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hool of Psy
hologyUniversity of Queensland, 4072AustraliaAbstra
tRe
urrent neural network pro
essing of reg-ular languages is reasonably well under-stood. Re
ent work has examined theless familiar question of 
ontext-free lan-guages. Previous results regarding the lan-guage anbn suggest that while it is possi-ble for a small re
urrent network to pro-
ess 
ontext-free languages, learning themis diÆ
ult. This paper 
onsiders the rea-sons underlying this diÆ
ulty by 
onsider-ing the relationship between the dynami
s ofthe network and weightspa
e. We are ableto show that the dynami
s required for thesolution lie in a region of weightspa
e 
loseto a bifur
ation point where small 
hanges inweights may result in radi
ally di�erent net-work behaviour. Furthermore, we show thatthe error gradient information in this regionis highly irregular. We 
on
lude that anygradient-based learning method will experi-en
e diÆ
ulty in learning the language dueto the nature of the spa
e, and that a morepromising approa
h to improving learningperforman
e may be to make weight 
hangesin a non-independent manner.1 Introdu
tionRe
urrent neural networks (RNN) 
an betrained to re
ognize regular languages fromexamples (Cleeremans et al., 1989; Elman,1990; Polla
k, 1991; Giles et al., 1992).The operation of su
h RNNs has 
ommonlybeen understood in terms of �nite-state au-tomata (FSA). States organize in a
tivationspa
e as distin
t 
lusters and weights estab-lish transformations between them re
e
tingthe operation of the asso
iated FSA (Casey,1996). It has been argued that this dis-
retization is misleading and that the opera-tion of RNNs is better understood in termsof iterated fun
tion systems (Kolen, 1994)or, more generally, 
ontinuous dynami
alsystems (Rodriguez et al., 1999).This work 
onsiders RNNs trained with

a 
ontext-free language (CFL). CFLs 
an-not be pro
essed with FSA and thus anysolution requires a di�erent understandingof RNN dynami
s. The 
onventional ex-tension is a push-down automaton (PDA)whi
h adds a sta
k and a 
ounting me
ha-nism to the FSA. Previous work has demon-strated that an RNN, 
an be su

essfullytrained on a simple CFL, without makinguse of an expli
it 
ounter or sta
k. Instead,hidden units develop os
illating dynami
swhi
h provide means for a potentially in-�nite number of states (Wiles and Elman,1995; Rodriguez et al., 1999; Tonkes andWiles, in press). However, learning does notalways result in a solution and when a solu-tion is found the network is prone to losingit with further training (Tonkes and Wiles,in press).This paper extends previous work by in-vestigating two parti
ular aspe
ts of net-work performan
e in light of simulations us-ing the 
ontext-free language anbn:� What 
onstitutes the learned (or learn-able) solution? What are the 
on-straints, variations and limits of thenetwork learning?� Why is learning diÆ
ult and unstable?2 ExperimentsAll networks 
onsisted of 2 input units (onefor ea
h token), 2 hidden units and 2 outputunits (one for ea
h token). The network wasfully 
onne
ted and the hidden units werere
urrent, as shown in Figure 1.A variety of networks were trained usingba
kpropagation through time (BPTT) onthe 
ontext-free language anbn, e.g. aaabbb,ab, aaaaaabbbbbb. The language was pre-sented as a 
ontinuous stream of strings withvarying lengths up to n = 10. The targetoutput was the next token in the string or,at the last token, the �rst token of the nextstring. Sin
e strings were presented in ran-dom order, this predi
tion task (originally



