
A Paradox of Neural Encoders and Decoders or

Why Don't We Talk Backwards?
?

Bradley Tonkes1, Alan Blair1, and Janet Wiles1;2

1 Department of Computer Science and Electrical Engineering
2 School of Psychology
University of Queensland
QLD 4072 Australia

fbtonkes, blair, janetwg@csee.uq.edu.au

Abstract. We develop a new framework for studying the biases that
recurrent neural networks bring to language processing tasks. A semantic
concept represented by a point in Euclidian space is translated into a
symbol sequence by an encoder network. This sequence is then fed to
a decoder network which attempts to translate it back to the original
concept. We show how a pair of recurrent networks acting as encoder
and decoder can develop their own symbolic language that is serially
transmitted between them either forwards or backwards. The encoder
and decoder bring di�erent constraints to the task, and these early results
indicate that the con
icting nature of these constraints may be re
ected
in the language that ultimately emerges, providing important clues to
the structure of human languages.

1 Introduction

The study of automata and the languages they can process has a history dating
back to Turing [9] and beyond. Entwined with this story is the study of natural
languages and of the human mind. The issue is essentially one of constraints. The
particular constraints on an automaton, such as time and space, place bounds on
the types of tasks it can perform such as the types of languages it can process.
Likewise, it is believed that the constraints of the humanmind are re
ected in the
languages we use, so that by examining the features of language we may better
understand the principles that guide human language and thought processes.

Perhaps the best known work relating automata and languages, which also
seems highly relevant to natural languages, is Chomsky's hierarchy [1]. Chom-
sky's hierarchy is a family of language classes that can be recognised by a corre-
sponding family of automata classes. With di�erent restrictions on the automata,
di�erent language classes may be processed. However, this hierarchy was de-
signed with symbolic systems in mind. It has been suggested that dynamical

? We thank Tony Plate and Elizabeth Sklar for helpful discussions. The research was
supported by an APA to BT, a UQ Postdoctoral Fellowship to AB and an ARC
grant to JW.



systems, including many connectionist models, may bring di�erent biases to lan-
guage processing tasks relative to their symbolic counterparts [8], necessitating
a re-evaluation of the automata/language relationship.

As well as processing constraints, connectionist models also have learning

constraints. That is, they are limited not only in what they can represent, but
in what they can learn. The distinction between learning and representation
is important when we consider how human languages have developed. For a
natural language to be viable, it must not only be representable by its users, but
also learnable by subsequent generations [6]. The learning and representational
constraints of the human brain dictate the set of languages humans are able to
understand and learn, and consequently the languages that have emerged.

Recurrent neural networks (RNNs) have shown signi�cant promise as com-
putational models of various aspects of the human language processing system.
Part of their major appeal is the ability to incorporate syntax and semantics into
a single encompassing model [3]. They have also demonstrated competence in
learning a wide range of grammatical structures [7], and often re
ect real-world
data on natural language tasks [2, 10], and language change [5]. Although these
results have been a�ected by it, the issue of constraints of RNNs has not been
explicitly examined. It seems important then, to investigate the constraints of
recurrent networks and the way that they in
uence the properties and emergence
of language.

This paper is motivated by the observation that communication is essentially
a shared task between sender and receiver, in which the kind of language favoured
by the sender may not be convenient for the receiver and vice-versa. That is, the
constraints of the sender and receiver may be di�erent. The language that ulti-
mately emerges may arise as a compromise between these competing interests.

We consider a simple language task in which two RNNs try to communicate
a semantic \concept" represented by a point in a subset, U � IRn of Euclidean
space . One network sends a message in the form of a sequence of bits, which
the other network receives and decodes back into a point in the same Euclidean
space (Fig. 1). In this paper we consider only the case where U is the unit interval
[0; 1]� IR.

