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Abstract

We consider the family of probability density
functions given by e−P (x) for elliptic, multivari-
ate polynomials, P (x) in a Bayesian estimation
context. Integration of new sensor information
with this class is trivial (addition of the polyno-
mial coefficients), and previous work has pro-
posed methods for performing prediction and
fusion (covariance intersect). In this paper we
consider methods for constructing sensor likeli-
hood models for this class, and demonstrate es-
timation where the process model is non-linear.

1 Introduction

The Kalman filter solves, in a Bayes-optimal sense, the
linear estimation problem for Gaussian uncertainties and
is consequently widely used in robotics applications in-
cluding tracking [Bar-Shalom and Li, 1995], simultane-
ous localisation and mapping [Smith et al., 1990] and
distributed data fusion [Sukkarieh et al., 2003]. Central
to the Kalman filter (and many other methods) is the
premise that uncertain quantities are Gaussian in na-
ture; that is, their uncertainty can be characterised by
their mean and covariance. While the central limit theo-
rem provides a compelling justification for this assump-
tion, non-linear transformations between spaces can pro-
duce highly non-Gaussian distributions. For example, a
range-only sensor may produce Gaussian noise in terms
of the measured range, but the uncertainty in terms of
the location of the target in a plane is non-Gaussian.
How to efficiently perform non-linear Bayesian estima-
tion remains an open problem.

The efficiency of a particular method is closely tied to
the application. This paper considers non-linear estima-
tion in the context of distributed data fusion (DDF). One
of the key bottlenecks in DDF is the limited bandwidth
available between nodes: it is imperative that nodes can
share relatively compact representations of probability
densities. Numerous approaches have been made to this

problem, each involving different trade-offs in optimal-
ity and efficiency. Most recent have been those based on
agglomerations of simpler functions such as mixtures of
Gaussians [Upcroft et al., 2004] and Parzen density esti-
mators [Ridley et al., 2004]. Closely related are particle
filter methods [Gordon et al., 1993] which represent a
density as a collection of samples.

The tractability of these methods relies on the fact
that operations on densities can be performed efficiently
on the components. The downside is that some functions
operate pair-wise on the component distributions, lead-
ing to an O(n2) number of components in the resulting
distribution, thus requiring resampling [Upcroft et al.,
2004].

Other representations have been used for non-linear
filtering, although not for DDF including Dirac mixtures
[Schrempf et al., 2006] and Fourier densities [Brunn et

al., 2006]. Grid-based approaches have also been applied
to DDF [Bourgault et al., 2003]. The approach that we
consider is the use of a wholly distinct (rather than ag-
glomerated) family of parameterised distributions. The
representation we have considered in previous work is
that of an exponentiated polynomial, e−P (x) [Blair and
Tonkes, 2007; Tonkes and Blair, 2007].

This family is capable of compactly representing com-
plex density functions. For application to Bayesian es-
timation, three fundamental operations are required for
densities: multiplication, convolution and (typically lin-
ear) transformation. For our class of densities, multi-
plication is trivial; convolution with a Gaussian can be
efficiently and accurately approximated; and transfor-
mation of densities takes place by way of the polynomial
(e.g., the class is closed under linear transformation). We
have also demonstrated how densities can be conserva-
tively combined in a DDF scenario through an extension
of the covariance intersect algorithm.

In this paper we consider two related problems: that
of constructing sensor likelihood models and that of
non-linear filtering. For the first problem, we propose
a geometrically-inspired algorithm for fitting an expo-



nentiated polynomial to an arbitrary density function.
The extended Kalman filter attacks the problem of non-
linearities by taking a linearisation of the system. We
propose, for our density family, instead taking an nth
order polynomial expansion, then simplifying the resul-
tant complex density. Finally, we present a contrived
demonstration of non-linear Bayesian filtering with this
representation.

