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Abstract

This paper presents an approach to motion con-
trol for fast mobile robots. The approach is
based around the notion of a t¢rajectory, which
describes the time evolution of the robot’s po-
sition, orientation and velocity over some finite
interval. The use of trajectories allows us to
take into account a wide range of dynamic ef-
fects, including (but not limited to) finite ac-
celerations and wheel slip. As a result, this
trajectory-based approach is able to produce
robust behaviour at high speeds. This paper
develops the basic formalism for the trajectory-
based approach, and presents some preliminary
results from simulation.

1 Introduction

This paper presents an approach to motion control for
fast mobile robots. The approach is motivated by the
desire to solve problems of the form:

e Move from A to B as quickly as possible.
e Move from A to B, arriving at a particular time.

e Move from A to B, arriving at a particular time,
with a particular orientation and velocity.

While there are a wide range of techniques that can be
employed to solve such problems, the vast majority suffer
from a common weakness: they fail to take account of the
robot’s dynamics. In particular, they tend to ignore the
fact that the robot is capable of only finite accelerations.
Consequently, while these techniques work well for slow-
moving robots, they become increasingly unreliable at
higher speeds [Koren and Borenstein, 1991; Fox et al.,
1997]. Our approach, on the other hand, accounts for
dynamic constraints in an explicit manner, leading to
robust high-speed behaviour.

The key innovation in our approach is the fact that it
considers robot trajectories, rather than individual robot
states. A trajectory can be thought of as a path through

the robot’s state space; it describes the time evolution of
the robot’s position, orientation and velocity over some
finite interval. The use of trajectories allows us to take a
wide range of dynamic constraints into account, includ-
ing (but not limited to) finite accelerations and wheel
slip effects. As a bonus, the use of trajectories also al-
lows us to implement time-dependent behaviours, such
as reaching a goal at a specific time.

The approach has three components: a set of con-
straints, a set of objectives, and a planner.

e The set of constraints determines which trajectories
are physically possible. The maximum speed and
acceleration of the robot, for example, are expressed
as constraints. Each constraint is expressed in the
form of a constraint function that assigns costs to
trajectories; trajectories that satisfy the constraints
have low costs, trajectories that violate the con-
straints have high costs.

e The set of objectives determines which trajectories
are desirable. If we want the robot to reach a partic-
ular location, for example, we can define a ‘move-
to-goal’ objective. Each objective is expressed in
the form of an objective function that assigns costs
to trajectories; trajectories that meet the objective
have low costs, trajectories that do not meet the
objective have high costs.

e The planner attempts to find an optimal trajectory
by searching the space of all possible trajectories.
It looks for a trajectory that minimises a weighted
sum of the constraint and objective functions. The
planner uses a fast gradient descent method.

There are a number of features of this approach that
should be noted.

Firstly, there is the ability to ‘fuse’ objectives.
Through an appropriate weighting of the individual ob-
jective functions, it is possible to combine objectives such
as ‘move-to-goal’ and ‘avoid-static-obstacle’. It is also
easy to add new objectives, making the system very flex-
ible.



Secondly, constraints and objectives are treated in a
uniform manner — both are expressed in terms of a func-
tion to be optimised. As a result, during the optimisa-
tion process, there may be a conflict between finding a
trajectory that meets the objective, and finding a trajec-
tory that can actually be executed. In an ideal world, we
would eliminate this tension by incorporating the con-
straints into the problem in a more fundamental way.
For example, if the constraints where holonomic, they
could be used to eliminate one or more of the compo-
nents in the state space.! In the resultant generalised
state space, trajectories would be guaranteed to satisfy
the constraints, eliminating the need for a separate con-
straint function. Unfortunately, all of the important
constraints in this problem (such as the maximum ve-
locity and maximum acceleration constraints), are non-
holonomic. The constraint function, then, is a pragmatic
mechanism for capturing such constraints.

The final feature that should be noted is the manner
in which the planner searches for optimal trajectories.
Clearly, the space of all possible trajectories is huge, even
for trajectories with a relatively short duration (one or
two seconds, for example). An exhaustive search is there-
fore out of the question. Instead, the planner makes use
of a simple (and fast) gradient descent method. Un-
fortunately, as with all gradient descent methods, this
introduces some potential pitfalls:

e The solution may not converge if the function being
optimised is not suitably smooth.

e The solution may converge to a local minimum that
is far from optimal.

e The algorithm may be too slow to run in real-time.