While the task is super�cially simplistic, it has a number of interesting prop-
erties. The \concept" is speci�ed in a continuous space with arbitrary precision,
whereas the \language" is a sequence of symbols from a �nite alphabet. Unlike
studies that have looked at language emergence between symbolic agents over a

symbolic channel, this task requires a transformation from a concept described
with arbitrary precision in a continuous space to a symbolic language. A trade-
o� is required between the amount of precision in the concepts and the length
of the symbol sequences in the language.

It is possible to accomplish the task by using a numeric encoding | interpret-
ing the sequence of bits as its numerical (binary) value. For this numeric code,
two possibilities are immediately obvious: either the most signi�cant part of the
message can be sent �rst, or it can be sent last. For example, 0:812510 = 0:11012
may be sent most-signi�cant-bit (MSB) �rst as <1; 1; 0; 1> or least-signi�cant-



Encoder Decoder

0.8125 0.8125
(real number, y)(real number, x)

Message (bit sequence, m)
<1,1,0,1>

Fig. 1. Getting the point across. Two recurrent networks are used as encoders and
decoders for a communication channel. The encoder is presented with a point from a
subset of Euclidean space, x 2 U � IRn, and outputs a sequence of bits, m 2 ��;� =
f0; 1g. This sequence of bits is then used as input for the decoder, which outputs a value
y 2 IRn after the last bit in the sequence has been processed. If the communication
is successful, then y should approximate x. For example, if U = [0; 1] � IR1, and a
strict numeric encoding is used, the input value 0.8125 would be mapped to the string
<1; 1; 0; 1>, since 0:812510 = 0:11012. The second network acts as a decoder, receiving
a binary string and mapping it to a real value. For example, the input < 1; 1; 0; 1 >
would be mapped back to the output 0.8125.

bit (LSB) �rst as < 1; 0; 1; 1>. This paper investigates the e�ect that encoder
and decoder constraints have on the way that the concept space and message
sequence can be related.

In Sect. 2, encoder and decoder networks are each trained separately, using
a hill-climbing algorithm, to perform the task using the numeric encoding. In
the following section, the encoder and decoder are co-evolved together and are
at liberty to determine their own \language". We conclude with some remarks
relating the results of the simulations to features of natural language.

2 Simulations 1 and 2: Encoders and Decoders

In the �rst two series of simulations we investigate the ability of the individ-
ual encoders and decoders to perform their respective mappings. In total, four
mappings are considered.

1. Encoding a real value to an MSB �rst binary sequence.
2. Encoding a real value to an LSB �rst binary sequence.
3. Decoding from an MSB �rst binary sequence to a real value.
4. Decoding from an LSB �rst binary sequence to a real value.

2.1 Encoders

The architecture for the encoder is a simple recurrent network (SRN) with ad-
ditional connections from the output units to the hidden units.1 Since a real
value may require representation by an arbitrarily long binary string, we ini-
tially intended that the encoder would output an end-of-sequence symbol once

1 Essentially a combination Jordan/Elman network.



the number had been encoded. Pilot simulations suggested that this encoding
was di�cult to evolve so the length of sequences that can be sent was arti�cially
limited.

Given this general architecture, it is relatively straightforward to hand-code
a network with a single hidden unit to perform the encoding for an MSB �rst
sequence. Such a network is shown in Fig. 2(a). However, it is not possible to
perform the LSB �rst encoding without a large number of hidden units due
to the fractal nature of such an encoding. (For messages of n bits, 2n values
( 0

2n
; 1

2n
; : : : ; 2

n

�1

2n
) may be encoded. For any value, k

2n
, the �rst bit of output is

the opposite to that of its neighbours.)

2.0

1.0

1.0
-1.0

(a)
Start End0 1

0.0 0.0

0.5

2.0

0.5-1.0

(b)

Fig. 2. (a) MSB encoder: A RNN that takes a real number between 0 and 1 and
encodes it as a numeric string, most signi�cant bit �rst. The hidden unit uses a linear
threshold activation function that saturates at -1 and 1, whereas the output units use
binary (0.5) threshold units. The input value is presented at the �rst time-step only.
(b) LSB decoder: A SRN that decodes numeric sequences LSB �rst. The input is
wrapped with start and end markers. After presentation of the end marker, the output
unit activation corresponds to the appropriate value. Linear (0,1) threshold activations
are used on all units.

