
Learning to predit a ontext-free language: Analysis of dynamisin reurrent hidden unitsMikael Bod�en�, Janet Wiles�y, Bradley Tonkes� and Alan Blair��Department of Computer Siene and Eletrial EngineeringyShool of PsyhologyUniversity of Queensland, 4072AustraliaAbstratReurrent neural network proessing of reg-ular languages is reasonably well under-stood. Reent work has examined theless familiar question of ontext-free lan-guages. Previous results regarding the lan-guage anbn suggest that while it is possi-ble for a small reurrent network to pro-ess ontext-free languages, learning themis diÆult. This paper onsiders the rea-sons underlying this diÆulty by onsider-ing the relationship between the dynamis ofthe network and weightspae. We are ableto show that the dynamis required for thesolution lie in a region of weightspae loseto a bifuration point where small hanges inweights may result in radially di�erent net-work behaviour. Furthermore, we show thatthe error gradient information in this regionis highly irregular. We onlude that anygradient-based learning method will experi-ene diÆulty in learning the language dueto the nature of the spae, and that a morepromising approah to improving learningperformane may be to make weight hangesin a non-independent manner.1 IntrodutionReurrent neural networks (RNN) an betrained to reognize regular languages fromexamples (Cleeremans et al., 1989; Elman,1990; Pollak, 1991; Giles et al., 1992).The operation of suh RNNs has ommonlybeen understood in terms of �nite-state au-tomata (FSA). States organize in ativationspae as distint lusters and weights estab-lish transformations between them reetingthe operation of the assoiated FSA (Casey,1996). It has been argued that this dis-retization is misleading and that the opera-tion of RNNs is better understood in termsof iterated funtion systems (Kolen, 1994)or, more generally, ontinuous dynamialsystems (Rodriguez et al., 1999).This work onsiders RNNs trained with

a ontext-free language (CFL). CFLs an-not be proessed with FSA and thus anysolution requires a di�erent understandingof RNN dynamis. The onventional ex-tension is a push-down automaton (PDA)whih adds a stak and a ounting meha-nism to the FSA. Previous work has demon-strated that an RNN, an be suessfullytrained on a simple CFL, without makinguse of an expliit ounter or stak. Instead,hidden units develop osillating dynamiswhih provide means for a potentially in-�nite number of states (Wiles and Elman,1995; Rodriguez et al., 1999; Tonkes andWiles, in press). However, learning does notalways result in a solution and when a solu-tion is found the network is prone to losingit with further training (Tonkes and Wiles,in press).This paper extends previous work by in-vestigating two partiular aspets of net-work performane in light of simulations us-ing the ontext-free language anbn:� What onstitutes the learned (or learn-able) solution? What are the on-straints, variations and limits of thenetwork learning?� Why is learning diÆult and unstable?2 ExperimentsAll networks onsisted of 2 input units (onefor eah token), 2 hidden units and 2 outputunits (one for eah token). The network wasfully onneted and the hidden units werereurrent, as shown in Figure 1.A variety of networks were trained usingbakpropagation through time (BPTT) onthe ontext-free language anbn, e.g. aaabbb,ab, aaaaaabbbbbb. The language was pre-sented as a ontinuous stream of strings withvarying lengths up to n = 10. The targetoutput was the next token in the string or,at the last token, the �rst token of the nextstring. Sine strings were presented in ran-dom order, this predition task (originally



A BHU1 HU2
Figure 1: The network used in all experi-ments. Eah token has its designated inputand output unit. The hidden units are re-urrent.used by Elman, 1990) is non-deterministi.However, the network an develop meh-anisms for deterministially prediting thenext token whenever the b token is pre-sented. The network weights were updatedafter eah ompletely presented string. Gen-eralization was tested up to n = 12. Gen-eralization requires that the network has es-tablished a means for ounting the numberof a's to predit the same number of b's. Thetwo tokens, a and b, were represented with[1 0℄ and [0 1℄ respetively.Eah network was unique and had eitherdi�erent initial weights or was on�guredwith di�erent learning parameters inludinglearning rate (�xed at 0.3 (FLR) or an adap-tive strategy (ALR) desribed by Lawreneet al., 1998), number of ativation opiessaved for BPTT (ranging from 5 to 12), tar-get