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Abstract

A simulated hockey environment is introduced as a
test bed for studying adaptive behavior and evolution
of robot controllers. A near-frictionless playing surface
is employed, partially mimicking zero gravity condi-
tions. We show how a neural network using a simple
evolutionary algorithm can develop nimble strategies
for moving about the rink and scoring goals quickly
and e�ectively.

1. Introduction

In recent years, there has been growing interest in using
machine learning and evolutionary techniques for devel-
oping software controllers that play competitive or co-
operative games in some kind of physical environment, ei-
ther real or simulated. These have included: avoiding ob-
stacles (Xiao et al., 1997; Lee et al., 1996; Brooks, 1986),
foraging for \food" (Werger and Mataric, 1996), playing
pursuit/evasion games (Miller and Cli�, 1994), discrimi-
nating objects (Beer, 1996), �ghting for control of a cube
(Sims, 1995) and RoboCup soccer (Kitano et al., 1995).

Following in these traditions, we have developed a
simulated hockey game called Shock which is rather like
\table-top" or \air" hockey. One or more players engage
in games with the aim of shooting a puck into the op-
posing goal during an allocated time period. One player
may be controlled by a human user; all other players are
controlled by the simulation software.

Shock is similar in style to robot soccer simulators
(Kitano et al., 1995; Salustowicz et al., 1998) and has
much in common with (Balch, 1997), also being imple-
mented in Java. However, Shock di�ers from previous
systems in some signi�cant ways. The near-frictionless
environment in which Shock players operate provides
special challenges distinct from those of typical playing
surfaces, and the compactness of the rink distinguishes
it from games played on an open plane (Miller and Cli�,
1994; Funes et al., 1998). While most work in robotics

is concerned with collision avoidance, the Shock environ-
ment naturally gives rise to a strategy of collision man-

agement. Indeed, it is often advantageous to make strate-
gic use of collisions in order to arrive at a desired posi-
tion or orientation. The Shock players are rectangular in
shape a�ording development of strategies involving inter-
nal movement and co-ordination di�erent from those of
circular players. In addition, Shock players are equipped
with two-dimensional holonomic actuators which enable
them to move with more grace and dexterity than stan-
dard one-dimensional wheels would allow.
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We note that the near-frictionless Shock environment
mimics to some extent the conditions found in outer
space. Lately, hardware designs that will sustain a robot
operating in zero gravity have been investigated. The
Zero-G robot (Raibert et al., 1989) was designed to op-
erate in a weightless environment such as a space station,
and relies on a system of parallel rebound surfaces in or-
der to control its movement. In work at CMU, the Self
Mobile Space Manipulator (SM2) is being used to de-
velop basic locomotion and manipulation capabilities for
use on the international Space Station Freedom, with
the ultimate goal of assisting astronauts during extra-
vehicular activity and replacing astronauts in perform-
ing simple, dangerous or routine tasks (Nechyba and Xu,
1994).

2. The Simulated Hockey Domain

Shock is played in a rectangular rink, 1m wide by 1.5m
long, with a goal at each end 150mm wide (Figure 1).
Each player has a rectangular body 150mm by 50mm
and a mass of 500 grams. The puck is circular in shape
with a radius of 25mm and a mass of 100 grams.

Collisions between the players, puck and walls are
calculated by the \spring" method of collision handling
(Keller et al., 1993) and are totally elastic. This means
that each experiences a restoring force in the normal di-
rection, proportional to the depth of penetration. The



Figure 1 The Shock Rink.

puck collides frictionlessly with both players and walls,
and therefore never acquires any spin. Each player ex-
periences sliding friction when it collides with another
player or a wall (i.e. a force in the opposite direction to
the relative tangential motion and proportional to the
restoring force). The players and puck also experience a
frictional force as they slide on the rink that is propor-
tional to their velocity and in the opposite direction.

We imagine each player as having a skate at either end
of its body with which it can push on the rink in any di-
rection (Figure 2). Actuators allowing 2-dimensional op-
posing movement in this way are di�cult to implement
in real hardware, but for the purpose of simulation we
felt such a design might provide more interesting oppor-
tunities to study adaptive behavior.
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Figure 2 The Shock Player.