2 ExPoly Basics

We consider the family of probability density functions
of the form exp(−P (x)) where P (x) is a multivariate,
elliptic polynomial. (By elliptic we mean that it tends
to positive infinity in all directions so that exp(−P (x))
has finite volume.) For convenience, we call this class Ex-
Poly. Since P (x) is a function of arbitrary dimensionality
we shall adopt the multi-index notation [i] = (i1, ..., in)
so that x[i] =

∏n
d=1 x

id

d and

P (x) =
∑

|[i]|≤l

a[i]x
[i],

where |[i]| =
∑n

d=1 id. Clearly P (x) must be of even
order and we shall describe a density as being lth order
when no term of P (x) is of mixed order greater than l

(i.e., xa
1x

b
2 is an a + b order term). We consider both

valid densities, where
∫

exp(−P (x)) dx = 1, as well as
the denormalised space; normalisation can be achieved
by adding log

∫

exp(−P (x)) dx to the constant term of
P , a[0]. This class subsumes Gaussian density functions
(second-order polynomials) and allows for a much richer
variety of forms (see Figure 1).

Any exponential co-ordinate system naturally deter-
mines a dual co-ordinate system in the form of expecta-

tion parameters [Amari, 1993]. For example, while the
Kalman filter operates on the expectation parameters
– the mean and the covariance matrix – the informa-
tion filter form operates on the coefficients of the poly-
nomial underlying the distribution. In the case of Gaus-
sian functions the translation between these co-ordinate
systems is relatively straightforward, but with ExPoly
functions the relationship is less clear. A Gaussian is
uniquely characterised by its mean, µ = E[x] and covari-
ance, Σ = E[(x − µ)2]. Similarly, an lth-order ExPoly
density can be uniquely characterised by the first l expec-
tations. Rather than considering the central moments of
the density we take the moments around zero,

M[i] = E[x[i]] =

∫

x[i] exp(−P (x)) dx.

Among all densities of a given mean and covari-
ance, the corresponding Gaussian maximises the en-
tropy. Likewise, for a given set of (algebraic) moments,
M[i], the density that maximises the entropy takes the

form of an ExPoly with terms given by the specified mo-
ments. That is, given moments M[i1], . . . ,M[in], the den-

sity with maximum entropy is of the form exp(θ1x
[i1] +

. . .+ θnx
[in]) [Cover and Thomas, 1991] although deter-

mination of θ is non-trivial (see Section 5). Thus, ExPoly
densities can be regarded as the most conservative (least
informative) choice of representation for a given set of
expectation parameters.

3 Linear Filtering

Bayesian filtering is governed by a recursive instantiation
of Bayes’ law:

P(xk|Z
k) =

P(zk|xk) P(xk|Z
k−1)

P(zk|Zk−1)
(1)

where zk and xk are the observation and estimated state
respectively at time tk, and Zk = {zk, Z

k−1}. Conse-
quently, two operations are necessary: prediction (com-
puting P(xk|Z

k−1)), and update (multiplying the dis-
tributions, normalising if required). Assuming that the
state is governed by a Markovian process, its probabilis-
tic evolution is described by the Chapman-Kolmogorov
equation,

P(xk|Z
k−1) =

∫

P(xk|xk−1) P(xk−1|Z
k−1, x0) dxk−1.

(2)
This equation describes a convolution between two den-
sity functions, the previous estimate P(xk−1|Z

k−1), and
the model of the system evolution, P(xk|xk−1). As-
suming a standard linear model of the system, xk+1 =
Fxk + Buk+1 + Gvk where the state estimate, xk, and
noise vk are Gaussian, the Chapman-Kolmogorov equa-
tion describes a convolution of two Gaussian densities
which is itself Gaussian.

For ExPoly densities using the same linear model, the
Chapman-Kolmogorov equation requires convolution be-
tween an ExPoly density and a Gaussian density. Ex-
Poly is not closed under this operation so we have con-
sequently proposed an approximation [Blair and Tonkes,
2007]. The approach to this approximation is to consider
the differential rather than the integral form. That is,
when one of the densities is Gaussian the solution to
the convolution equation is equivalent to the solution of
the heat equation described by the Laplacian operator
applied to the density over the state estimate.

