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ABSTRACT

We explore the evolution of programs for control tasks us-
ing the recently introduced Hierarchical Evolutionary Re-
Combination Language (HERCL) which has been designed
as an austere and general-purpose language, with a view
toward modular evolutionary computation, combining ele-
ments from Linear GP with stack-based operations from
FORTH. We show that HERCL programs can be evolved to
robustly perform a benchmark double pole balancing task
from a specified range of initial conditions, with the poles
remaining balanced for up to an hour of simulated time.

Categories and Subject Descriptors

ALIFE [Aritificial Life/Robotics/Evolvable Hardware]:

Evolution of controllers; GP [Genetic Programming]: lin-
ear GP, stack-based GP

Keywords

control; linear GP; stack-based GP; modular evolution

1. INTRODUCTION

The Hierarchicial Evolutionary Re-Combination paradigm
and associated HERCL programming language were recently
introduced [1] in an effort to design a novel framework for
evolutionary automatic programming with certain key re-
quirements, hypothesized to be advantageous for the devel-
opment of modular evolving systems.

HERCL programs have previously been evolved to perform
coding tasks such as the Caesar and Vigenere cipher [1]. In
the present work, we explore the evolution of HERCL pro-
grams for dynamically unstable control problems, using the
benchmark double pole balancing task as a case study.

2. HIERARCHICAL EVOLUTION

HERCL has been designed with the lofty goal of eventually
building a Society of Mind model of cognition [3] in which
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a heterogenous collection of agents (modules) pass messages
to each other and work together to achieve an overall task.

Ideally, such a system should improve itself through a pro-
cess of modular evolution, with the various agents within
the system all evolving simultaneously — each agent com-
peting against other agents in its own ecological niche. In
contrast to holistic evaluation — where variations in indi-
vidual components are judged by re-testing the fitness of
the entire system — we are instead interested in exploring
peer evaluation, where each component is evaluated by other
components.

The global interactions between different agents in this
kind of system would raise formidable challenges and com-
plexities, in terms of collusion, deception and evolutionary
dynamics. HERCL represents a modest first step, in trying
to identify certain essential requirements which should the-
oretically be satisfied locally by the evolutionary process in
each individual niche, and attempting to design (and refine)
an appropriate framework, and language, to meet these re-
quirements:

1) Each agent should take the form of a (genetic) program, in

a language which is austere and flexible enough to handle a
wide variety of computational tasks.

2) Agents should communicate by passing messages to each

other in a general-purpose format.

3) The number of agents competing in each ecological niche

should be relatively small (so as not to put an excessive
burden of evaluation on other agents in the system) but
still able to search broadly and escape from local optima.

HERCL does not use a population as such, but instead
maintains a stack or ladder of candidate solutions (agents),
and a codebank of potential mates (Figure 1).

At each step of the algorithm, we select the agent at the
top rung of the ladder and apply either mutation or crossover
with a randomly chosen agent from the codebank. HERCL
programs are divided hierarchically into cells, bars, instruc-
tions and codons. We distinguish different levels of mu-
tation/crossover (TUNE, POINT, BAR, BRANCH, CELL, etc.)
which vary according to the portion of code from the pri-
mary (ladder) parent that is either mutated or crossed over
with a commensurate portion of code from the secondary
(codebank) parent. The level of each mutation/crossover is
chosen randomly, with lower levels weighted more heavily
than higher ones, and with the constraint that the muta-
tion levels must strictly decrease as we move up the ladder.
The agents in the codebank are grouped according to muta-
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Figure 1: Hierarchical Evolutionary Re-Combination.
If the top agent on the ladder becomes fitter than the
one below it, the top agent will move down to replace
the lower agent (which is transferred to the codebank).
If the top agent exceeds its maximum number of allow-
able offspring without ever becoming fitter than the one
below it, the top agent is removed from the ladder (and
transferred to the codebank).

tion/crossover level, with a limited number of agents in each
level. Further details can be found in [1].

3. DOUBLE POLE BALANCING

We adopt the benchmark double pole balancing task for
this case study, and try as far as possible to use the same
scenario and parameter settings as in previous works [2, 4,
5, 6]. Two poles (inverted pendula) of length 1m and 0.1m
are attached by hinges to a wheeled cart running on a track,
and an agent must apply a positive or negative force at each
timestep in order to keep the poles from falling over, and
keep the cart from runnning off the track. The equations of
motion for this system can be found in [6]. At each timestep
(0.02 simulated seconds) the agent is presented with the po-
sition x and velocity & pf phe cart as well as the angles 601, 02
and angular velocity 61,02 of the poles, and must choose
to apply a force of either +10N or —10N (bang-bang con-
trol). The system is considered balanced so long as z re-
mains within +2.4m and 61,02 within £0.6 radians (35°).

In contrast to previous approaches — where the controllers
were evolved on a fixed initial configuration (IC) and then
tested for generalization on other IC’s, to a maximum of
1000 timesteps — we are instead interested in the possi-
bility of evolving a robust controller, which is evolved and
tested on a range of IC’s, but is required to achieve nearly
100% success within this range, and keep the poles balanced
for a much longer time period.

In order to achieve this robustness, we follow a process of
incremental training, where a new IC is added to the fitness
evaluation whenever the best agent (champ) has achieved
success for all the current configurations (by keeping the
two poles balanced for 50,000 timesteps).

Ten evolutionary runs were performed with different ran-
dom seeds. In each case, the first agent to solve 1, 10, 100
and 1000 IC’s were extracted, and tested on 1000 newly
generated IC’s; chosen randomly within these bounds:

z € [-1,1],4 € [-0.1,0.1], 01,2 € [~0.05,0.05], 61 2 € [-0.01,0.01]

Figure 2 illustrates the robustness (generalization) of the
extracted agents, for each of the ten evolutionary runs. We
see that a significant gain in robustness is achieved by ex-
tending the evolution to 10 training configurations rather
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Figure 2: Robustness (generalization) for agents evolved
on 1, 10, 100 and 1000 (training) IC’s. Each plot is a
mean of ten runs (with error bars shown selectively)
showing simulated seconds (log scale) vs. fraction of
(test) IC’s for which the two poles remain balanced.

than stopping at one. On average, this increases the chance
of remaining balanced for 50,000 timesteps (1000 seconds)
from 13% to 78%. Two of the runs eventually produced
agents which can keep both poles balanced, for the full set of
1000 test IC’s, for 5 million timesteps (equivalent to 100,000
seconds, or slightly more than a day of simulated time).

4. CONCLUSION

We have shown that HERCL programs can be evolved to
robustly perform the benchmark double pole balancing task
from a defined range of initial conditions, and keep the poles
balanced for an hour or more of simulated time. Incremen-
tal training can significantly improve the robustness of the
solution, but eventually there is a law of diminishing returns
due to long evaluation times.

These results extend the range of computational tasks
amenable to Hierarchical Evolutionary Re-Combination, and
provide further evidence that the HERCL framework may pos-
sess the versitility required to build modular evolving sys-
tems, which is the subject of future work.
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