In practice, we have found that all of these pitfalls can
be avoided or mitigated through careful implementation
of the algorithm. We will discuss these issues in more
detail in Section 4.

The remainder of this paper is structured as follows: in
Section 2 we discuss some related approaches to motion
control; in Section 3 we present a general formalism for
trajectory-based motion control, and apply that formal-
ism to a simple differential-drive robot; finally, in Sec-
tion 4, we describe some preliminary experiments that
demonstrate the plausibility of the approach.

2 Review

Motion control is a well-studied area; there are, it
seems, almost as many techniques are there are mo-
bile robots. Rather than attempting to present an ex-
haustive survey of these techniques, we will simply note

'Holonomic constraints take the form of simple relation-
ships between components of the state space. Non-holonomic
constraints, on the other hand, usually take the form of in-
equalities. See [Goldstein, 1980] for a detailed discussion.

the sources of inspiration for the approach described
in this paper. Specifically, we will discuss potential
field approaches [Khatib, 1986; Arkin, 1989], and the
dynamic window approach (DWA) [Fox et al., 1997;
Thrun et al., 1998].

Potential field techniques are based on an analogy with
electrostatics: the robot becomes a charged particle that
is repelled from obstacles and attracted to the goal. Our
technique also makes use of this analogy, but it is the
robot’s trajectory that is repelled from obstacles and at-
tracted to the goal. In a sense, our potential fields exist
in the (high-dimensional) space of all possible robot tra-
jectories, rather than the (two-dimensional) space of all
possible robot positions. As a result, our approach has
two advantages over potential fields: it does not suf-
fer from the oscillation effects observed with potential
fields (particularly for robots travelling at high speed)
[Koren and Borenstein, 1991]; and it is able to express
time-dependent behaviours (such as reaching a goal at a
particular time). The key disadvantage of our technique
with respect to potential fields is that it is computation-
ally intensive.

The dynamic window approach (DWA) attempts to
control the robot in wvelocity space, i.e. the space made
up of the robot’s linear and angular velocity. Since the
robot is capable of only finite accelerations, the DWA
approach defines a ‘dynamic window’ in the robot’s ve-
locity space. This window includes all of the velocities
that can be reached by the robot within the next time
interval. An ‘objective’ function is then applied to all
the velocities in this window to determine the optimal
velocity; the objective function considers such issues as
the distance to the nearest obstacle and the progress be-
ing made towards the goal. Our approach is similar, in
that we define a control space for the robot (which may
or may not correspond to the robot’s velocity space), and
attempt to find optimal control values. Unlike the DWA
approach, however, we consider trajectories in the con-
trol space; i.e. time sequences of control values. This
allows us to produce much more complex behaviours
from much less complex objective functions (albeit at
the cost of extra computation). To some extent, our ap-
proach can be thought of as a generalisation of the DWA
approach.

3 Formalism
The formalism we use can be summarised as follows:

e Define the control space for the robot.

The control space captures those values that can be
directly controlled in software. The control space
may consist of a set of voltages or currents supplied
to the robot’s motors, or it may consist of a set of
target velocities for the robot’s wheels (which are



sent to some low level controller).

e Define the state space for the robot.
The state space captures the important kinematic
and dynamic values for the robot, such as its posi-
tion, orientation and velocity. These values cannot
be directly controlled in software.

e Determine the equations of motion.
The equations of motion describe the time evolu-
tion of the robot’s state as a function of the control
values. That is, for any given trajectory in the con-
trol space, the equations of motion can be used to
determine the corresponding trajectory in the state
space.

e Write down the constraint functions.

In determining the equations of motion, one must
make certain assumptions (that the robot does not
slip or topple, for example). In some cases, we
can ensure that these assumptions are satisfied by
adding constraints to the control space. FEach con-
straint is expressed in terms of a constraint function
that assigns low costs to trajectories that satisfy the
constraints, and high costs to trajectories that vio-
late the constraints.

e Write down the objective functions.
The desired robot behaviour can be described in
terms of a set of objective functions. These func-
tions assign a low cost to ‘good’ trajectories (where
the robot meets or comes close to meeting the ob-
jective) and a high cost to ‘bad’ trajectories (where
the robot fails to meet the objective).

e Find the optimal trajectory using gradient descent.