In the multi-dimensional case the Laplacian operator
takes the form

∆ = −
∑

i,j

Dij

∂2

∂xi∂xj

for a diffusion matrix, D. The key to the approxi-
mation is diagonalising ∆ by changing co-ordinates to



(a) (b) (c)

Figure 1: ExPoly density functions of two variables. Density (a) is intended as a range-only sensor model, while
(b) is a bearing-only model. Complex, multi-modal densities (c) are easily produced with the maximum modality
determined by the order of the polynomial. For these figures, (a) is fourth order and (b) and (c) are sixth order.

w = V Σ− 1
2 (x − µ) where V diagonalises Σ− 1

2DΣ− 1
2 ;

i.e., V Σ− 1
2DΣ− 1

2V −1 = Λ where

Λ =

[

λ1 . . .
λn

]

, with 0 < λ1 ≤ . . . ≤ λn

is diagonal. The transformed density (in w) can then
be diffused according to Λ. The change of co-ordinates
involves a straightforward linear transformation of the
polynomial, P (x).

For a given transformed ExPoly density, exp(−P (w))
we decompose it into Gaussian (quadratic) and residual
terms, P (w) = Q(w) + R(w) and consider the diffusion
separately. For the quadratic component, the diffusion
can be computed exactly, while the residual requires an
approximation that is derived through analogy to the
quadratic case. In terms of w, our proposed diffusion
process is given by

Pt(w) =
1

2
wT (I + tΛ)−1w +

R(I + tΛ)−
1
2w

1 + tλ
η
n

(3)

where t is the diffusion time and η is a free parame-
ter which experimentation suggests should be approx-
imately 2 + l

2 for an lth order density. Equivalently,
we can set t to 1 and pre-multiply D by t (i.e., use
t = 1, D = Gvk).

The prediction step, to compute P(xk|Z
k−1) is thus

achieved by

1. transforming P(xk−1|Z
k−1) to P′(xk|Z

k−1) accord-
ing to xk = Fxk−1 +Buk

2. transforming P′(xk|Z
k−1) to P′(wk|Z

k−1) accord-

ing to w = V Σ− 1
2 (x − µ) where µ and Σ are the

mean and covariance respectively of P′(xk|Z
k−1)

3. diffusing P′(wk|Z
k−1) using Eqn. (3) to

P(wk|Z
k−1) using D = Gv and computing Λ

accordingly

4. transforming P(wk|Z
k−1) by x = Σ

1
2 V −1w+µ (i.e.,

the inverse transform of step 2) to P(xk|Z
k−1).

Previous analysis [Blair and Tonkes, 2007] has shown
that this approximation is highly accurate for densities
that are Gaussian-like in nature and remains quite accu-
rate for the great majority of distributions before break-
ing down for boundary cases (e.g., extremely peaked
multimodal densities).

The other step required under Bayes’ law (Eqn 1) —
update — involves multiplication of the predicted den-
sity, P(xk|Z

k−1), with the sensor likelihood, P(zk|xk),
and normalisation. For ExPoly densities, this operation
is a trivial addition of the polynomial coefficients, disre-
garding the normalisation step.

As stated earlier, for ExPoly densities there is no
simple relationship between coefficient and expectation
parameters. However, for the prediction step knowl-
edge of both the mean and covariance is required. For
many operations, given an estimate of these parame-
ters a new one can be derived. Specifically, after step

(1), µ′ = Fµ + Buk and Σ′ = F−1ΣFT −1
; and af-

ter step (4), µ′′ ≈ µ and Σ′′ ≈ Σ′ + Gv. More dif-
ficult is the problem of tracking the mean and covari-
ance through a sensor update (multiplication of densi-
ties). For purely Gaussian densities the solution has a
closed form, Σ−1 = Σ−1

a + Σ−1
b . For ExPoly functions,

we use the Gaussian solution as an initial estimate then
refine it using a Metropolis sampler [Hastings, 1970].

Ensuring efficiency of the sampler is important since
many samples are required for accurate estimates of the
expectations, making it the most expensive operation re-
quired for linear filtering. Experiments suggest that the
diffusion approximation – which requires a transforma-
tion of the density based on the mean and covariance
– is relatively stable with respect to small errors in the
estimates. Efficiency concerns also recommend the use
of a Horner scheme [Pena, 2000] for evaluation of poly-
nomials.



4 Sensor Fusion

The intended application for ExPoly filtering is in dis-
tributed data fusion tasks. The benefit here is that
ExPoly densities have a relatively compact representa-
tion and can be communicated efficiently between nodes
where bandwidth is limited. While it is not the aim of
this paper to explore distributed scenarios it is worth-
while reviewing briefly the application of ExPoly to this
domain from previous work [Tonkes and Blair, 2007].

