Learning to predict a context-free language: Analysis of dynamics
in recurrent hidden units

Mikael Bodén*, Janet Wiles*!, Bradley Tonkes* and Alan Blair*
*Department of Computer Science and Electrical Engineering
fSchool of Psychology
University of Queensland, 4072
Australia

Abstract

Recurrent neural network processing of reg-
ular languages is reasonably well under-
stood. Recent work has examined the
less familiar question of context-free lan-
guages. Previous results regarding the lan-
guage a™b™ suggest that while it is possi-
ble for a small recurrent network to pro-
cess context-free languages, learning them
is difficult. This paper considers the rea-
sons underlying this difficulty by consider-
ing the relationship between the dynamics of
the network and weightspace. We are able
to show that the dynamics required for the
solution lie in a region of weightspace close
to a bifurcation point where small changes in
weights may result in radically different net-
work behaviour. Furthermore, we show that
the error gradient information in this region
is highly irregular. We conclude that any
gradient-based learning method will experi-
ence difficulty in learning the language due
to the nature of the space, and that a more
promising approach to improving learning
performance may be to make weight changes
in a non-independent manner.

1 Introduction

Recurrent neural networks (RNN) can be
trained to recognize regular languages from
examples (Cleeremans et al., 1989; Elman,
1990; Pollack, 1991; Giles et al., 1992).
The operation of such RNNs has commonly
been understood in terms of finite-state au-
tomata (FSA). States organize in activation
space as distinct clusters and weights estab-
lish transformations between them reflecting
the operation of the associated FSA (Casey,
1996). It has been argued that this dis-
cretization is misleading and that the opera-
tion of RNNs is better understood in terms
of iterated function systems (Kolen, 1994)
or, more generally, continuous dynamical
systems (Rodriguez et al., 1999).

This work considers RNNs trained with

a context-free language (CFL). CFLs can-
not be processed with FSA and thus any
solution requires a different understanding
of RNN dynamics. The conventional ex-
tension is a push-down automaton (PDA)
which adds a stack and a counting mecha-
nism to the FSA. Previous work has demon-
strated that an RNN, can be successfully
trained on a simple CFL, without making
use of an explicit counter or stack. Instead,
hidden units develop oscillating dynamics
which provide means for a potentially in-
finite number of states (Wiles and Elman,
1995; Rodriguez et al., 1999; Tonkes and
Wiles, in press). However, learning does not
always result in a solution and when a solu-
tion is found the network is prone to losing
it with further training (Tonkes and Wiles,
in press).

This paper extends previous work by in-
vestigating two particular aspects of net-
work performance in light of simulations us-
ing the context-free language a™b":

e What constitutes the learned (or learn-
able) solution? What are the con-
straints, variations and limits of the
network learning?

e Why is learning difficult and unstable?

2 Experiments

All networks consisted of 2 input units (one
for each token), 2 hidden units and 2 output
units (one for each token). The network was
fully connected and the hidden units were
recurrent, as shown in Figure 1.

A variety of networks were trained using
backpropagation through time (BPTT) on
the context-free language a™b", e.g. aaabbb,
ab, aaaaaabbbbbb. The language was pre-
sented as a continuous stream of strings with
varying lengths up to n = 10. The target
output was the next token in the string or,
at the last token, the first token of the next
string. Since strings were presented in ran-
dom order, this prediction task (originally

QO
e\

(o] (o
o
@H®

Figure 1: The network used in all experi-
ments. Each token has its designated input
and output unit. The hidden units are re-
current.

used by Elman, 1990) is non-deterministic.
However, the network can develop mech-
anisms for deterministically predicting the
next token whenever the b token is pre-
sented. The network weights were updated
after each completely presented string. Gen-
eralization was tested up to n = 12. Gen-
eralization requires that the network has es-
tablished a means for counting the number
of a’s to predict the same number of b’s. The
two tokens, a and b, were represented with
[1 0] and [0 1] respectively.