The optimal trajectory is defined to be one in which
the robot meets all of the objectives whilst simul-
taneously satisfying all of the constraints. The op-
timal trajectory is found using gradient descent to
minimise a weighted sum of the constraint and ob-
jective functions.

3.1 Example: Differential Drive

As an example, consider a robot with a simple differen-
tial drive mechanism. The robot has a pair of indepen-
dent drive wheels and a pair of passive caster wheels.
The motion of the robot is determined by the relative
speeds of the two drive wheels, each of which has a PID
controller that will (to a very good approximation) main-
tain a given wheel speed.

The control space for this robot has two components:
the target left and right wheel speeds (I,7). The state
space, on the other hand, has five components: the
robot’s linear and angular velocity (v,w), and the robot’s
position and orientation (z,y,0). Let ( denote a tra-
jectory through the control space, and let 1 denote the

corresponding trajectory through the state space. In
principle, both ¢ and n are continuous multi-dimensional
functions describing the time evolution of the control and
state values, respectively. In practice, we discretize these
functions by dividing time into discrete intervals At. We
can then define ¢ to be a sequence of points in control
space, and 7 to be the corresponding sequence of points
in state space. We write this as:

¢ = {G}={,r)}
n = Am}={(vi,wi,zi,yi,0i)} (1)

where (; = (r;,1;) denotes the control values (the target
wheel speeds) at time ¢t = iAt, and n; = (v;, wi, T4, Yi, 0;)
denotes the corresponding state. The number of points
n in the trajectory is given by n = T /At where T is
known as the trajectory duration. When choosing the
trajectory duration, one must make certain trade-offs:
long durations will tend to make behaviours more ro-
bust, but they will also increase the time required to op-
timise the trajectory. Ultimately, the duration 7" must
be chosen experimentally; see [Howard, 2000] for a more
detailed discussion.

If we assume that the robot’s wheels do not slip, and
that the robot is travelling on a flat surface, simple ge-
ometry dictates that the discrete equations of motion for
this robot are:

v; = (lim1 +71i-1)/2

Wi = (lifl - Tifl)/W

z; = Ti—1 +v;—1Atcosfi_q

Yi = Yi—1 +vi_1Atsing;_4

0; = 0;1+wi 1AL (2)

where W is the effective wheel separation. Note that
this is a zero-th order approximation to the continuous
case. Given a trajectory ¢ through the control space,
these equations allow us to determine the corresponding
trajectory n through the state space.

3.2 Constraints

The constraints on the robot’s trajectories come in two
forms. Firstly, there are constraints that arise from the
physical construction of the robot. There will, for ex-
ample, be a maz-speed constraint, since the robot’s mo-
tors are capable of only finite speeds. Secondly, there
are constraints that we impose in order to ensure that
trajectories are predictable. In deriving the equations
of motion, certain assumptions were made. Specifically,
that the robot’s wheels do not slip and that the surface
over which the robot is travelling is smooth and flat.
While it is relatively easy to guarantee the validity of
the second assumption (by restricting the robot to an
appropriate environment), the first assumption is some-
what more problematic. It is, for example, relatively
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Figure 1: Results for the simulated trials. The top row shows the trajectories in position (z,y) space. The bottom

row shows the trajectories in velocity (v,w) space.

easy to build a robot capable of generating theoretical
accelerations of as high as 1g (approximately 10m/s/s).
In practice, however, the robot’s wheels will usually start
to slip at around 0.2g. Once this happens, the equations
of motion will no longer hold, and the robot’s motion
will cease to be predictable. The solution, clearly, is
to impose a maz-accel constraint that limits the robot’s
acceleration.?