The output of the simulator's controller is in the form
(xL; yL; xR; yR) where (xL; yL) and (xR; yR) represent

the forces exerted at the left and right skate, respectively.
We impose a restriction on the magnitude of the applied
forces as follows:
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where Fmax = 0:2N. There is some redundancy in the
format of the output since each player really only has
three degrees of freedom available to it.

Each player is given complete information expressed
in global coordinates, in the spirit of robot soccer where
an overhead camera is often positioned above the playing
�eld. In future work, we plan to develop players who
instead receive their input from simulated local sensors.

The game initial condition (GIC) is a vector speci-
fying a starting location and orientation for each player,
and a starting location for the puck. All values are chosen
at random, with the restriction that each player begins
somewhere in the third of the rink nearest its own goal
(see Figure 1). If only one player is present, the puck be-
gins somewhere in the remaining two thirds of the rink;
otherwise it begins somewhere in the middle third.

The simulation is updated in time intervals of 0.01
seconds, which runs in approximately real-time when
the graphics window is open. When the graphics are
switched o�, the simulation runs faster, completing a
game of 10 simulated seconds' duration in about half
a second. Graphics mode is provided for several reasons:
(1) to illustrate that the physics we are simulating ap-
pears natural, (2) to allow us to peek at the progress of
the evolving players and (3) to provide an interface for
the human player.

3. Network Architecture

Shock was designed so that players could be controlled
by an expert system, fuzzy controller or any other kind
of intelligent software. One of our objectives in building
the system was to create an environment that could be
used for comparing various machine learning techniques.
The present work focuses on the following architectures:

1. simple recurrent (Elman, 1990) neural networks with
4, 6 and 8 hidden units

2. feed-forward networks with 6 and 8 hidden units
3. linear controller

All these architectures use 12 inputs and 4 outputs. Two
of the inputs specify the location of the puck in a global
co-ordinate system for which the origin (0; 0) is at the
center of the rink and the width of the rink is exactly 2:0
units. Four additional inputs indicate the locations of the
player's left and right skate in the same co-ordinate sys-
tem. The other 6 inputs convey the observed velocity of
the puck and the left and right skate { i.e. the di�erence
between current position and previous position, divided
by the time interval.



The networks are fully connected and use a hyper-
bolic tangent function at the hidden layer. The four-
dimensional output z of the network is converted to an
applied force vector as follows:

(xL; yL; xR; yR) = Fmax tanh
�
jjzjj

� z

jjzjj
:

This preserves the direction of the output vector, alter-
ing only its magnitude, and also allows the network to
sometimes apply a very small force by choosing (xL; yL)
and (xR; yR) to be nearly opposites of each other.

4. Evolutionary Paradigm

One long-term aim is to co-evolve di�erent players to
play games with each other lasting one minute or more of
simulated time. However, before beginning multi-player
simulations, we need to determine an architecture and a
learning paradigm that will enable individual players to
develop the basic skills necessary for the task. We there-
fore begin by studying a single-player 10-second version
of Shock in which one player, beginning from a random
GIC, moves about the rink until either (a) the puck goes
into one of the goals or (b) the allotted time of 10 sec-
onds elapses. In each game, a score of +1 is awarded for
hitting the puck into the enemy goal, �1 for hitting it
into the friendly goal (i.e. the player's own goal) and 0
for failing to hit it into either goal. Note that, even with
no opponent, the need to avoid hitting the puck into the
friendly goal is an important part of the task, since it
prevents the player from winning by simply hitting the
puck around randomly until a goal is scored.

We use an evolutionary hill-climbing algorithm in
which a champ neural network plays two games with ran-
dom GIC's and is then challenged by a series of mutant

networks until one is found to do \better" (see below)
than the champ; the champ's weights are then adjusted
in the direction of the mutant:

1. mutant  champ + gaussian noise1

2. mutant plays 2 games with same GIC's as champ
3. if mutant does better than champ,

champ  0:9 � champ+ 0:1 �mutant

If 100 mutants fail to do better than the champ with
these GIC's, they are discarded and 2 new GIC's are gen-
erated. After the champ's weights have been adjusted,
two new GIC's are chosen for the new champ and the
process continues. The practice of making only a small
adjustment in the direction of the mutant was intro-
duced in previous work on backgammon (Pollack and
Blair, 1998) on the assumption that most of the strate-
gies of the (well-tested) champion would be preserved,
with only limited inuence from the mutant { since two
games are not enough to determine for sure whether the
mutant is really better, or just a lucky novice.