Each network was unique and had either
different initial weights or was configured
with different learning parameters including
learning rate (fixed at 0.3 (FLR) or an adap-
tive strategy (ALR) described by Lawrence
et al., 1998), number of activation copies
saved for BPTT (ranging from 5 to 12), tar-
get codes (binary (BT): [1 0][0 1] or soft
(ST): [0.9 0.1][0.1 0.9]). These variations al-
lowed us to study the impact of prior con-
straints. The logistic output function was
used for all networks. No momentum was
used.

The percentage of networks finding a so-
lution (correctly handling all strings up to
n = 12) within the presentation of 20000
strings was 60% for the optimal parameter
settings and around 20% on average. The
success rate was considerably worse when
the number of activation copies for BPTT
was kept low (5 or below). The data dis-
tribution was biased towards shorter strings
with the highest frequency for n = 2. Some
alternative learning and data presentation
strategies — a smaller learning rate for the
hidden layer weights (SLRH), a presenta-
tion scheme where longer strings were in-
troduced after some learning period (StS),
and a presentation scheme which only con-
tained strings with maximum length equal
to the level of BPTT unfolding (ShS) were

Config.: BPTT unfolding:

5 6 7 8 9 10 11 12
BT/FLR 9 13 38 15 23 21 34 12
ST/FLR 0 4 0 9 19 53 36 6
BT/ALR 0 0 0 2 23 11 23 0
ST/ALR 0 0 0 6 0 13 6 0
SLRH 15
StS 28
ShS 0 6 28 60 43 21

Table 1: Success rates (percentage) for net-
work learning with different configurations.
Each configuration was tested with a popu-
lation of 47 networks.

tested, but demonstrated no significant per-
formance advantage. Table 1 summarizes
the results.

3 Solution

About 200 successful weightsets (from dif-
ferent networks) were saved for further anal-
ysis. All successfully generalizing networks
made use of oscillating hidden units to keep
track of the level of embedding. Cluster
analysis (in which each weight was com-
pared to all other weights in the same po-
sition) revealed eight major clusters. As it
turned out, these clusters corresponded to
the eight symmetries of the dihedral group
acting on weight-space. Consequently, each
network was transformed to a canonical
form described below.

The main solution, which has been de-
scribed in previous work by Wiles and El-
man (1995), relies on one hidden unit (HU1
in the canonical representation) to oscillate
in synchrony with presentation of the a to-
ken and the other hidden unit (HU2) to os-
cillate in synchrony with the b token. The
first hidden unit implements a 2-periodic os-
cillator, which slowly converges to a fixed
point in activation space. The second hid-
den unit implements a 2-periodic oscilla-
tor, which diverges from an unstable fixed
point to a fixed cycle in activation space.
The number of oscillations performed by
the first hidden unit effectively determines
the starting point and the stepsize for the
second oscillation. The second hidden unit
approaches a constant threshold value (an
activation which basically marks the end
of the string) from different starting points
and with different stepsizes. Figure 2 shows
a hidden activation trajectory and decision
thresholds of the output units for a standard
solution in canonical form.

4 Analysis

Observation of the hidden unit activations
reveals the dynamics of the network. During
continuous presentation of a single token,
most change occurs in one hidden unit, and

091

0.8

0.7

0.6

0.4

031

0.2

0.1r

a

0 I L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 < 1

HU1

Figure 2: A typical hidden activation trajec-
tory for processing the string aaaaaabbbbbb
(n = 6, starting point [0.5 0.5]). The line
forms the output hyperplane. Note when
the last b is presented the activation ends up
in the “predicting a” region of the decision
thresholds (at 0.5 for the logistic function)
implemented by the output units.

the other remains largely inactive. Thus,
we will analyse the network behaviour by
considering the simplified case of each hid-
den unit in isolation with only a bias and
a selfweight. If we consider this single unit
under constant input, then we can subsume
any inputs under the bias term. However, it
should be noted that some communication
between the hidden units is necessary to set
the starting point, zg, for each phase of pro-
cessing the continuous stream of strings.

4.1 Dynamical Behaviour

There are four basic behaviours exhibited
by the single recurrent unit (Holldobler et
al., 1997). We assume the logistic activa-
tion function resulting in the iterated map,
flz) = 1/(1 + e7v*=b) (selfweight w and
bias b) which has at most 3 fixed points
(where f(z) = x). Let z; be the fixed point
which has the largest output gradient f'(x;).