A BHU1 HU2
Figure 1: The network used in all experi-ments. Ea
h token has its designated inputand output unit. The hidden units are re-
urrent.used by Elman, 1990) is non-deterministi
.However, the network 
an develop me
h-anisms for deterministi
ally predi
ting thenext token whenever the b token is pre-sented. The network weights were updatedafter ea
h 
ompletely presented string. Gen-eralization was tested up to n = 12. Gen-eralization requires that the network has es-tablished a means for 
ounting the numberof a's to predi
t the same number of b's. Thetwo tokens, a and b, were represented with[1 0℄ and [0 1℄ respe
tively.Ea
h network was unique and had eitherdi�erent initial weights or was 
on�guredwith di�erent learning parameters in
ludinglearning rate (�xed at 0.3 (FLR) or an adap-tive strategy (ALR) des
ribed by Lawren
eet al., 1998), number of a
tivation 
opiessaved for BPTT (ranging from 5 to 12), tar-get 
odes (binary (BT): [1 0℄[0 1℄ or soft(ST): [0.9 0.1℄[0.1 0.9℄). These variations al-lowed us to study the impa
t of prior 
on-straints. The logisti
 output fun
tion wasused for all networks. No momentum wasused.The per
entage of networks �nding a so-lution (
orre
tly handling all strings up ton = 12) within the presentation of 20000strings was 60% for the optimal parametersettings and around 20% on average. Thesu

ess rate was 
onsiderably worse whenthe number of a
tivation 
opies for BPTTwas kept low (5 or below). The data dis-tribution was biased towards shorter stringswith the highest frequen
y for n = 2. Somealternative learning and data presentationstrategies { a smaller learning rate for thehidden layer weights (SLRH), a presenta-tion s
heme where longer strings were in-trodu
ed after some learning period (StS),and a presentation s
heme whi
h only 
on-tained strings with maximum length equalto the level of BPTT unfolding (ShS) were

Con�g.: BPTT unfolding:5 6 7 8 9 10 11 12BT/FLR 9 13 38 15 23 21 34 12ST/FLR 0 4 0 9 19 53 36 6BT/ALR 0 0 0 2 23 11 23 0ST/ALR 0 0 0 6 0 13 6 0SLRH 15StS 28ShS 0 6 28 60 43 21Table 1: Su

ess rates (per
entage) for net-work learning with di�erent 
on�gurations.Ea
h 
on�guration was tested with a popu-lation of 47 networks.tested, but demonstrated no signi�
ant per-forman
e advantage. Table 1 summarizesthe results.3 SolutionAbout 200 su

essful weightsets (from dif-ferent networks) were saved for further anal-ysis. All su

essfully generalizing networksmade use of os
illating hidden units to keeptra
k of the level of embedding. Clusteranalysis (in whi
h ea
h weight was 
om-pared to all other weights in the same po-sition) revealed eight major 
lusters. As itturned out, these 
lusters 
orresponded tothe eight symmetries of the dihedral groupa
ting on weight-spa
e. Consequently, ea
hnetwork was transformed to a 
anoni
alform des
ribed below.The main solution, whi
h has been de-s
ribed in previous work by Wiles and El-man (1995), relies on one hidden unit (HU1in the 
anoni
al representation) to os
illatein syn
hrony with presentation of the a to-ken and the other hidden unit (HU2) to os-
illate in syn
hrony with the b token. The�rst hidden unit implements a 2-periodi
 os-
illator, whi
h slowly 
onverges to a �xedpoint in a
tivation spa
e. The se
ond hid-den unit implements a 2-periodi
 os
illa-tor, whi
h diverges from an unstable �xedpoint to a �xed 
y
le in a
tivation spa
e.The number of os
illations performed bythe �rst hidden unit e�e
tively determinesthe starting point and the stepsize for these
ond os
illation. The se
ond hidden unitapproa
hes a 
onstant threshold value (ana
tivation whi
h basi
ally marks the endof the string) from di�erent starting pointsand with di�erent stepsizes. Figure 2 showsa hidden a
tivation traje
tory and de
isionthresholds of the output units for a standardsolution in 
anoni
al form.4 AnalysisObservation of the hidden unit a
tivationsreveals the dynami
s of the network. During
ontinuous presentation of a single token,most 
hange o

