�(x2) lies in Ul

with Uk 6= Ul. But then Uj would be connected to both Uk and Ul with edges labeled

by �, contradicting the assumption that Mi was deterministic. 2

If the induced language is not regular, the machines Mi will in theory continue
to grow inde�nitely in complexity. Of course in practice we cannot implement the
above procedure exactly for our trained networks, but must instead use a discrete
approximation. Following the analysis of (Giles et al., 1992) we can approximate
A0 computationally along the lines of (3.1) as follows: �rst `discretize' the system

at resolution r by dividing the state space into rd points in a regular lattice and
approximating w0 & w1 with functions ŵ0 & ŵ1 that act on these points such that
ŵ�(x̂) is the nearest lattice point to w�(x̂). Each Yi will then be represented by a
�nite set Ŷi and the condition Ŷi+1 � Ŷi guarantees that the procedure will terminate
to produce a discrete approximation Â0 for A0.

In discrete form, the above procedure may be equated with the Hopcroft Minimiza-
tion Algorithm (Hopcroft & Ullman, 1979), or the method of "-machines (Crutch�eld
& Young, 1990, Crutch�eld, 1994), and was �rst used in the present context by Giles
et al. (1992). Using small values of r, their aim was to extract an FSA that, while
it might not model the network's behavior exactly, would model it closely enough to

faithfully classify the training data.

We had in mind a di�erent purpose: namely to test empirically whether the
network is regular (i.e. modeling an FSA) or not, and to analyse its behavior in
more �ne-grained detail. The minimization procedure described above is bound to

terminate in �nite time due to the �nite resolution of the representation. However as

the resolution is scaled up, the size of the largest FSA generated should in principle
stabilize in the case of regular networks and grow rapidly in the case of non-regular

ones. Therefore, as an empirical test of regularity, we perform these computations at
two di�erent resolutions (200 � 200 and 500 � 500) and report (in rows 4 and 5 of

Table 1) the size (i.e. number of states) of the largest FSA generated. If the largest
FSA's generated at the di�erent resolutions are the same, we take this as an indication

that the network is regular; if they are vastly di�erent, that it is not regular. This

allows us to probe the nature of the network's behavior as the training progresses. In
some cases the network undergoes a `phase transition' to regularity at some point in

its training and we are able to measure with considerable precision the time at which

this phase transition occurs. It should be stressed, however, that these discretized

5

computations do not constitute a formal proof, but merely provide strong empirical

evidence as to the regularity or otherwise of the network and its induced language.

More rigorous results may be found in Casey (1996, 1993) who described the general

dynamical properties that a neural network or any dynamical system has to have in

order to robustly model an FSA. Ti�no et al. (1995) also made a detailed analysis of

networks with a 2-dimensional state space under certain assumptions about the sign

and magnitude of the weights.

It is important also to note that the regularity we are testing for is a property

of the trained network and not an intrinsic property of the input strings, since the

(necessarily �nite) training data may be generalized in an in�nite number of ways,

each producing an equally valid induced language that may be regular or non-regular.

Good symbolic algorithms exist already for �nding a regular language compatible with

given input data (Trakhtenbrot & Barzdin', 1973, Lang, 1992). Our purpose is rather

to analyse the kinds of languages that a dynamical system such as a neural network
is likely to come up with when trained on that data. We do not claim that our
methods are e�cient when scaled up to higher dimensions. Rather, it is hoped that
a detailed analysis of networks in low dimensions will lead to a better understanding
of the phenomenon of regular vs. non-regular network behavior in general.