Data fusion between independent nodes can occur in
two modes: distributed data fusion, where the communi-
cation network between the nodes is centrally controlled
and each node performs a specific role with respect to
that architecture; and decentralised data fusion where
the overall topology of the network is unknown to any
of the individual nodes and may in fact change over the
lifetime of the system. This difference is significant when
considering how information flows through a network.

Given two independent estimates of a state, P(x|Za)
and P(x|Zb), a combined estimate can be made through
simple multiplication. However, if the estimates are not
independent then a simple combination will result in a
skewed estimate. In a distributed scenario the topology
of the network can be controlled so that each node can
determine how to factor out the information which it it-
self has provided. This effect is achieved through the use
of a channel filter which keeps track of the mutual infor-
mation between a node and its neighbours, and removes
it accordingly:

P(x|Z) =
P(x|Za)P(x|Zb)

P(x|Za ∩ Zb)
.

For ExPoly densities this operation is straightforward
since division and multiplication involve subtraction and
addition of polynomial coefficients respectively.

The case of decentralised data fusion is more inter-
esting. Here it is impossible to maintain the shared in-
formation between two nodes since information can be
passed between them via an unknown, indirect route. A
solution for Gaussian densities is the covariance intersect
(CI) algorithm [Julier and Uhlmann, 1997b]. The aim of
CI is to find the most informative density that is consis-
tent with all possible cross-correlations of the two source
densities. That is, regardless of the common information
used to produce the two densities, CI finds a density that
represents a consistent combination. Formally, CI com-
bines two densities with a parameter, ω ∈ [0, 1], such
that

Σ−1 = ωΣ−1
a + (1 − ω)Σ−1

b ,

Σ−1µ = ωΣ−1
a µa + (1 − ω)Σ−1

b µb

where ω is chosen to optimise some property of Σ such
as minimisation of its trace.

In terms of polynomial coefficients, CI is remarkably
simple. In this space, CI becomes

exp(−Q(x)) = exp(−(ωQa(x) + (1 − ω)Qb(x))).

This form of CI suggests an immediate extension to Ex-
Poly densities which has an information theoretic justi-
fication [Hurley, 2002].

5 Deriving Sensor Models

The task of building sensor likelihood models, P (z|x), is
an arduous one involving collection of large amounts of
sensor data and ground truth measurements. For Gaus-
sian models it is relatively straightforward to construct
a density which captures the measured data, but for Ex-
Poly densities it is more complex. There are two possible
needs for non-Gaussian models: (i) the sensor inherently
exhibits a non-Gaussian pattern of errors, (ii) the sensor
is subject to Gaussian errors, but the measurement it-
self is a non-linear function of the state. For the Kalman
filter the first problem is typically solved by conserva-
tively fitting a Gaussian model to the data. The second
problem is solved by linearising the observation function.

For ExPoly densities, the issue of a non-linear rela-
tionship between state and observation can be handled
analogously to the Kalman filter. However, instead of
linearising the system (which maintains the errors in the
form of a Gaussian) we can instead consider a polynomial

expansion of the system. That is, where the Kalman fil-
ter limits the Taylor series expansion of the function to
first order, ExPoly densities can use an expansion of any
order (although with increasing computational cost). We
shall discuss this idea further in the next section in terms
of non-linear state transitions.

For the other problem, that of fitting an ExPoly distri-
bution to intrinsically non-linear sensor data, the typical
approach is to consider the moments. The problem of de-
termining a density (or distribution) from its moments
has a long history and is an intensively studied problem,
at least for univariate functions [Landau, 1987].

Our initial approach to the problem for multivariate
ExPoly densities was to use the Fisher information ma-
trix to provide a locally approximate map between co-
efficients and expectations. If the points M = M[i] in
expectation parameters corresponds to a = a[i] in coef-
ficient parameters, then the transformation between the
two co-ordinate systems can be locally approximated by
the linear map:

M + δM 7→ a+ G−1δM (4)

where G−1 is the inverse of the Fisher information
matrix G. The Fisher metric for an ExPoly density,



exp(−P (x)), is given by

g( ∂
∂a[i]

, ∂
∂a[j]

) =

∫

∂P (x)
∂a[i]

∂P (x)
∂a[j]

e−P (x)dx

=

∫

x[i]x[j]e−P (x)dx = M[i+j].