urs in one hidden unit, and
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aFigure 2: A typi
al hidden a
tivation traje
-tory for pro
essing the string aaaaaabbbbbb(n = 6, starting point [0.5 0.5℄). The lineforms the output hyperplane. Note whenthe last b is presented the a
tivation ends upin the \predi
ting a" region of the de
isionthresholds (at 0.5 for the logisti
 fun
tion)implemented by the output units.the other remains largely ina
tive. Thus,we will analyse the network behaviour by
onsidering the simpli�ed 
ase of ea
h hid-den unit in isolation with only a bias anda selfweight. If we 
onsider this single unitunder 
onstant input, then we 
an subsumeany inputs under the bias term. However, itshould be noted that some 
ommuni
ationbetween the hidden units is ne
essary to setthe starting point, x0, for ea
h phase of pro-
essing the 
ontinuous stream of strings.4.1 Dynami
al BehaviourThere are four basi
 behaviours exhibitedby the single re
urrent unit (H�olldobler etal., 1997). We assume the logisti
 a
tiva-tion fun
tion resulting in the iterated map,f(x) = 1=(1 + e�wx�b) (selfweight w andbias b) whi
h has at most 3 �xed points(where f(x) = x). Let xi be the �xed pointwhi
h has the largest output gradient f 0(xi).1. The selfweight is positive.(a) If 0 < f 0(xi) < 1, there is one at-tra
tive �xed point to whi
h theunit output eventually 
onverges.(b) If f 0(xi) > 1, then two attra
torsand one repeller result. The out-
ome depends on the initial point,x0.2. The selfweight is negative.(a) If �1 < f 0(xi) < 0, there is oneattra
tive �xed point to whi
h theunit output 
onverges by dampedos
illations.

(b) If f 0(xi) < �1, then the a
tiva-tions 
onverge towards a �xed 2-periodi
 
y
le.The standard solution outlined earliermakes ex
lusive use of behaviour 2(a) inHU1 and behaviour 2(b) in HU2. Solu-tions exist using behaviours 1(a) and 1(b)(H�olldobler et al., 1997) but su
h networkshave not been observed to learn and su

ess-fully generalize as a result of training withBPTT. To illustrate the diÆ
ulties for thelearning algorithm we fo
us on behaviours2(a) and 2(b).To pro
ess longer strings, the networkmust �t as many os
illations as possibleinto the hidden unit spa
e before 
onverg-ing to an attra
tive point or 
y
le. Fig-ure 3 depi
ts the number of iterations, k, ofthe single hidden unit iterated map beforejfk�t(x) � fk(x)j < �; � = 0:001 for vary-ing bias and selfweight when x0 = 0:5. The�gure shows an ellipsoidal ridge where manyos
illations 
an be made before 
onvergen
e.Importantly, this ridge also forms a borderbetween behaviours 2(a) (outside) and 2(b)(inside) above. Crossing the border resultsin a bifur
ation in the dynami
s of the net-work and a radi
ally di�erent out
ome.
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Bias SelfweightFigure 3: Number of os
illations before 
on-vergen
e for a self-re
urrent single hiddenunit. The number of os
illations was 
ut o�at 50 for 
learer visualization. Behaviour2(a) is found outside the ridge, behaviour2(b) is found inside the ridge.In terms of the network's solution for anbnfor n � 12, HU1 (whi
h os
illates in syn-
hrony with a input) must be 
lose to thisridge and on the outside for a input, andfurther from it for b input. Conversely, HU2must be 
lose to the ridge and on the in-side for b input, and further from it for ainput. The external signals from the a andb inputs are able to fa
ilitate this 
hange in



os
illation performan
e by shifting the net-work along the bias axis.1 Due to the na-ture of the surfa
e in �gure 3 the transla-tion of the e�e
tive bias must be performedwith substantial pre
ision. The unit mustbe moved to a region 
loser to the borderto a
hieve the required os
illation perfor-man
e, but not so far as to send it over theborder whi
h would result in 
rossing the bi-fur
ation boundary of the unit's dynami
s.The situation is further 
ompli
ated whenwe 
onsider the re
urrent 
onne
tions be-tween the hidden units. These 
onne
tionsallow the network �ner grained 
ontrol overthe transition between the a and b phasesby setting the starting 
onditions for HU2.Figure 4 shows where the hidden units ofsu