Finally, we remark that the functions w0 and w1 map X continuously into itself
and as such de�ne an Iterated Function System or IFS (Barnsley, 1988) as noted in
(Kolen, 1994). The attractor A of this IFS may be de�ned as follows:

(i) Z0 = X

(ii) For i � 0, Zi+1 = w0(Zi) [w1(Zi) [by induction Zi+1 � Zi]
(iii) A =

T
i�0 Zi

As with A0, we can �nd a discrete approximation Â for A at any given resolution.
We have found empirically that the convergence to the attractor was very rapid for

our trained networks so that Â0 was equal to a subset of Â plus a very small number
of `transient' points. For this reason we call A0 a subattractor of the IFS. If w0 and
w1 were contractive maps, A0 would contain the whole of A (Barnsley, 1988), but
in our case they are generally not contractive so Â0 may contain only part of Â. The

close relationship between Â0 and Â should make it possible to analyse the general

family of languages accepted by the network as x0 varies, though we do not pursue
this line of enquiry here.

4 Results

Networks with the architecture described in x2 were trained to recognize formal lan-

guages using backpropagation through time (Williams & Zipser, 1989, Rumelhart et
al., 1986), with a modi�cation similar to Quickprop (Fahlman, 1989)1 and a learning

rate of 0:03. The weights were updated in batch mode, and the perceptron weights Pj

1Speci�cally, the cost function we used was

E = �

1

2
(1 + s)2 log(

1+ z

1+ s
) �

1

2
(1� s)2 log(

1� z

1� s
) + s (z � s)

6

Table 1: Epochs to Learning (L) and Regularity (R) for the seven Tomita languages.

Network N1 N2 N3 N4 N5 N6 N7

L/R L L L R L/R L R L

epochs to Learning 200 600 400 200 800 200 600

epochs to Regularity 200 { { 400 800 600 {

200 � 200 FSA size 2 341 272 2052 4 21 7123 3 264

500 � 500 FSA size 2 881 808 7248 4 7 39200 3 806

Tomita's FSA size 2 3 5 4 4 3 5

were constrained by rescaling to the region where
P

d

j=1 Pj
2 � 1. In contrast to (Pol-

lack, 1991) where the backpropagation was truncated, we backpropagated through

all levels of recurrence as in (Williams & Zipser, 1989). In addition, we allowed the
initial point x0 to vary as part of the backpropagation { a modi�cation that was also
developed in independent work by Forcada & Carrasco (1995).

Our seven groups of training strings (see Appendix) were copied exactly from
(Tomita, 1982) except that we did not include the empty string in our training sets.

Rows 4 and 5 of Table 1 show the size (i.e. number of states) of the largest FSA
generated from the trained networks at two di�erent resolutions by the methods
described in x3. For comparison, row 6 shows the size of the minimal FSA's which
Tomita found by exhaustive search. A network can be said to have learned all its
training data once the output is positive for all accept strings and negative for all

reject strings (i.e. a maximum error of 1.0), but it makes sense to aim for a lower max
error in order to provide a `safety margin'. For network N5, the max error reached
its lowest value of 0.46 after 800 epochs. The other networks were trained until they
achieved a max error of less than 0.4, the number of epochs required being shown in
row 2 (labeled `epochs to Learning'). Since the test for regularity is computationally
intensive, we did not test our networks at every epoch but only at intervals of 200

epochs.
For network N1 the derived FSA is the same for both resolutions, providing ev-

idence that the induced language is regular. For networks N2, N3, N4, N6 and N7

on the other hand, the max FSA grows dramatically as we increase the resolution,
suggesting that the induced language is not regular. We continued to train these

networks to see if they would later become regular, and found that networks N4 and
N6 became regular after 400, 600 epochs, respectively, as indicated in row 3 (labeled

`epochs to Regularity'), while networks N2, N3 and N7 remained non-regular even
after 10,000 epochs. For N5 the size of the max FSA actually decreased with higher

resolution from 21 to 7, suggesting that the induced language is regular but that high

resolution is required to detect its regularity.

(where z is the actual output and s the desired output) which leads to a `delta rule' of

� = (1� sz)(s � z):

7

−1 0 1
−1

0

1

W0 =

"
�0:89 �0:09 �0:14

�1:13 �0:09 �0:14

#

W1 =

"
0:20 0:68 0:96

0:20 0:81 1:19

#

P =
h
�0:07 0:66 0:75

i

0

0,1 1

Figure 2: Subattractor, weights and equivalent FSA for network N1.