odes (binary (BT): [1 0℄[0 1℄ or soft(ST): [0.9 0.1℄[0.1 0.9℄). These variations al-lowed us to study the impat of prior on-straints. The logisti output funtion wasused for all networks. No momentum wasused.The perentage of networks �nding a so-lution (orretly handling all strings up ton = 12) within the presentation of 20000strings was 60% for the optimal parametersettings and around 20% on average. Thesuess rate was onsiderably worse whenthe number of ativation opies for BPTTwas kept low (5 or below). The data dis-tribution was biased towards shorter stringswith the highest frequeny for n = 2. Somealternative learning and data presentationstrategies { a smaller learning rate for thehidden layer weights (SLRH), a presenta-tion sheme where longer strings were in-trodued after some learning period (StS),and a presentation sheme whih only on-tained strings with maximum length equalto the level of BPTT unfolding (ShS) were

Con�g.: BPTT unfolding:5 6 7 8 9 10 11 12BT/FLR 9 13 38 15 23 21 34 12ST/FLR 0 4 0 9 19 53 36 6BT/ALR 0 0 0 2 23 11 23 0ST/ALR 0 0 0 6 0 13 6 0SLRH 15StS 28ShS 0 6 28 60 43 21Table 1: Suess rates (perentage) for net-work learning with di�erent on�gurations.Eah on�guration was tested with a popu-lation of 47 networks.tested, but demonstrated no signi�ant per-formane advantage. Table 1 summarizesthe results.3 SolutionAbout 200 suessful weightsets (from dif-ferent networks) were saved for further anal-ysis. All suessfully generalizing networksmade use of osillating hidden units to keeptrak of the level of embedding. Clusteranalysis (in whih eah weight was om-pared to all other weights in the same po-sition) revealed eight major lusters. As itturned out, these lusters orresponded tothe eight symmetries of the dihedral groupating on weight-spae. Consequently, eahnetwork was transformed to a anonialform desribed below.The main solution, whih has been de-sribed in previous work by Wiles and El-man (1995), relies on one hidden unit (HU1in the anonial representation) to osillatein synhrony with presentation of the a to-ken and the other hidden unit (HU2) to os-illate in synhrony with the b token. The�rst hidden unit implements a 2-periodi os-illator, whih slowly onverges to a �xedpoint in ativation spae. The seond hid-den unit implements a 2-periodi osilla-tor, whih diverges from an unstable �xedpoint to a �xed yle in ativation spae.The number of osillations performed bythe �rst hidden unit e�etively determinesthe starting point and the stepsize for theseond osillation. The seond hidden unitapproahes a onstant threshold value (anativation whih basially marks the endof the string) from di�erent starting pointsand with di�erent stepsizes. Figure 2 showsa hidden ativation trajetory and deisionthresholds of the output units for a standardsolution in anonial form.4 AnalysisObservation of the hidden unit ativationsreveals the dynamis of the network. Duringontinuous presentation of a single token,most hange ours in one hidden unit, and
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aFigure 2: A typial hidden ativation traje-tory for proessing the string aaaaaabbbbbb(n = 6, starting point [0.5 0.5℄). The lineforms the output hyperplane. Note whenthe last b is presented the ativation ends upin the \prediting a" region of the deisionthresholds (at 0.5 for the logisti funtion)implemented by the output units.the other remains largely inative. Thus,we will analyse the network behaviour byonsidering the simpli�ed ase of eah hid-den unit in isolation with only a bias anda selfweight. If we onsider this single unitunder onstant input, then we an subsumeany inputs under the bias term. However, itshould be noted that some ommuniationbetween the hidden units is neessary to setthe starting point, x0, for eah phase of pro-essing the ontinuous stream of strings.4.1 Dynamial BehaviourThere are four basi behaviours exhibitedby the single reurrent unit (H�olldobler etal., 1997). We assume the logisti ativa-tion funtion resulting in the iterated map,f(x) = 1=(1 + e�wx�b) (selfweight w andbias b) whih has at most 3 �xed points(where f(x) = x). Let xi be the �xed pointwhih has the largest output gradient f 0(xi).1. The selfweight is positive.(a) If 0 < f 0(xi) < 1, there is one at-trative �xed point to whih theunit output eventually onverges.(b) If f 0(xi) > 1, then two attratorsand one repeller result. The out-ome depends on the initial point,x0.2. The selfweight is negative.(a) If �1 < f 0(xi) < 0, there is oneattrative �xed point to whih theunit output onverges by dampedosillations.