essful networks fall in terms of the land-s
ape in �gure 3. The absolute weight val-ues have been modi�ed to in
orporate thein
uen
e of the 
orresponding input weightfor the two hidden units relative to the twoinput 
ases (a input for HU1, b for HU2).The weights for the �rst hidden unit arefound outside the bifur
ation border and theweights for the se
ond hidden unit are foundinside the border. The �gure is an idealiza-tion of the 
ondition where HU1 and HU2are independent and outliers in the �gureare weight sets that violate this assumption.5 The Error Surfa
e andLearningIt is 
lear that the representation requiressome degree of pre
ision, but what makeslearning so diÆ
ult and unstable?Weight 
hanges were tra
ed during learn-ing for a number of trials. Again the net-work was analysed by 
onsidering two sep-arate self re
urrent units, with their re-spe
tive biases a

ounting for the appro-priate input 
ondition. Typi
ally, the net-work weights evolve in three main phases.Initially, weights smoothly migrate towardsthe region of good os
illation performan
e.When the weights rea
h a region 
lose to thebifur
ation border, updates be
ome highlyirregular and weights tend to 
u
tuate. Fi-nally, at some point the weights are 
hangedto su
h a degree that the network moves outof the desirable regions. In all the stud-ied 
ases, large 
on
urrent 
hanges in thebias and the input weight 
aused the prob-lem. The selfweight appeared reasonablystable. The same behaviour was observedfor runs when the BPTT unfolding mem-ory was kept above 8. For networks trained1Re
all that under 
onstant input it is safe tosubsume the input values under the bias term.
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Figure 4: Plot of weights for the two hid-den units 
ombined with a 
ontour plot forthe os
illation performan
e. Weights for the�rst hidden unit are found outside the bi-fur
ation border. The weights for the se
-ond unit are found within. Weight valuesare 
al
ulated on the basis of networks in
anoni
al form: the selfweight for ea
h hid-den unit is un
hanged, the bias is the sum ofthe original bias plus the input weight fromthe a
tive unit (the a input for HU1, the binput for HU2).with more 
opies (up to 12) the networkmanaged to stay in the proximity of solu-tion spa
e longer. For networks trained withfewer 
opies, the se
ond phase showed more
onsistent weight 
hanges but found solu-tions less frequently.The error that the learning algorithmminimizes is based on the di�eren
e betweenthe presented strings and what is predi
tedby the network. Sin
e weights are updatedafter ea
h presented string and sin
e stringsof di�erent lengths impose di�erent require-ments on the weight sets, the error may
u
tuate as a result of presenting 
onse
u-tive strings of dramati
ally varying lengths.However, in a separate analysis the observedweight 
hanges did not 
orrelate with di�er-en
e in length for 
onse
utive strings.To investigate the nature of the error sur-fa
e, we 
onsidered the error gradient 
om-puted by BPTT for a family of weights. Tore
e
t the unstable region in weightspa
earound the solution, weights were takenfrom a su

essfully generalizing network.We then 
onsidered for ea
h hidden unit sep-arately, the error gradient for varying val-ues of selfweight and (e�e
tive) bias. To en-sure that any possible in
uen
e from stringlength did not a�e
t the result, the error was
al
ulated on the basis of the entire rangeof strings in the training set (n = 1::10). A
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ond hid-den bias in a su

essful network when theselfweight and bias of the se
ond hidden unitare varied. In the region of interest, the er-ror gradient is extremely unstable.representative sample of the gradients 
anbe seen in Figure 5. The gradients indi-
ate that the error surfa
e is littered withdeep narrow potholes (in terms of both mag-nitude and dire
tion) 
lose to the bifur
a-tion border. Thus, if the weight 
hanges areproportional to the magnitude of the gradi-ent (as in ba
kpropagation) extreme weight
hanges o

ur. We also noted by 
omput-ing gradients for di�erent sets of strings thatthe 
omplexity of the surfa
e is higher whenlonger strings are used. This di�eren
e maybe a result of the proximity of the solutionto the bifur
ation border.A more spe
i�
 reason for the instabil-ity 
an be found in the re
urrent weightfrom the �rst hidden unit to the se
ond.This 
onne
tion is largely responsible for thetransition between the a phase and the bphase. A 
orrelation analysis of the set ofsu