Although a solution could be hand-coded, it was unknown whether it was
learnable, so a series of simulations was designed to address this question. Net-
works were evolved using a simple hill-climbing algorithm to perform both the
LSB and MSB mappings. A \champion" decoder was created with initially ran-
dom weights. A single mutant was then spawned by randomly perturbing the
weights of the champion according to a Gaussian distribution with 0 mean and
initially 0.1 variance. If the mutant was able to encode values as well as, or bet-
ter than the champion, then the mutant became champion and a new mutant
was spawned. To evaluate the accuracy with which values were encoded, the
strings were decoded with a perfect numeric decoder, and the sum squared error
between encoder input and decoder output was calculated.

The values chosen to be encoded were selected by taking a staged learning
approach [4]. Initially, only two values, 0 and 0.5, were encoded, and the number
of bits that could be sent was accordingly set to 1. Once a network was able to
perform this mapping, 2 bits could be sent, encoding 0, 0.25, 0.5 and 0.75. In
general, after 2k numbers could be successfully encoded into k bits, the networks
were given 2k+1 values to encode into (k + 1)�bit sequences. The variance was
modulated throughout the course of the simulations. Simulations were run for



a maximum of 100K generations, or until all 5-bit values could be encoded.
Networks with 1, 2, 3 and 5 hidden units were evolved.

2.2 Decoders

SRNs were used as decoders. The task for the these networks was the inverse
of the encoders' task with minor variations. Each string presented to a decoder
was enclosed with start-of-sequence and end-of-sequence inputs, a legacy of the
task originally considered for the encoder. The additional inputs did not appear
to have a considerable impact on the simulations.

Unlike the encoder, the decoder is capable of decoding either MSB or LSB
�rst, though with some signi�cant di�erences. Figure 2(b) shows a SRN that
decodes LSB �rst. Although an LSB decoder is able to decode strings of varying
lengths with only a single hidden unit, an MSB decoder (not shown) can only
decode strings of a �xed length with a single hidden unit. Simulations were
carried out in a similar manner to the encoder. A perfect encoder was used to
encode values to numeric binary sequences. Decoders were compared by the sum
squared error across all presented strings. The same principle of staged learning
was applied.

2.3 Results: Encoders and Decoders

Networks of all sizes were able to encode MSB �rst sequences and decode LSB
�rst sequences of up to 5-bits. No networks could encode more than 2-bit values,
LSB �rst. No networks were able to decode 5-bit sequences MSB �rst, although
one network with 5 hidden units was able to decode 4-bit sequences. The results
are broadly summarised in Table 1.

MSB First LSB First

Hidden units: 1 2 3 5 1 2 3 5

Encoders 11 18 11 7 0 0 0 0
Decoders 0 0 0 0 22 26 30 22

Table 1. Number of networks (of 50 trialed) attaining 5-bit precision in each condition.

3 Evolving a Language

There is clearly a signi�cant di�erence between the encoders and decoders. The
encoders were only able to learn the MSB �rst encoding, whereas the decoders
preferred learning LSB �rst sequences. This presents a serious dilemmawhen we
consider the complete system of encoding and decoding (Fig. 1). If the system
is to successfully communicate values, then the encoder and decoder must com-
promise on the nature of the code. An MSB or LSB code will not su�ce for the
combined system.

Simulations of the complete system were performed under two conditions. In
the �rst, the communication channel reversed the message: whatever was sent



�rst by the encoder was received last by the decoder. This condition allows an
MSB code with the encoder encoding MSB �rst and the decoder decoding LSB
�rst. With the second condition, the order of the message on the communication
channel was preserved. In this scenario an MSB code is more di�cult, and the
encoder and decoder must develop a code which can be e�ectively learned and
processed by both networks.