In principle this technique defines an iterative proce-
dure for finding a set of coefficients that define a dis-
tribution having the given expectation parameters. In
practice we find that the process is numerically unsta-
ble, leading to non-elliptic polynomials. It is also compu-
tationally very expensive, requiring evaluation of many
moments for each iteration.

An alternative approach is to consider the moments
on a bounded subspace, typically, [0, 1]n. One heuris-
tic method in this vein assumes that the moments come
from an ExPoly function and then solves the problem di-
rectly [Borwein and Huang, 1995]. Given the constraints,

M[k] =

∫ 1

0

x[k] exp(
∑

[i]

a[i]x
[k])

for |[k]| ≤ 2l, finding the coefficients, a[i] reduces, for
univariate functions, to solving b = Br for r, where

B =











1 M1 M2 . . . Ml

1 M2 M3 . . . Ml+1

...
...

...
. . .

...
1 Mn+1 Mn+2 . . . M2l











, b =











M1

2M2

...
(l + 1)Ml











,

r = [r0 r1 . . . rl]
T

with r0 = exp(
∑

ai) and rk = kak for k > 0. The
multivariate case is somewhat more involved, requiring
the solution of n sets of linear equations for a density of
n variables.

Should the moments indeed come from an lth order
ExPoly density, then this procedure is guaranteed to re-
construct it. When the moments do not come from an
ExPoly density it is important that the function be ef-
fectively confined to [0, 1]n. If the moments derive from
a density which is non-trivially supported outside this
range then the procedure provides no guarantees on the
extrapolated moments and typically performs poorly.

Our second approach has been to consider the problem
as a purely geometrical one. Rather than using the mo-
ments as the starting point, we assume that we are given
a function, f(x), that we can evaluate for arbitrary x.
This conceptualisation suggests fitting − log f(x) with a
polynomial, P (x), in a least-squares sense. In this loga-
rithmic space, small values of f(x) are overweighted so
we instead consider a weighted-least-squares fit, using a
weighting of f(x). The problem now reduces to solving

a linear equation, Ga = m for a, with

G[̄i], ¯[j] =

N
∑

m=1

f(x)x[i]+[j]
m , and

m[̄i] =

N
∑

m=1

−f(x)x[i]
m log f(x)

where [̄i] denotes an arbitrary total ordering of the multi-
indices, and xm,m = 0, . . . , N are samples drawn uni-
formly from the support of f(x). Alternatively, we
can draw samples from the distribution, f(x), using a
Metropolis sampler, then weight them equally using the
sampling frequency as a substitute for the weight. Simu-
lations suggest than uniform sampling is marginally bet-
ter. Again, if f is an lth order ExPoly, then this method
will reproduce it exactly.

Note that, assuming f is an ExPoly density, G is ef-
fectively its Fisher information matrix since its entries
reflect the moments of f (consider integration instead of
sampling). Furthermore, the second method involves a
similar quantity in the form of the matrix, B. There are
clearly some deep parallels between all three methods
but we are unsure of their nature.

Unlike the moment-based approaches, whereM[0] is an
explicit constraint, the geometrical solution provides no
guarantees on the volume of the fitted density. In fact,
the geometrical approach sometimes finds the best fit
to be one which is non-elliptic. This error is particularly
apparent when f(x) vanishes very quickly so that, where
the density is almost zero, its weighting (f(x)) is so small
that samples from that region are effectively ignored.

One solution to this problem is to fit a polynomial of
degree l+2 where the (l+2)th order terms are given by
∑n

d=1 ǫx
l+2
d (i.e., coefficients for terms of order (l+2) are

ǫ when the exponent is of the form (0, . . . , l+ 2, . . . , 0)).
This constraint ensures that the polynomial is elliptic.
The linear problem then becomes Ga + e = m where
e describes the regularising components given by ǫ. An
alternative approach is to introduce a minimum value on
the size of the weights.