1. The selfweight is positive.

(a) If 0 < f'(z;) < 1, there is one at-
tractive fixed point to which the
unit output eventually converges.

(b) If f'(z;) > 1, then two attractors
and one repeller result. The out-
come depends on the initial point,
Zo-.

2. The selfweight is negative.

(a) If =1 < f'(z;) < O, there is one

attractive fixed point to which the

unit output converges by damped
oscillations.

(b) If f'(z;) < —1, then the activa-
tions converge towards a fixed 2-
periodic cycle.

The standard solution outlined earlier
makes exclusive use of behaviour 2(a) in
HU1 and behaviour 2(b) in HU2. Solu-
tions exist using behaviours 1(a) and 1(b)
(Holldobler et al., 1997) but such networks
have not been observed to learn and success-
fully generalize as a result of training with
BPTT. To illustrate the difficulties for the
learning algorithm we focus on behaviours
2(a) and 2(b).

To process longer strings, the network
must fit as many oscillations as possible
into the hidden unit space before converg-
ing to an attractive point or cycle. Fig-
ure 3 depicts the number of iterations, k, of
the single hidden unit iterated map before
|f¥t(z) — f¥(x)| < e,e = 0.001 for vary-
ing bias and selfweight when 9 = 0.5. The
figure shows an ellipsoidal ridge where many
oscillations can be made before convergence.
Importantly, this ridge also forms a border
between behaviours 2(a) (outside) and 2(b)
(inside) above. Crossing the border results
in a bifurcation in the dynamics of the net-
work and a radically different outcome.

Selfweight

Bias -15 -15

Figure 3: Number of oscillations before con-
vergence for a self-recurrent single hidden
unit. The number of oscillations was cut off
at 50 for clearer visualization. Behaviour
2(a) is found outside the ridge, behaviour
2(b) is found inside the ridge.

In terms of the network’s solution for ab”
for n < 12, HU1 (which oscillates in syn-
chrony with a input) must be close to this
ridge and on the outside for a input, and
further from it for b input. Conversely, HU2
must be close to the ridge and on the in-
side for b input, and further from it for a
input. The external signals from the a and
b inputs are able to facilitate this change in

oscillation performance by shifting the net-
work along the bias axis.! Due to the na-
ture of the surface in figure 3 the transla-
tion of the effective bias must be performed
with substantial precision. The unit must
be moved to a region closer to the border
to achieve the required oscillation perfor-
mance, but not so far as to send it over the
border which would result in crossing the bi-
furcation boundary of the unit’s dynamics.
The situation is further complicated when
we consider the recurrent connections be-
tween the hidden units. These connections
allow the network finer grained control over
the transition between the a and b phases
by setting the starting conditions for HU2.
Figure 4 shows where the hidden units of
successful networks fall in terms of the land-
scape in figure 3. The absolute weight val-
ues have been modified to incorporate the
influence of the corresponding input weight
for the two hidden units relative to the two
input cases (a input for HU1, b for HU2).
The weights for the first hidden unit are
found outside the bifurcation border and the
weights for the second hidden unit are found
inside the border. The figure is an idealiza-
tion of the condition where HU1 and HU2
are independent and outliers in the figure
are weight sets that violate this assumption.

5 The Error Surface and
Learning

It is clear that the representation requires
some degree of precision, but what makes
learning so difficult and unstable?

Weight changes were traced during learn-
ing for a number of trials. Again the net-
work was analysed by considering two sep-
arate self recurrent units, with their re-
spective biases accounting for the appro-
priate input condition. Typically, the net-
work weights evolve in three main phases.
Initially, weights smoothly migrate towards
the region of good oscillation performance.
When the weights reach a region close to the
bifurcation border, updates become highly
irregular and weights tend to fluctuate. Fi-
nally, at some point the weights are changed
to such a degree that the network moves out
of the desirable regions. In all the stud-
ied cases, large concurrent changes in the
bias and the input weight caused the prob-
lem. The selfweight appeared reasonably
stable. The same behaviour was observed
for runs when the BPTT unfolding mem-
ory was kept above 8. For networks trained

'Recall that under constant input it is safe to
subsume the input values under the bias term.