Pilot simulations showed that using a hill-climber for both encoder and de-
coder was intractable. Tests of backpropagation through time (BPTT) on the
decoder showed that it was qualitatively similar with respect to the learning
task of Sect. 2.2, but faster. Hence, a hill-climber was used for the encoder and
BPTT for the decoder. The basic algorithm for the co-evolution of the system
is described in Fig. 3.

1. Create a champion encoder and decoder.
2. Create a mutant encoder by perturbing the weights of the champion.
3. If the encoding created by the mutant uses a greater variety of strings than the

champion, select that mutant.
4. Create a mutant decoder with weights initialised between -1.0 and 1.0.
5. For k iterations, present all inputs of the current precision to the encoder. Train

the decoder on the output of the encoder.
6. If the �nal sum squared error of the mutant encoder and decoder across all strings is

lower than that of the champions, make the mutants the champions. Furthermore,
if the mutants got all strings correct, increase the precision. Return to step (2).

Fig. 3. Evolutionary algorithm for combined encoder/decoder system.

3.1 Forwards and Reversed

Both the encoder and decoder used two hidden units, with the decoder
trained for 1000 epochs. The system was give n + 2 bits when communicat-
ing n�bit values in the reversed case, and 2n bits in the forwards case. The
extra bits were found to be necessary for a successful code to develop and have
the e�ect of increasing the proportion of codes that uniquely identify each value.

In the reversed condition, the system was able to create successful codes for
5-bit values. A typical code is shown in Table 2. The code is e�ectively a sparse
numeric code. Although not all binary sequences are used, those that are used
are ordered by their numeric values.

The simulations performed with the forwards channel were not nearly as
successful as the reversed case. The best observed code, shown in table 2, encoded
all 3-bit values. It is apparent that it is neither strictly MSB nor LSB �rst, since
there is no clear ordering of the signi�cance of each bit (less signi�cant bits
should tend to show greater sensitivity to changes in the input.)

4 Discussion and Conclusions

The �rst series of simulations demonstrated the di�erent constraints of the en-
coder and decoder on the numeric encoding task. Whereas the encoder is only



Reversed Forwards

Input Message Flipped Output Message Flipped Output

0.000000 100111 001101 0.002858 010111 000010 0.000000
0.062500 100100 001110 0.041986
0.125000 111001 010011 0.121091 010101 000000 0.119414
0.187500 111111 010101 0.194269
0.250000 110010 011000 0.273809 011101 001000 0.242485
0.312500 110011 011001 0.313552
0.375000 110000 011010 0.360761 111101 101000 0.353821
0.437500 001001 100011 0.442445
0.500000 001111 100101 0.494467 111111 101010 0.497711
0.562500 001100 100110 0.541167
0.625000 000011 101001 0.610452 111110 101011 0.616155
0.687500 000000 101010 0.657662
0.750000 000001 101011 0.727246 101110 111011 0.741359
0.812500 000111 101101 0.800160
0.875000 011000 110010 0.848808 101010 111111 0.876082
0.937500 011001 110011 0.918393

Table 2. Left: Language for the reversed system, 4 bit precision. The code employed
is not immediately apparent. Flipping alternate bits of the message (bits 1, 3 and 5)
in the third column shows that the messages are, in fact, in numeric order. The bit-

ipping behaviour is a consequence of having negative recurrent weights that oscillate
the signi�cance of successive bits. Right: The code from a forwards system for 3 bit
precision. Flipping the bits of the message results in a code which is almost in numeric
order both left-to-right and right-to-left, 0.0 proving the exception in both cases.

able to encode values MSB �rst, the decoder has a preference for decoding values
LSB �rst. Interestingly, the encoder was unable to learn when it was required
to output an end-of-sequence. For an MSB encoding this may not be a major
issue. If the encoder stops earlier than it should, only the least signi�cant bits are
not encoded. However, for LSB or other encodings this issue is signi�cant since
the most important parts of the message may not be sent. This phenomenon
warrants further attention in future simulations.