Both the max-speed and max-accel constraints can be
expressed in the form of constraint functions. For the
max-speed constraint, we can write:

L 2
Cmaxfspeed(n) = Z { (vl gmax)

i

otherwise

if | vi|< Viax }

(3)
where vpax is the maximum velocity. Note that this ex-
pression is continuous, and has continuous derivatives;
these properties are shared by all of the constraint and
objective functions we define, and helps to ensure the
success of the gradient descent method used by the plan-
ner to find optimal trajectories. For the max-accel con-
straint, we can write:

L 2
Cmax—accel(n) = Z { (a/z gmax)

i

if | ai |< Amax
otherwise

- (4)

2Note that this analysis of wheel slip effects is extremely is
crude, considering as it does only linear accelerations. More
complex effects arise when one considers motion around an
arc, where centrifugal forces will tend to make the robot slide
or topple. These effects can be modelled, and appropriate
constraint functions designed. They are, however, beyond
the scope of this paper.

where the acceleration a; is defined as a; = (v; —
vi—1)/At, and amax is the maximum allowed accelera-
tion. Similar expressions can be derived for angular ve-
locities and accelerations.

3.3 Objectives

There are two basic capabilities that any self-respecting
robot must have: the ability to reach a goal and the
ability to avoid obstacles. Both of these can be framed
in terms of simple objective functions.

Move-to-goal

In its simplest form, the move-to-goal objective expresses
the desire to reach a particular position at a particular
time. We can generalise this somewhat to say that the
robot should also arrive with a particular orientation and
velocity. In other words, the move-to-goal objective can
express the desire to move to a particular robot state.
We can express this in terms of an objective function as
follows:

_ (i = 1goat) - ] if 1At = tgoal
Ogou () = Z { 0 otherwise
(5)

where 1)g0a1 is the goal state and #4041 is the time at which
we wish to reach the goal. The 7, term is a weight vector
expressing the relative importance of the various compo-
nents of the goal state. For example, if we want the robot
to reach a certain pose, but don’t care about the velocity,
the weight term would be n,, = (0,0,1,1,1). Alterna-
tively, if the velocity is important, but the orientation is
not, the weight term would be 1, = (1,1,1,1,0).

i



Avoid-static-obstacle

The avoid-static-obstacle objective is used to avoid col-
lisions with static obstacles (such as walls). We can ex-
press this in terms of an objective function as follows:

. _ (dz - dmin)2 if di < dmin
Oavoia(1) = Z { 0 otherwise (6)

i
where d; is the distance between the robot and the near-
est point on the obstacle at time ¢ = iAt, and dyiy is
the ideal (minimum) distance. The objective function

Oavoid (1) is applied for each and every obstacle, and the
results summed to produce.

The Planner

The role of the planner is to find a trajectory that meets
all of the objectives, whilst simultaneously satisfying all
of the constraints. In practice this means looking for a
trajectory that minimises a weighted sum of the various
constraint and objective functions. We call this weighted
sum the cost function and define it as follows:

Um) = (1=k) Y w;Ci(m) + &Y wiO(n)  (7)
j k

where the first sum is over all constraints and the sec-
ond is over all objectives. The wy’s are weight terms
expressing the relative importance of the different ob-
jectives (and constraints). For example, we would gen-
erally set the weight associated with the avoid-static-
obstacle objective to be large compared to the weight
associated with the move-to-goal objective. If the avoid-
static-obstacle weight is set too small, the robot may
start to ‘cut corners’ in an attempt the reach the goal.
These weights must be set experimentally.

The k is also a weight term. It expresses the impor-
tance of the constraints relative to the objectives. For
large values of k, the objective functions will dominate,
resulting in trajectories that meet the objectives, but
may not satisfy the constraints. For low values of &, the
constraint functions will dominate, resulting in trajecto-
ries that satisfy the constraints, but may not meet the
objectives. As with the wy’s, this weight term must be
set experimentally.

To find the optimal trajectory, the planner makes use
of a simple gradient descent method. The algorithm is
as follows:

1. Select an initial control space trajectory (.

2. Compute the corresponding state space trajectory
71 using the discrete equations of motion.

3. Update the trajectory ( according to the rule:
(= (+aVU(n) (8)

where V.U (n) denotes the gradient of the cost func-
tion with respect to (, and o is the step size.

4. Compute the new state space trajectory .

5. Repeat steps 3 and 4 until some termination condi-
tion is met. The termination conditions we use are:
(1) stop when the cost falls below some threshold;
or (2) stop when we run out of time.

Note that there is a significant complication present in
this algorithm: we are optimising the control space tra-
jectory (, but the cost function is defined with respect to
the state space trajectory . Consequently, the computa-
tion of the gradient term V.U (n) is somewhat involved.
See [Howard, 2000] for a complete derivation.