essful networks revealed a strong posi-tive relationship between the weight valuesfound on the 
onne
tion from the a inputunit to HU1 and on the 
onne
tion fromHU1 to HU2 and, negatively, from HU2 toHU1. By studies of weight 
hanges and ex-perimentation we found that by only slightly
hanging the weight from the �rst to the se
-ond hidden unit the starting 
onditions forthe se
ond os
illation were greatly a�e
ted.We tra
ed the e�e
t of learning signals on asu

essfully generalizing network in the pro-posed 
anoni
al form. The impa
t of thelearning signal a�e
ts mainly the stepsize,not the a
tual starting point for the se
ondos
illation. By only adjusting the weight onthe 
onne
tion from the �rst hidden unitto the se
ond the os
illation stepsize (notthe starting point) for the se
ond hidden

unit was a�e
ted. A positive 
hange ledto smaller os
illations for the odd-numberedstrings, and larger for the even-numbered.A negative 
hange led to the opposite. Theobservation is related to the 
orrelation wefound. In fa
t, by manually adjusting thesethree weights a

ording to their relationship(a positive a Input-HU1, requires a positiveHU1-HU2 weight and a negative HU2-HU1weight, and vi
e versa) the learning insta-bility was greatly redu
ed in a test network.6 Con
lusionsCompared to regular languages, 
ontext-freelanguages put radi
ally di�erent require-ments on re
urrent neural networks. It is nolonger suÆ
ient to support representationof a �nite set of states in whi
h all inputs
an be grouped. Instead me
hanisms forsupporting representation of in�nitely manystates are required. Classi
al systems andsome neural network systems resort to exter-nal 
ounters and sta
ks. This work investi-gates a learning approa
h whi
h requires nosu
h manually designed modules. Instead asimple re
urrent neural network establishesos
illating dynami
s whi
h have the poten-tial to represent and pro
ess in�nite states.By extensive experimentation we haveshown that, empiri
ally, all su

essfully gen-eralizing networks implement essentially thesame solution. Furthermore, we were ableto demonstrate that the diÆ
ulties expe-rien
ed by BPTT in �nding and keepingthis solution were largely 
onsistent a
ross awide variety of training 
onditions. We ob-served that performan
e deteriorated whenwe only unfolded the network for a few timesteps. Optimal performan
e was a
hievedwhen we unfolded the network for about asmany time steps as there were levels of em-bedding. It seems reasonable to believe thatBPTT 
an only �nd the os
illating solutionwhen the network is suÆ
iently unfolded.Thus, a simple re
urrent network as origi-nally employed by Elman (1990) should notbe 
apable of learning the os
illating solu-tion for predi
ting anbn without additional
onstraints.The os
illating dynami
s found by all gen-eralizing networks 
an only be found in 
er-tain weight regions. One way of understand-ing these weight regions has been to 
onsiderthe number of os
illations by the de
oupledre
urrent units before 
onvergen
e. For thelogisti
 fun
tion the map distinguishes be-tween 
onvergent and divergent os
illatorybehaviour by an in�nitely thin border. Thestandard solution requires that one hiddenunit employs 
onvergent behaviour and that



the other employs mat
hing divergent be-haviour. During learning the network dy-nami
s undergo a bifur
ation when the bor-der is 
rossed, making gradient-based learn-ing diÆ
ult. The network output be
omesradi
ally di�erent whi
h greatly a�e
ts theerror when weights 
ross the border. In ad-dition, we have shown that the error land-s
ape, whi
h 
ontrols the network weight
hanges, is extremely 
omplex (steep and ir-regular) 
lose to the bifur
ation border. Theos
illation map also demonstrates that thedesired dynami
s are only found 
lose to theborder.The problem with learning then, does notappear to be of �nding a better learningalgorithm that works in the same weightspa
e. Figure 5 highlights the 
omplexnature of the error surfa
e on whi
h, itwould appear, any gradient based methodseems likely to experien
e diÆ
ulty. A morepromising approa
h, and one whi
h we are
urrently investigating, is to 
onsider an al-ternative sear
h spa
e. This study providesthe basis for developing a learning s
hemewhi
h takes into a

ount the observed de-penden
ies between 
riti
al weights respon-sible for the unstable learning dynami
s.A
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