Figure 4: Plot of weights for the two hid-
den units combined with a contour plot for
the oscillation performance. Weights for the
first hidden unit are found outside the bi-
furcation border. The weights for the sec-
ond unit are found within. Weight values
are calculated on the basis of networks in
canonical form: the selfweight for each hid-
den unit is unchanged, the bias is the sum of
the original bias plus the input weight from
the active unit (the a input for HU1, the b
input for HU2).

with more copies (up to 12) the network
managed to stay in the proximity of solu-
tion space longer. For networks trained with
fewer copies, the second phase showed more
consistent weight changes but found solu-
tions less frequently.

The error that the learning algorithm
minimizes is based on the difference between
the presented strings and what is predicted
by the network. Since weights are updated
after each presented string and since strings
of different lengths impose different require-
ments on the weight sets, the error may
fluctuate as a result of presenting consecu-
tive strings of dramatically varying lengths.
However, in a separate analysis the observed
weight changes did not correlate with differ-
ence in length for consecutive strings.

To investigate the nature of the error sur-
face, we considered the error gradient com-
puted by BPTT for a family of weights. To
reflect the unstable region in weightspace
around the solution, weights were taken
from a successfully generalizing network.
We then considered for each hidden unit sep-
arately, the error gradient for varying val-
ues of selfweight and (effective) bias. To en-
sure that any possible influence from string
length did not affect the result, the error was
calculated on the basis of the entire range
of strings in the training set (n = 1..10). A

selfweight

bias 0

Figure 5: Error gradients for the second hid-
den bias in a successful network when the
selfweight and bias of the second hidden unit
are varied. In the region of interest, the er-
ror gradient is extremely unstable.

representative sample of the gradients can
be seen in Figure 5. The gradients indi-
cate that the error surface is littered with
deep narrow potholes (in terms of both mag-
nitude and direction) close to the bifurca-
tion border. Thus, if the weight changes are
proportional to the magnitude of the gradi-
ent (as in backpropagation) extreme weight
changes occur. We also noted by comput-
ing gradients for different sets of strings that
the complexity of the surface is higher when
longer strings are used. This difference may
be a result of the proximity of the solution
to the bifurcation border.

A more specific reason for the instabil-
ity can be found in the recurrent weight
from the first hidden unit to the second.
This connection is largely responsible for the
transition between the a phase and the b
phase. A correlation analysis of the set of
successful networks revealed a strong posi-
tive relationship between the weight values
found on the connection from the a input
unit to HUL and on the connection from
HU1 to HU2 and, negatively, from HU2 to
HU1. By studies of weight changes and ex-
perimentation we found that by only slightly
changing the weight from the first to the sec-
ond hidden unit the starting conditions for
the second oscillation were greatly affected.
We traced the effect of learning signals on a
successfully generalizing network in the pro-
posed canonical form. The impact of the
learning signal affects mainly the stepsize,
not the actual starting point for the second
oscillation. By only adjusting the weight on
the connection from the first hidden unit
to the second the oscillation stepsize (not
the starting point) for the second hidden

unit was affected. A positive change led
to smaller oscillations for the odd-numbered
strings, and larger for the even-numbered.
A negative change led to the opposite. The
observation is related to the correlation we
found. In fact, by manually adjusting these
three weights according to their relationship
(a positive ¢ Input-HU1, requires a positive
HU1-HU2 weight and a negative HU2-HU1
weight, and vice versa) the learning insta-
bility was greatly reduced in a test network.

6 Conclusions

Compared to regular languages, context-free
languages put radically different require-
ments on recurrent neural networks. It is no
longer sufficient to support representation
of a finite set of states in which all inputs
can be grouped. Instead mechanisms for
supporting representation of infinitely many
states are required. Classical systems and
some neural network systems resort to exter-
nal counters and stacks. This work investi-
gates a learning approach which requires no
such manually designed modules. Instead a
simple recurrent neural network establishes
oscillating dynamics which have the poten-
tial to represent and process infinite states.