The second series of simulations are pilots and show how the di�erent con-
straints of the networks may a�ect the evolved code. In both cases, co-evolution
of the encoder and decoder was di�cult. The primary cause of this appeared to
be the lack of quality information given to direct the encoder's search through
a combinatorically large space (functions from values to strings). Encouraging
variability in the encoder proved a useful heuristic, since a necessary condition
for a successful code is that every value has a unique encoding.

In the reversed condition, the biases of the networks were consistent and
produced a numeric code. The system produced the type of encoding expected,
given the results of the earlier component simulations. The codes developed
in this condition were more sparse than strict numeric codes. Attempting to
force a compact encoding on the encoder failed due to the small proportion of
appropriate codes within the large search space.



When the message sent by the encoder was not reversed (the forwards case)
the networks compromised on the code since neither was able to learn the en-
coding preferred by the other. Although the simulations did not develop codings
to cope with signi�cant levels of precision, they did give indications that the
system employed neither MSB nor LSB codes, but instead those that could be
read either backwards or forwards.

This is preliminary work and further simulations will be needed to substan-
tiate the combined encoder/decoder study. We have presented a framework for
studying the e�ects of constraints on the processing and emergence of language.
The simulations presented here have been abstracted away from real languages,
so an important goal of future work is to tie the framework more closely to nat-
ural language. A number of extensions for this purpose are immediately obvious
including the use of multi-dimensional inputs, more symbols in the language, a
non-uniform distribution of inputs and a population of communicators.

However, comparing the results of these initial simulations with human lan-
guages shows some interesting parallels. In the unrealistic reversed case, a code
develops which resembles a numeric code. In the forwards case, the networks cre-
ate a code that can be read either forwards or backwards, which is less e�cient
but meets the constraints of both the encoder and decoder. This is reminiscent
of the tendency in human languages towards palindrome-like structure (e.g. N1
N2 N3 V3 V2 V1) which can be parsed in either direction. In further studies we
hope to explore how certain features of human languages might have arisen as
a compromise between the con
icting constraints of sender and receiver.

References

1. N. Chomsky. Aspects of the Theory of Syntax. MIT Press, 1965.
2. M. H. Christiansen and N. Chater. Toward a connectionist model of recursion in

human linguistic performance. Cognitive Science, In press., 1998.
3. J. Elman. Distributed representations, simple recurrent networks and grammatical

structure. Machine Learning, 7:195{224, 1991.
4. J. Elman. Learning and development in neural networks: The importance of start-

ing small. Cognition, 48:71{99, 1993.
5. M. Hare and J. Elman. Learning and morphological change. Cognition, 56:61{98,

1995.
6. S. Kirby. Fitness and the selective adaptation of language. In James Hurford, Chris

Knight, and Michael Studdert-Kennedy, editors, Evolution of Language: Social and

Cognitive Bases for the Emergence of Phonology and Syntax. in press, 1998.
7. S. Lawrence, C. L. Giles, and S. Fong. Natural language grammatical inference

with recurrent neural networks. To appear: IEEE Transactions on Knowledge and
Data Engineering, 1998.

8. C. Moore. Dynamical recognizers: Real-time language recognition by analog com-
puters. Theoretical Computer Science, 201(1{2):99{136, July 1998.

9. A. M. Turing. On computable numbers, with an application to entscheidungsprob-
lem. Proceedings of the London Mathematical Society, Series 2, 42:230{265, 1936.

10. J. Weckerly and J. Elman. A PDP approach to processing center-embedded sen-
tences. In Proceedings of the Fourteenth Annual Conference of the Cognitive Sci-

ence Society, Hillsdale, NJ, 1992. Erlbaum.