−1 0 1
−1

0

1

−1 0 1
−1

0

1

W0 =

"
�0:567 1:761 0:815

�0:219 �2:591 0:446

#

W1 =

"
0:752 0:548 �1:071

0:074 �0:813 1:502

#

P =
h

0:069 0:172 �0:985
i

W0 =

"
�0:567 1:763 0:816
�0:219 �2:593 0:446

#

W1 =

"
0:751 0:549 �1:073
0:075 �0:813 1:502

#

P =
h

0:069 0:173 �0:985
i

Figure 3: The phase transition of N4.

8

Figure 4: The analysis of N4

−1 0 1
−1

0

1

rejU

accU

1M

0

0,1

0,1

Step 1: the perceptron line imposes the subdivision S1 = fUrej;Uaccg

−1 0 1
−1

0

1

UU

U

2

1

0

’

2M0,1

1
0,1

0

Step 2: S2 = fU1;U2;U
0g, where U2 = Uacc \ w�10 Urej, U

0 = w�10 Uacc

−1 0 1
−1

0

1

U
U

32

U1

U
4

1

0,1 M3

1

0

1

0

0

Step 3: S3 = fU1;U2;U3;U4g, where U3 = w�10 U2, U4 = w�10 U 0

M3 is deterministic, so no further subdivisions are made.

9

−1 0 1
−1

0

1

−1 0 1
−1

0

1

W0 =

"
1:51 �1:71 �2:03

0:29 �1:01 �1:12

#

W1 =

"
1:19 �0:81 0:18

0:86 �1:45 0:16

#

P =
h
�0:31 �0:92 �0:40

i

W0 =

"
0:02 1:16 �1:06

0:48 �2:58 �0:85

#

W1 =

"
�1:74 �1:35 1:92

1:41 0:69 �1:87

#

P =
h
�0:15 0:42 �0:91

i
Figure 5: N2, which is not regular, and N5, which is regular but with no obvious
clusters.

As an illustration, Figure 2 shows the subattractor for N1, which learned its
training data after 200 epochs. The axes measure the activations of hidden nodes

x1 and x2, respectively. The initial point x0 is indicated by a cross (upper right
corner). Also shown is the dividing line between accept points and reject points.
Roughly speaking, w0 squashes the entire state space into the lower left corner, while
w1
attens it out onto the line x1 = x2. The dividing line separates A0 into two pieces
- Uacc in the upper right corner and Urej in the lower left. w1 maps each piece back

into itself, while w0 maps both pieces into Urej. The "-machine method thus produces
the 2-state FSA shown at right. (Note: �nal states are indicated by a double circle,

the initial state by an open arrow). In this simple case the FSA can be shown to

exactly model the network's behavior. Of course N1 was trained on an extremely
easy task that could have been learned with even fewer weights.

Figure 3 shows network N4 captured at its phase transition. After 371 epochs (left)
it has learned the training set, but the induced language is not regular. At the next

epoch (right) it has become regular. Though the weights have been shifted by only
0:004 units in euclidean space, the dynamics of the two networks are quite di�erent.

Applied to the left network at 500 � 500 resolution, our analysis produced a series
of FSA's of maximum size 2564. Applied to the right network, it terminated after

three steps to produce the same 4-state FSA that Tomita (1982) found by exhaustive

search. The states of the FSA correspond to the following four subsets of A0: U1 in
the upper left corner, U2 around (�0:6;�0:9), U3 barely visible at (0:4;�1:0) and U4
in the lower right corner. The details of the successive subdivisions are outlined in
Figure 4.