1 with standard deviation of 0:05 for each weight

A total of 8 preliminary runs were conducted in order
to re�ne various features of this algorithm. In the �rst
�ve preliminary runs, only one game was used to com-
pare the mutant and the champ, but the resulting players
tended to degrade in performance after initial improve-
ment { indicating that one game is not enough to make
a good comparison.

Exposing the player to a variety of initial conditions
is important for developing robust strategies (Tesauro,
1992). In the �rst two preliminary runs, the puck was
constrained to always start in the middle third of the
rink. The evolved players generally learned to hit the
puck near to the enemy goal, but then failed to move up
and hit the puck again { thus missing an opportunity
to score. In subsequent runs, the puck was allowed to
start anywhere in the upper two-thirds of the rink, which
seems to provide an advantage because it enables players
to learn the task \backwards from the end game" as is
common in reinforcement learning (Tesauro, 1992).

What does it mean to do \better" than the champ?
In theory, it should mean that the mutant is more likely
to score goals than the champ. However, in the early
stages of evolution the players are very unlikely to score
at all, so it may become necessary to jump start the
process. One way to do this is by introducing partial

credit adjustments in the �tness measure which reward
the player for moving closer to the puck, or for moving
the puck closer to the enemy goal and away from the
friendly goal. On the other hand, such adjustments run
the risk of introducing artifacts which may distract the
player from its main task (Angeline and Pollack, 1992).
For example, a player seeking partial credit might push
the puck close to the goal without bothering to score, or
it might hover close to the puck without touching it, for
fear of moving it in the wrong direction.

We attempt to balance these considerations by divid-
ing the evolution into two phases: Phase 1 is the partial
credit phase in which the mutant is considered to be bet-
ter than the champ in the following circumstances:

1. the mutant scores in enemy goal but not the champ
2. the champ scores in friendly goal but not the mutant
3. both score in enemy goal, but mutant does it faster
4. both score in friendly goal, but mutant does it slower
5. neither scores a goal, but mutant moves the puck to

a place where the distance ratio is smaller 2

6. neither player ever hits the puck, but mutant is closer
to puck at the end of the game than the champ was

In Phase 2, the �tness is evaluated purely on the basis
of goals scored. Several GIC's are tested until two are
found for which the champ scores either 0 or �1 (i.e.
fails to hit the puck into the enemy goal in the allotted

2 We de�ne the distance ratio to be d1=(d1 + d0) where
d1 and d0 are the distance from the puck to the enemy
goal and the friendly goal, respectively.
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Figure 3 Score out of 100 games every 5000th generation
for recurrent networks with 4, 6 and 8 hidden units and
feed-forward network with 8 hidden units, annealed at 20%.

time). Then the mutant is considered to be better if it
achieves a higher score than the champ for one of these
GIC's, and an equal or higher score than the champ for
the other GIC. Phase 2 was introduced because the eight
preliminary runs, which used only the Phase 1 scheme,
were found to produce inferior results.

5. Results

Following the 8 preliminary runs described in Section 4, a
further 9 experimental runs were conducted in order to
test the algorithm and compare di�erent architectures
and sizes for the neural network controller. Due to lim-
ited resources, each run was conducted once; ideally we
would have executed each run several times and averaged
the results.

In earlier work on phased learning (Pollack and Blair,
1998), we found that it is better to base the timing of
the transition or annealing from one phase to another on
internal diagnostics rather than at a pre-determined gen-
eration. To this end, we test our player every 5000 gener-
ations by having it play 100 games from di�erent GIC's
and using the total score for these games as a measure of
its performance. When the performance according to this
measure reaches some pre-determined annealing thresh-

old, we switch from Phase 1 to Phase 2. The choice of an
appropriate annealing threshold is a delicate and impor-
tant issue, particularly when di�erent architectures are
being compared. If the threshold is set too low, causing
the evolution to anneal prematurely, then the new evalu-
ation criteria may prove so di�cult that no mutant ever
prevails. If it is set too high, the threshold may never be

0 100 200 300 400 500 600
0

15

20

40

60

80

100

Generation (1000s)

%
 G

o
a

l 
S

c
o

re

linear        
feedforward(6)
feedforward(8)

Figure 4 Score out of 100 games every 5000th generation for
linear controller and feed-forward neural networks with 6 and
8 hidden units, annealed at 15%.

reached, denying us the potential bene�ts of subsequent
phases. A threshold chosen for one kind of architecture
may turn out to be inappropriate for another.