(b) If f 0(xi) < �1, then the ativa-tions onverge towards a �xed 2-periodi yle.The standard solution outlined earliermakes exlusive use of behaviour 2(a) inHU1 and behaviour 2(b) in HU2. Solu-tions exist using behaviours 1(a) and 1(b)(H�olldobler et al., 1997) but suh networkshave not been observed to learn and suess-fully generalize as a result of training withBPTT. To illustrate the diÆulties for thelearning algorithm we fous on behaviours2(a) and 2(b).To proess longer strings, the networkmust �t as many osillations as possibleinto the hidden unit spae before onverg-ing to an attrative point or yle. Fig-ure 3 depits the number of iterations, k, ofthe single hidden unit iterated map beforejfk�t(x) � fk(x)j < �; � = 0:001 for vary-ing bias and selfweight when x0 = 0:5. The�gure shows an ellipsoidal ridge where manyosillations an be made before onvergene.Importantly, this ridge also forms a borderbetween behaviours 2(a) (outside) and 2(b)(inside) above. Crossing the border resultsin a bifuration in the dynamis of the net-work and a radially di�erent outome.
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osillation performane by shifting the net-work along the bias axis.1 Due to the na-ture of the surfae in �gure 3 the transla-tion of the e�etive bias must be performedwith substantial preision. The unit mustbe moved to a region loser to the borderto ahieve the required osillation perfor-mane, but not so far as to send it over theborder whih would result in rossing the bi-furation boundary of the unit's dynamis.The situation is further ompliated whenwe onsider the reurrent onnetions be-tween the hidden units. These onnetionsallow the network �ner grained ontrol overthe transition between the a and b phasesby setting the starting onditions for HU2.Figure 4 shows where the hidden units ofsuessful networks fall in terms of the land-sape in �gure 3. The absolute weight val-ues have been modi�ed to inorporate theinuene of the orresponding input weightfor the two hidden units relative to the twoinput ases (a input for HU1, b for HU2).The weights for the �rst hidden unit arefound outside the bifuration border and theweights for the seond hidden unit are foundinside the border. The �gure is an idealiza-tion of the ondition where HU1 and HU2are independent and outliers in the �gureare weight sets that violate this assumption.5 The Error Surfae andLearningIt is lear that the representation requiressome degree of preision, but what makeslearning so diÆult and unstable?Weight hanges were traed during learn-ing for a number of trials. Again the net-work was analysed by onsidering two sep-arate self reurrent units, with their re-spetive biases aounting for the appro-priate input ondition. Typially, the net-work weights evolve in three main phases.Initially, weights smoothly migrate towardsthe region of good osillation performane.When the weights reah a region lose to thebifuration border, updates beome highlyirregular and weights tend to utuate. Fi-nally, at some point the weights are hangedto suh a degree that the network moves outof the desirable regions. In all the stud-ied ases, large onurrent hanges in thebias and the input weight aused the prob-lem. The selfweight appeared reasonablystable. The same behaviour was observedfor runs when the BPTT unfolding mem-ory was kept above 8. For networks trained1Reall that under onstant input it is safe tosubsume the input values under the bias term.