10

The above examples would also be amenable to previous, clustering-based, ap-

proaches because of the way they `partition [their] state space into fairly well-separated,

distinct regions or clusters' as hypothesized in (Giles et al., 1992). Those shown in

Figure 5 seem to be trickier. The subattractor for N5 (right) appears to be a bunch

of scattered points with no obvious clustering, yet our �ne-grained analysis was able

to extract from it a 7-node FSA { a little larger than the minimal FSA of 4 nodes

found by Tomita.

Network N2 (left) seems to have induced a non-regular language. Figure 6 shows

the �rst four iterations of analysis applied to it. Note that each FSA re�nes the

previous one bringing to light more details. Much can be learned about the induced

language by examining these �nite state approximations. For example, we can infer

from M2 that the network rejects all strings ending in 1, from M3 that it accepts all

nonempty strings of the form (10)�, but rejects any string ending in 110.

5 Conclusion

By allowing the decision boundary and the initial point to vary, our networks with

two hidden nodes were able to induce languages from all the data sets of (Tomita,
1982) within a few hundred epochs.

Many researchers implicitly regard an extracted FSA as superior to the trained
network from which it was extracted (Omlin & Giles, 1996) with regard to predictabil-
ity, compactness of description, and to the particular way each of them `generalizes'

to classify new, unseen input strings. For this reason, earlier work in the �eld had
focused on extracting an FSA which approximates the behavior of the network. How-
ever, that approach is imprecise if the network has induced a non-regular language and
does not exactly model an FSA. We have provided a �ne-grained analysis for a num-
ber of trained networks, both regular and non-regular, using an approach similar to

the method of "-machines which Crutch�eld & Young (1990) used to analyse certain
hand-crafted dynamical systems. In particular, we were able to measure empirically
whether the induced language was regular or not.

The fact that several of the networks induced non-regular languages suggests a

discrepancy between languages which are \simple" for dynamical recognizers and

those which are \simple" from the point of view of automata theory (namely, the

regular languages). It is easier for these learning systems to induce a non-regular

language to �t the sparse data of the Tomita training sets, rather than the expected
minimal regular language. The use of comprehensive training sets, or intentional

heuristics, might constrain networks away from these interesting dynamics.
It could be argued that the network and FSA ought to be seen on a more equal

footing, since the 17 parameters of the network provide a compactness of descrip-
tion comparable to that of the FSA, and the language induced by the network is in

principle on a par with that of the FSA in the sense that they both generalize the

same training data. We hope that further work in this direction may lead to a better
understanding of network dynamics and help to clarify, compare and contrast the

relative merits of symbolic and dynamical systems.

11

1

0

00,1

1

0,10

0,1

0,1

0,1

0,1

1

0,1

0,1

0

1

1

3

2

4

0

0
1

11

1

0

0,1

0

1

1

M

M

M

M

1
1

1

1 00

0,1

0,1

0

0

0

1

0,1

1

0

0,1
1

0

Figure 6: The �rst four steps of analysis applied to N2.

6 Acknowledgments

This research was funded by a Krasnow Foundation Postdoctoral Fellowship, by ONR
grant N00014-95-0173 and by NSF grant IRI-95-29298. We are indebted to David
Wittenberg for helping to improve its presentation, and to Mike Casey for stimulating

discussions.