6 Non-Linear Filtering

Given the preceding sections, we are now in a position
to consider non-linear filtering with ExPoly densities.
Sources of non-linearity arise in two places: (i) trans-
forming between sensor and state spaces; and (ii) in
the evolution of the state. The extended Kalman filter
(EKF) linearises these transformations (about the ex-
pected value) making it once again a linear problem. An
alternative approach is taken by the unscented Kalman
filter (UKF) [Julier and Uhlmann, 1997a] which applies
the transformation to specifically chosen points (‘Sigma
points’), reconstructing the Gaussian by the transformed



values. For ExPoly densities it is unclear how to perform
the same style of computation as the UKF, but it is ob-
vious that the techniques of the EKF are immediately
applicable. We also propose an alternative solution.

Non-linearities in the sensor model have already been
addressed in a previous section. Non-linearities in the
state propagation can be treated similarly. Given a state
model, xk+1 = f(xk, uk+1) +Gvk+1, we can take a Tay-
lor series expansion around the expected state, E[xk],
to nth order, resulting in a polynomial state transition.
With an lth order density over the state, exp(−P (x)),
this polynomialisation produces an nlth order ExPoly
density, exp(−P ′(x)). Since the state transition model
is applied recursively, it is obvious that the order of the
state density will grow exponentially. It will therefore
become necessary to periodically ‘downsample’ the den-
sity to lower order. This simplification can be achieved
with our geometric solution outlined in section 5.

The procedure for prediction, i.e., computing
P(xk|Z

k1) now becomes

1. transforming P(xk−1|Z
k−1) to P′(xk|Z

k−1) accord-
ing to (xi)k = p(xk−1) with p being the nth order
polynomial expansion of the state transition func-
tion, f , around E[xk−1] with respect to xi.

2. transforming P′(xk|Z
k−1) to P′(wk|Z

k−1) accord-

ing to w = V Σ− 1
2 (x − µ) where µ and Σ are the

mean and covariance respectively of P′(xk|Z
k−1)

3. diffusing P′(wk|Z
k−1) using Eqn. (3) to

P(wk|Z
k−1) using D = Gv and computing Λ

accordingly

4. transforming P(wk|Z
k−1) by x = Σ

1
2V −1w + µ to

P(xk|Z
k−1).

In this case tracking the expectation parameters through
step (1) becomes more difficult than in the linear case.
Indeed, since relatively accurate estimates of these quan-
tities are required for the diffusion approximation in step
(2), it is necessary to re-estimate them numerically after
step (1). Again we use linear and Gaussian assumptions
to provide an initial configuration for a Metropolis sam-
pler. Since step (4) is only a linear transformation, the
estimate update remains the same as for the correspond-
ing step for the linear filter.

Since polynomial transformations rapidly increase the
order of densities it will be prudent to downsample them
frequently. An obvious choice is to simplify the function
after the prediction (after step 4). Another alternative
would be to simplify after step (3) since mean and co-
variance need to be re-estimated at that point anyway.

There remains an additional potential source of non-
linearity in the state transition: that of error in the con-
trol. This noise source is generally assumed to be addi-
tive with the state noise and incorporated into a single

Gaussian error term. If this is not the case, then the
Chapman-Kolmogorov equation (Eqn 2) describes a con-
volution between an ExPoly and a non-Gaussian density.
Since our approximation technique relies on treating the
problem as a Laplacian, it breaks down for non-Gaussian
functions. Consequently, for ExPoly filters, these noise
sources must be treated as linearised Gaussian noise in
the process model.

6.1 Non-Linear Example

We consider the problem of tracking a target moving
according to a tricycle motion model

xk+1 = xk + vk+1∆T cos(φk + ψk+1) + qx

yk+1 = yk + vk+1∆T sin(φk + ψk+1) + qy

φk+1 = φk + ∆T

vk+1

B
sinψk + qφ

where velocity, v, and steering angle ψ are control vari-
ables, B is the distance between the rear wheels, and
∆T is the time between updates. The state is described
in terms of position, (x, y), and bearing, φ. We make a
simplifying assumption that each state variable experi-
ences independent Gaussian noise, qx, qy and qθ which
have variances Qx, Qy and Qθ respectively.

This motion model is well-known for producing ‘ba-
nana’ densities which aren’t adequately expressed by
Gaussian models. Figure 2 shows densities that result
from first (linear), second and third order polynomial
approximations of the state transition given a Gaussian
prior. It is obvious that as the accuracy of the approx-
imation increases, new parts of the space provide non-
trivial support to the density.