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Figure 4: Plot of weights for the two hid-den units ombined with a ontour plot forthe osillation performane. Weights for the�rst hidden unit are found outside the bi-furation border. The weights for the se-ond unit are found within. Weight valuesare alulated on the basis of networks inanonial form: the selfweight for eah hid-den unit is unhanged, the bias is the sum ofthe original bias plus the input weight fromthe ative unit (the a input for HU1, the binput for HU2).with more opies (up to 12) the networkmanaged to stay in the proximity of solu-tion spae longer. For networks trained withfewer opies, the seond phase showed moreonsistent weight hanges but found solu-tions less frequently.The error that the learning algorithmminimizes is based on the di�erene betweenthe presented strings and what is preditedby the network. Sine weights are updatedafter eah presented string and sine stringsof di�erent lengths impose di�erent require-ments on the weight sets, the error mayutuate as a result of presenting onseu-tive strings of dramatially varying lengths.However, in a separate analysis the observedweight hanges did not orrelate with di�er-ene in length for onseutive strings.To investigate the nature of the error sur-fae, we onsidered the error gradient om-puted by BPTT for a family of weights. Toreet the unstable region in weightspaearound the solution, weights were takenfrom a suessfully generalizing network.We then onsidered for eah hidden unit sep-arately, the error gradient for varying val-ues of selfweight and (e�etive) bias. To en-sure that any possible inuene from stringlength did not a�et the result, the error wasalulated on the basis of the entire rangeof strings in the training set (n = 1::10). A
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unit was a�eted. A positive hange ledto smaller osillations for the odd-numberedstrings, and larger for the even-numbered.A negative hange led to the opposite. Theobservation is related to the orrelation wefound. In fat, by manually adjusting thesethree weights aording to their relationship(a positive a Input-HU1, requires a positiveHU1-HU2 weight and a negative HU2-HU1weight, and vie versa) the learning insta-bility was greatly redued in a test network.6 ConlusionsCompared to regular languages, ontext-freelanguages put radially di�erent require-ments on reurrent neural networks. It is nolonger suÆient to support representationof a �nite set of states in whih all inputsan be grouped. Instead mehanisms forsupporting representation of in�nitely manystates are required. Classial systems andsome neural network systems resort to exter-nal ounters and staks. This work investi-gates a learning approah whih requires nosuh manually designed modules. Instead asimple reurrent neural network establishesosillating dynamis whih have the poten-tial to represent and proess in�nite states.By extensive experimentation we haveshown that, empirially, all suessfully gen-eralizing networks implement essentially thesame solution. Furthermore, we were ableto demonstrate that the diÆulties expe-riened by BPTT in �nding and keepingthis solution were largely onsistent aross awide variety of training onditions. We ob-served that performane deteriorated whenwe only unfolded the network for a few timesteps. Optimal performane was ahievedwhen we unfolded the network for about asmany time steps as there were levels of em-bedding. It seems reasonable to believe thatBPTT an only �nd the osillating solutionwhen the network is suÆiently unfolded.Thus, a simple reurrent network as origi-nally employed by Elman (1990) should notbe apable of learning the osillating solu-tion for prediting anbn without additionalonstraints.The osillating dynamis found by all gen-eralizing networks an only be found in er-tain weight regions. One way of understand-ing these weight regions has been to onsiderthe number of osillations by the deoupledreurrent units before onvergene. For thelogisti funtion the map distinguishes be-tween onvergent and divergent osillatorybehaviour by an in�nitely thin border. Thestandard solution requires that one hiddenunit employs onvergent behaviour and that



the other employs mathing divergent be-haviour. During learning the network dy-namis undergo a bifuration when the bor-der is rossed, making gradient-based learn-ing diÆult. The network output beomesradially di�erent whih greatly a�ets theerror when weights ross the border. In ad-dition, we have shown that the error land-sape, whih ontrols the network weighthanges, is extremely omplex (steep and ir-regular) lose to the bifuration border. Theosillation map also demonstrates that thedesired dynamis are only found lose to theborder.The problem with learning then, does notappear to be of �nding a better learningalgorithm that works in the same weightspae. Figure 5 highlights the omplexnature of the error surfae on whih, itwould appear, any gradient based methodseems likely to experiene diÆulty. A morepromising approah, and one whih we areurrently investigating, is to onsider an al-ternative searh spae. This study providesthe basis for developing a learning shemewhih takes into aount the observed de-pendenies between ritial weights respon-sible for the unstable learning dynamis.AknowledgmentsThis work was partly funded by an ARCgrant to Mikael Bod�en and Janet Wiles, aUQ Postdotoral Fellowship to Alan Blairand an APA to Bradley Tonkes.ReferenesCasey, M. (1996). The dynamis of disrete-time omputation, with appliation toreurrent neural networks and �nitestate mahine extration. Neural Com-putation, 8(6):1135{1178.Cleeremans, A., Servan-Shreiber, D. andMClelland, J. L. (1989). Finite stateautomata and simple reurrent neu-ral networks Neural Computation,1(3):372{381.Elman, J. L. (1990). Finding struture intime. Cognitive Siene, 14:179{211.Giles, C. L., Miller, C. B., Chen, D., Chen,H. H., Sun, G. Z. and Lee, Y. C.(1992). Learning and extrating �nitestate automata with seond-order re-urrent neural networks. Neural Com-putation, 4(3):380.H�olldobler, S., Kalinke, Y., and Lehmann,H. (1997). Designing a ounter: An-other ase study of dynamis and a-tivation landsapes in reurrent net-
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