We initially chose 20% as our annealing threshold
because all three recurrent networks reached this level
within 100K (100,000) generations, after which their per-
formance (without annealing) started to level o�. With
annealing implemented, their performance rose steadily
to around 60% by generation 180K (Figure 3). On the
other hand, the linear controller and feed-forward neu-
ral networks failed to reach this 20% threshold within
200K generations, which initially led us to suspect that
these non-recurrent architectures might be inadequate
for the task. However, when these runs were contin-
ued, the 8-unit feed-forward network �nally reached the
20% level at generation 290K and, after annealing, its
performance increased to 70% by generation 360K. We
then repeated these runs with the annealing threshold
set to 15% instead of 20% and found (Figure 4) that
the 8-unit (respectively, 6-unit) network now annealed
at 110K (resp. 95K) and reached 80% performance by
180K (resp. 370K). The linear controller annealed at
110K but took around 450K generations to reach 50%
performance.

Figures 5 to 8 illustrate the steady advance in skill of
the evolving recurrent network with 4 hidden units. The
puck and player are shown in their initial con�guration
(solid) and at one-second intervals (outlined) while the
dotted lines trace their trajectories throughout the game.

At generation 10K (Figure 5) the player approaches
the puck but doesn't hit it. By generation 15K (not



Figure 5 10K player, open shot.

Figure 7 100K player, di�cult shot.

shown) it can generally hit the puck once, not neces-
sarily in the right direction. At generation 100K if the
player has a fairly open shot at the goal (Figure 6) it
hits the puck in the right direction and follows up in
case a second shot should be required. If the same (100K)
player is presented with a more challenging initial con-
dition (Figure 7) it is able to nudge the puck away from
the side wall, but upon hitting the back wall the puck

Figure 6 100K player, open shot.

Figure 8 300K player, di�cult shot.

fumbles from its grasp. By generation 300K the player
has gained enough dexterity to see this situation through
to a successful conclusion (Figure 8).

The other networks displayed similar kinds of behav-
ior, but each developed its own particular style. The
6-unit recurrent network tends to maintain a greater dis-
tance from the puck, bouncing it once or twice o� the
back wall before scoring. Sometimes, when dribbling the



puck along the back wall as in Figure 8, it will overshoot
the goal, but then chase the puck and start dribbling it
back in the other direction to take a second shot. The
8-unit feed-forward network tends to stay very close to
the puck, almost sliding it along the rink, and moves very
slowly when it gets near to the goal. The linear controller
hits the puck once, then backs up to the middle of the
rink before approaching the puck again to take a sec-
ond shot. It has di�culty scoring unless there is an open
shot at the goal. This, together with its slow learning
rate, suggest that a linear control mechanism may be
inadequate for the task.

In further work, we hope to gain a better understand-
ing of the relative strengths and weaknesses of the var-
ious types of networks, both on their own and against
opponents.

6. Conclusions and Further Work

We have developed a simulated hockey environment and
demonstrated how neural network controllers, learning
to play on their own by means of an evolutionary algo-
rithm, can develop reliable skills for scoring goals quickly
and e�ectively. Our ultimate \goal" is to build teams of
players for contests lasting a minute or more of simulated
time.

We are currently applying co-evolutionary methods
to this task, and also investigating on-line learning al-
gorithms, including supervised and reinforcement learn-
ing, which may reduce the amount of computation cur-
rently required. Co-evolution and interaction with other
players will undoubtedly bring a whole new set of com-
plexities and challenges to this task (Salustowicz et al.,
1998; Haynes et al., 1995). Nevertheless, given the nim-
ble strategies we have been able to develop in the single-
player scenario, it is not unreasonable to suppose that
equally subtle manoeuvres appropriate for interaction
with co-evolving opponents might be developed in the
multi-player case.

In parallel work, we are building a user interface for
an interactive version of Shock that will enable human
players to test their skill against our various computer
opponents. Check our web site for this coming attraction:

http://www.demo.cs.brandeis.edu
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