12

7 Appendix: Tomita's Data Sets

N1 Accept
1

1 1

1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

N1 Reject
0

1 0

0 1

0 0

0 1 1

1 1 0

1 1 1 1 1 1 1 0

1 0 1 1 1 1 1 1

N2 Accept
1 0

1 0 1 0

1 0 1 0 1 0

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0

N2 Reject
1

0

1 1

0 0

0 1

1 0 1

1 0 0

1 0 0 1 0 1 0

1 0 1 1 0

1 1 0 1 0 1 0 1 0

N3 Accept
1

0

0 1

1 1

0 0

1 0 0

1 1 0

1 1 1

0 0 0

1 0 0 1 0 0

1 1 0 0 0 0 0 1 1 1 0 0 0 0 1

1 1 1 1 0 1 1 0 0 0 1 0 0 1 1 1 0 0

N3 Reject
1 0

1 0 1

0 1 0

1 0 1 0

1 1 1 0

1 0 1 1

1 0 0 0 1

1 1 1 0 1 0

1 0 0 1 0 0 0

1 1 1 1 1 0 0 0

0 1 1 1 0 0 1 1 0 1

1 1 0 1 1 1 0 0 1 1 0

N4 Accept
1

0

1 0

0 1

0 0

1 0 0 1 0 0

0 0 1 1 1 1 1 1 0 1 0 0

0 1 0 0 1 0 0 1 0 0

1 1 1 0 0

0 0 1 0

N4 Reject
0 0 0

1 1 0 0 0

0 0 0 1

0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 1 1

1 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1

1 0 1 0 0 1 0 0 0 1

0 0 0 0

0 0 0 0 0

N5 Accept
1 1

0 0

1 0 0 1

0 1 0 1

1 0 1 0

1 0 0 0 1 1 1 1 0 1

1 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0

1 1 1 1 1 1

0 0 0 0

N5 Reject
0

1 1 1

0 1 0

0 0 0 0 0 0 0 0 0

1 0 0 0

0 1

1 0

1 1 1 0 0 1 0 1 0 0

0 1 0 1 1 1 1 1 1 1 1 0

0 0 0 1

0 1 1

N6 Accept
1 0

0 1

1 1 0 0

1 0 1 0 1 0

1 1 1

0 0 0 0 0 0

1 0 1 1 1

0 1 1 1 1 0 1 1 1 1

1 0 0 1 0 0 1 0 0

N6 Reject
1

0

1 1

0 0

1 0 1

0 1 1

1 1 0 0 1

1 1 1 1

0 0 0 0 0 0 0 0

0 1 0 1 1 1

1 0 1 1 1 1 0 1 1 1 1 1

1 0 0 1 0 0 1 0 0 1

N7 Accept
1

0

1 0

0 1

1 1 1 1 1

0 0 0

0 0 1 1 0 0 1 1

0 1 0 1

0 0 0 0 1 0 0 0 0 1 1 1 1

0 0 1 0 0

0 1 1 1 1 1 0 1 1 1 1 1

0 0

N7 Reject
1 0 1 0

0 0 1 1 0 0 1 1 0 0 0

0 1 0 1 0 1 0 1 0 1

1 0 1 1 0 1 0

1 0 1 0 1

0 1 0 1 0 0

1 0 1 0 0 1

1 0 0 1 0 0 1 1 0 1 0 1

8 References

Barnsley, M.F. 1988. Fractals Everywhere, (Academic Press, San Diego, CA).

Casey, M. 1996. The Dynamics of Discrete-Time Computation, with Application

to Recurrent Neural Networks and Finite State Machine Extraction, Neural

Computation 8(6).

Casey, M. 1993. Computation Dynamics in Discrete-Time Recurrent Neural Net-
works, Proceedings of the Annual Research Symposium of UCSD Institute for

Neural Computation, 78{95.

Cleeremans, A., D. Servan-Schreiber & J. McClelland, 1989. Finite State Automata

and Simple Recurrent Networks, Neural Computation, 1(3), 372{381.

Crutch�eld, J.P. 1994. The Calculi of Emergence: Computation, Dynamics and

Induction, Physica D, 75, 11{54.

Crutch�eld, J.P. & K. Young, 1990. Computation at the Onset of Chaos. In Zurek,

W.H., ed. Complexity, Entropy and the Physics of Information (Addison-

Wesley, Reading, MA).

13

Das, S. & M.C. Mozer, 1994. A Uni�ed Gradient-Descent/Clustering Architecture

for Finite State Machine Induction, Neural Information Processing Systems 6,

19{26.

Fahlman, S.E. 1989. Fast-learning variations on back-propagation: an empirical

study. In D. Touretzky, G. Hinton & T. Sejnowski, eds. Proceedings of the

1988 Connectionist Models Summer School, Pittsburgh, PA, 38{51 (Morgan

Kaufman, San Mateo).