By extensive experimentation we have
shown that, empirically, all successfully gen-
eralizing networks implement essentially the
same solution. Furthermore, we were able
to demonstrate that the difficulties expe-
rienced by BPTT in finding and keeping
this solution were largely consistent across a
wide variety of training conditions. We ob-
served that performance deteriorated when
we only unfolded the network for a few time
steps. Optimal performance was achieved
when we unfolded the network for about as
many time steps as there were levels of em-
bedding. It seems reasonable to believe that
BPTT can only find the oscillating solution
when the network is sufficiently unfolded.
Thus, a simple recurrent network as origi-
nally employed by Elman (1990) should not
be capable of learning the oscillating solu-
tion for predicting a™b" without additional
constraints.

The oscillating dynamics found by all gen-
eralizing networks can only be found in cer-
tain weight regions. One way of understand-
ing these weight regions has been to consider
the number of oscillations by the decoupled
recurrent units before convergence. For the
logistic function the map distinguishes be-
tween convergent and divergent oscillatory
behaviour by an infinitely thin border. The
standard solution requires that one hidden
unit employs convergent behaviour and that

the other employs matching divergent be-
haviour. During learning the network dy-
namics undergo a bifurcation when the bor-
der is crossed, making gradient-based learn-
ing difficult. The network output becomes
radically different which greatly affects the
error when weights cross the border. In ad-
dition, we have shown that the error land-
scape, which controls the network weight
changes, is extremely complex (steep and ir-
regular) close to the bifurcation border. The
oscillation map also demonstrates that the
desired dynamics are only found close to the
border.

The problem with learning then, does not
appear to be of finding a better learning
algorithm that works in the same weight
space. Figure 5 highlights the complex
nature of the error surface on which, it
would appear, any gradient based method
seems likely to experience difficulty. A more
promising approach, and one which we are
currently investigating, is to consider an al-
ternative search space. This study provides
the basis for developing a learning scheme
which takes into account the observed de-
pendencies between critical weights respon-
sible for the unstable learning dynamics.

Acknowledgments

This work was partly funded by an ARC
grant to Mikael Bodén and Janet Wiles, a
UQ Postdoctoral Fellowship to Alan Blair
and an APA to Bradley Tonkes.

References

Casey, M. (1996). The dynamics of discrete-
time computation, with application to
recurrent neural networks and finite

state machine extraction. Neural Com-
putation, 8(6):1135-1178.

Cleeremans, A., Servan-Schreiber, D. and
McClelland, J. L. (1989). Finite state
automata and simple recurrent neu-
ral networks Newral Computation,
1(3):372-381.

Elman, J. L. (1990). Finding structure in
time. Cognitive Science, 14:179-211.

Giles, C. L., Miller, C. B., Chen, D., Chen,
H. H., Sun, G. Z. and Lee, Y. C.
(1992). Learning and extracting finite
state automata with second-order re-

current neural networks. Neural Com-
putation, 4(3):380.

Holldobler, S., Kalinke, Y., and Lehmann,
H. (1997). Designing a counter: An-
other case study of dynamics and ac-
tivation landscapes in recurrent net-

works. In Proceedings of KI-97: Ad-
vances in Artificial Intelligence, pages
313-324. Springer.

Kolen, J. (1994). Fool’s gold: Extracting fi-
nite state machines from recurrent net-
work dynamics. In Advances in Neural
Information Processing Systems 6.

Lawrence, S., Giles, C. L. and Fong, S.
(1998) Natural language grammati-
cal inference with recurrent neural net-
works. IFEEE Transactions on Knowl-
edge and Data Engineering (to appear).

Pollack, J. B. (1991). The induction of dy-
namical recognizers. Machine Learning,
70 227-252.

Rodriguez, P., Wiles, J. and Elman, J.
(1999) A recurrent neural network that
learns to count. Connection Science,
11: 5-40.

Tonkes, B., and Wiles, J. (in press) Learn-
ing a context-free task with a recurrent
neural network: An analysis of stability
In Proceedings of the Fourth Biennial
Conference of the Australasian Cogni-
tive Science Society.

Wiles, J. and Elman, J. (1995). Learning to
count without a counter: A case study
of dynamics and activation landscapes
in recurrent networks. In Proceedings of
the Seventeenth Annual Meeting of the
Cognitive Science Society, pages 482—
487. Lawrence Erlbaum.