To highlight the advantages of our non-linear approach
we consider a highly contrived situation where Qx =
Qy = Qθ = 0, B = 0.1 and φ = 0.0 and ∆T = v = 1.0
for all steps. While we could have used an ExPoly range-
only likelihood, for simplicity we assume the sensor gives
an estimate of the position (but not the heading) with
Gaussian uncertainty having standard deviation in each
direction of 0.5. The initial state of the target is (0, 0, π

4 )
and the initial estimate has mean (0, 0, 0) and a diago-
nal covariance with terms (0.01, 0.01, π

12 ) (i.e., the target
heading is unlikely given the prior).

We consider both linear and quadratic approximations
of the process model for five time steps. The linear ap-
proximation mirrors an EKF since both initial estimate
and sensor likelihood are Gaussian. The quadratic ap-
proximation is simplified to sixth order in each prediction
step. Figure 3 shows the estimate after prediction and
observation for (a) the linear approximation and (b) the
quadratic approximation. This example clearly shows
the linear version converges poorly due to the inaccu-
rate initial estimate of the heading, while the quadratic
approximation recovers far more quickly. Figure 2 shows
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Figure 2: (a) First, (b) second and (c) third order approximations of the tricycle model state transition, applied to
a Gaussian prior, and marginalised over the bearing, φ. For these figures, v = 1, ∆t = 1, B = 0.1, ψ = 0 and the
prior density has mean 0 and diagonal covariance with terms (0.01, 0.01, 0.274).

the likely source of the benefit: the quadratic approxi-
mation better supports an unlikely heading.

7 Discussion and Conclusion

In this paper we have considered two problems: fitting
an ExPoly given certain constraints, and non-linear fil-
tering with ExPoly densities. Fitting ExPoly densities
was considered in two (successful) ways: fitting a given
set of moments, and fitting a sample of points. Although
the motivations behind these approaches differ, the end
results are quite similar, solution of a set of linear equa-
tions with a matrix involving (effectively) the moments
up to twice the order of the ExPoly density. Preliminary
simulations suggest that the geometrical approach out-
performs the moment-based approach for higher-order
densities. The geometrical approach also has the advan-
tage of not requiring transformation down to [0, 1]n.

Non-linear filtering with ExPoly can be treated iden-
tically to the EKF (via linearisation). A more accurate
solution can be achieved by considering a polynomial
(Taylor series) expansion around the expectation. While
ExPoly is closed under polynomial transformation, it is
not true for ExPoly densities of a fixed order. Since
iteratively applying polynomial transformations will ex-
ponentially increase the order of the ExPoly, it is impor-
tant to downsample the density to lower order. Either
method for fitting densities could be used, but we have
chosen to use the geometrical solution since it bypasses
a linear transformation (to [0, 1]n) and appears to work
better.

Relative to the EKF, estimation with ExPoly densi-
ties is computationally expensive. There are two parts
in particular that impose a high burden: estimation
of the moments up to 2l for downsampling the den-
sity, and estimation of the mean and covariance for
the diffusion (prediction step). These steps may be
combined, but filtering still requires evaluation of the
polynomial many times. Some strategies exist for im-
proving polynomial evaluation [Roy and Minocha, 1991;

Pena, 2000] but these are likely to provide only a small
benefit. The well-studied convergence properties of the
Metropolis sampler provide the most important guide to
the efficiency of filtering. Speed of convergence is highly
dependent on the sampled density: for unimodal den-
sities samplers tend to ‘mix’ well and converge rapidly,
while samplers take much longer to traverse sparse peaks
in a multimodal density (these can occur frequently in,
for example, range-only scenarios). A better solution lies
in being able to approximate the moments directly as the
filter progresses, and a solution for the univariate case
has been proposed [Rauh and Hanebeck, 2005]. Since
the number of coefficients is

(

n+l
l

)

, ExPoly is practically
limited to a handful of variables of moderate order.

We have presented ExPoly as a candidate for repre-
senting non-Gaussian probability densities with specific
application to DDF. All operations that are necessary
for supporting (non-linear) DDF have been proposed in
this and previous papers, although some aspects lack for-
mal proof. We propose that ExPoly can be added to the
set of available non-Gaussian representations, to be used
under appropriate circumstances.
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