4 Experiments

Figure 1 summarises the results for a group of four trials
conducted in simulation. In each trial, the robot was
given a certain task, such as reaching a goal or avoiding
obstacles. The planner then generated an optimal tra-
jectory for this task. The trajectories have a duration
of 2s and a step size of 100ms. All of the trajectories
presented in this section were generated using a plan-
ner written in C++, running on a standard 450Mhz PC.
Each trajectory was subject to 2000 optimisation steps,
requiring approximately 1 second of CPU time.

In the first trial, the robot was given the task of reach-
ing the goal position (0.3,0.3) at time ¢ = 2s; no goal
was set for the robot’s orientation or velocity. The first
two plots in Figure 1 show the trajectory generated by
the planner, in both position (z,y) and velocity (v,w)
space. The plots clearly indicate that the planner was
able to find a trajectory that reaches the goal. Note,
however, that there is a residual velocity (since the fi-
nal velocity was not specified), and that the trajectory
does not represent the shortest path to the goal (since
this was also not specified). Given the under-constrained
nature of the task, there are many optimal trajectories;
from these, the planner has chosen a somewhat unusual
one.

In the second trial, the robot was given the task of
reaching the goal position (0.30,0.30) with an orienta-
tion of —45° and zero velocity. Once again, the plots
indicate that the planner was able to generate a satis-
factory solution. Given the more constrained nature of
this task, the trajectory corresponds more closely to our
intuitive expectations; it is quite different from that gen-
erated in the first trial.

In the third trial, a single obstacle was introduced; the
goal remained the same as in the previous trial. Once
again, the trajectory generated by the planner is not the
one we might expect — it would seem more natural to go
around the other side of the obstacle. Nevertheless, the
trajectory is optimal, since the cost of the final trajec-
tory is very close to zero. Clearly, this trial demonstrates
the sensitivity of the final trajectory to the initial ‘guess’



used to seed the search process. In this case, the ini-
tial guess corresponded to forward motion in a straight
line; if we had chosen the initial guess to correspond to
a sharp left turn, followed by straight-line motion, the
result would be quite different.

In the final trial, a second obstacle was introduced.
This obstacle was deliberately placed in the most awk-
ward possible position; as a result, the planner was un-
able to find a good trajectory. Note that a good solution
does exist — the robot could loop around the other side
of the obstacles, for example. However, the initial guess
was such that the trajectory converged to a local, rather
than a global, minimum; this is one of the weaknesses of
gradient descent as a search method. We are still inves-
tigating the impact of local minima effects, and are con-
sidering a range of mitigation strategies. One possible
strategy is simply to seed the search process with a num-
ber of different (but carefully selected) initial guesses.

Overall, these trials serve to establish the following:

e The objective functions described in Section 3.3 do
generate the desired behaviour.

e The planner is able to find optimal solutions, but
only if it is given an appropriate initial guess.

e The planner can run in real time on currently avail-
able hardware.?

Unfortunately, since the trajectories generated in this
trials were never actually executed the trials tell us noth-
ing about the accuracy of the equations of motion, nor
of the appropriateness of the constraint functions. They
also tell us nothing about the impact of local minima
in complex environments. For this, we need to conduct
trials on a real robot, in a real environment; such trials
are currently underway.

5 Conclusion and further work

This paper describes the basic formalism for a trajectory
based approach to motion control, and presents some
preliminary experimental results. Clearly, much work
remains to be done.

Firstly, the experiments described in this paper serve
only to establish the plausibility of the approach. Many
more experiments are required to validate the approach
for real robots, in real environments.

Secondly, if we want our robots to move at very high
speeds, the formalism may need to be extended. In par-
ticular, as noted in Section 3.2, the analysis underlying
the wheel-slip constraint is extremely crude, and may fail
under certain conditions. We may also need to choose a

3Given that the planner has not yet been optimised, we
are confident that the implementation can be improved to
the point where the computation time is less than the step
time.

different control space; while PID control has a number
of advantages, it has it also has a number of limitations.
It is very difficult, for example, to control accelerations
accurately (due to controller overshoot and oscillation
effects).

Finally, we would like to fully exploit the possibilities
of the trajectory-based formalism by experimenting with
much more complex dynamic objectives, such as avoid-
moving-obstacle or intercept-moving-obstacle.
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