Forcada, M.L. & R.C. Carrasco, 1995. Learning the initial state of a second-order re-

current neural network during regular-language inference, Neural Computation,

7(5), 923{930.

Frasconi, P., M. Gori & G. Soda, 1995. Recurrent Neural Networks and Prior Knowl-

edge for Sequence Processing: A Constrained NondeterministicApproach,Knowl-

edge Based Systems, 8(6), 313{332.

Giles, C.L., C.B. Miller, D. Chen, H.H. Chen, G.Z. Sun & Y.C. Lee, 1992. Learning

and Extracting Finite State Automata with Second-Order Recurrent Neural
Networks, Neural Computation 4(3), 393{405.

Hopcroft, J.E. & J.D. Ullman, 1979. Introduction to Automata Theory, Languages,

and Computation (Addison-Wesley, Reading, MA).

Jordan, M.I. 1986. Attractor dynamics and parallelism in a connectionist sequential
machine, Proceedings of the Eighth Conference of the Cognitive Science Society,
Amherst, MA, 531{546.

Kolen, J.F. 1993. Fool's Gold: Extracting Finite State Machines from Recurrent
Network Dynamics, Neural Information Processing Systems 6, 501{508.

Kolen, J.F. 1994. Exploring the Computational Capabilities of Recurrent Neural
Networks, Ph.D. Thesis, Ohio State University.

Lang, K.J. 1992. Random DFA's can be Approximately Learned from Sparse Uniform
Examples, Proc. Fifth ACM Workshop on Computational Learning Theory, 45.

Manolios, P. & R. Fanelli, 1994. First order recurrent neural networks and determin-

istic �nite state automata, Neural Computation 6(6), 1155{1173.

Omlin, C.W. & C.L. Giles, 1996. Extraction of Rules from Discrete-Time Recurrent
Neural Networks, Neural Networks, 9(1), 41.

Pollack, J.B. 1991. The Induction of Dynamical Recognizers, Machine Learning 7,
227{252.

Pollack, J.B. 1987. Cascaded back propagation on dynamic connectionist networks,
Proceedings of the Ninth Annual Conference of the Cognitive Science Society,

Seattle, WA, 391{404.

Rumelhart, D.E., G.E. Hinton & R.J. Williams, 1986. Learning representations by

back-propagating errors, Nature 323, 533{536.

Siegelmann, H.T. & E.D. Sontag, 1992. On the computational power of neural net-

works, Proceedings of the Fifth ACM Workshop on Computational Learning

Theory, Pittsburgh, PA.

Ti�no, P., Bill G. Horne, C.L. Giles & P.C. Collingwood, 1995. Finite State Ma-

chines and Recurrent Neural Networks - Automata and Dynamical Systems

Approaches, Tech. Rept. UMIACS-TR-95-1, Institute for Advanced Computer

Studies, University of Maryland.

14

Ti�no, P. & J. Sajda, 1995. Learning and Extracting Initial Mealy Automata with a

Modular Neural Network Model, Neural Computation 7(4), 822.

Tomita, M. 1982. Dynamic construction of �nite-state automata from examples using

hill-climbing, Proceedings of the Fourth Annual Cognitive Science Conference,

Ann Arbor, MI, 105{108.

Trakhtenbrot, B.A. & Ya.M. Barzdin' 1973. Finite Automata; Behavior and Synthesis

(North-Holland, Amsterdam).

Watrous, R.L. & G.M. Kuhn, 1992. Induction of Finite State Languages Using

Second-Order Recurrent Networks, Neural Computation 4(3), 406{414.

Williams, R.J. & D. Zipser, 1989. A learning algorithm for continually running fully

recurrent neural networks, Neural Computation 1(2), 270.

Zeng, Z., R.M. Goodman & P. Smyth, 1994. Learning Finite State Machines with

Self-Clustering Recurrent Networks, Neural Computation 5(6), 976{990.

15

