
An Abstract Deep Network

for Image Classification

Anthony Knittel and Alan D. Blair

University of New South Wales
{aek,blair}@cse.unsw.edu.au

Abstract. In order to allow more flexible and general learning, it is an
advantage for artificial systems to be able to discover re-usable features
that capture structure in the environment, known as Deep Learning.
Techniques have been shown based on convolutional neural networks
and stacked Restricted Boltzmann Machines, which are related to some
degree with neural processes. An alternative approach using abstract
representations, the ARCS Learning Classifier System, has been shown
to build feature hierarchies based on reinforcement, providing a different
perspective, however with limited classification performance compared
to Artificial Neural Network systems. An Abstract Deep Network is pre-
sented that is based on ARCS for building the feature network, and
introduces gradient descent to allow improved results on an image clas-
sification task. A number of implementations are examined, comparing
the use of back-propagation at various depths of the system. The ADN
system is able to produce classification error of 1.18% on the MNIST
dataset, comparable with the most established general learning systems
on this task. The system shows strong reliability in constructing features,
and the abstract representation provides a good platform for studying
further effects such as as top-down influences.

1 Introduction

Deep Learning has recently become a significant area of study in machine learn-
ing, particularly related to computer vision [1]. The main object of this approach
is the discovery of intermediate features that capture structure in the environ-
ment being observed. These features can be re-used and incorporated into other
features, and allow learning based on a deeper network structure than was possi-
ble with previous neural network approaches. Deep networks do not always pro-
vide better performance than shallow classification techniques, but their ability
to combine and re-use elements in a compositional hierarchy makes them well
suited to certain kinds of tasks, such as object and digit recognition, and gives
them a lot in common with various models of cognitive processing [2–4]. They
may also offer new insights into the functioning of certain learning mechanisms
within the cerebral cortex (although the relationship with cortical structures has
been called into question, and alternative models have been suggested [5]).

One of the established approaches is the use of stacked Restricted Boltzmann
Machines (RBM) [6], which are trained in an unsupervised manner before the

M. Thielscher and D. Zhang (Eds.): AI 2012, LNCS 7691, pp. 156–169, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Abstract Deep Network for Image Classification 157

task-specific training is applied. This allows the system to capture features of
the observed environment, and is an important design philosophy as it forces the
system to capture structure, rather than just finding the minimal set of features
relevant for classification.

One limitation of traditional Artificial Neural Networks (ANN), particularly
those with increasing depth, is they can become stuck in local minima, where
training ceases to improve performance even though better solutions are avail-
able [7]. Neural networks can give very precise solutions, however this depends
on the network being initialised in a suitable area of the search space. RBM tech-
niques address this problem, using unsupervised learning to initialise the net-
work according to significant features of the environment, followed by a method
to fine-tune performance according to the task, which can be done using back-
propagation [6]. This allows initialisation of a deep network that is not likely to
give adequate behaviour from random initialisation of weights. However, RBM
networks have shown limitations in terms of reliability [8, 9], and a number of
attempts have been made to improve discovery of features.

Evolutionary Computation provides an alternative approach to machine learn-
ing, usually based on genetic algorithms and reinforcement techniques. Evolu-
tionary systems tend to be very reliable at finding a good solution, however the
use of random variation, rather than gradient descent used in ANNs, often does
not provide the same precision found with neural networks or kernel methods.

Learning Classifier Systems (LCS) are an evolutionary technique that com-
bine evolutionary processes with reinforcement learning, to maintain a popula-
tion of classifiers that collectively model the observed system [10]. The Genetic
Algorithm used by many LCS approaches follows an evolutionary analogy, how-
ever the process of capturing a population of rules based on reinforcement can
be viewed as an analogy of cognitive learning processes, with a greater degree
of generalisation than Reinforcement Learning. The Activation-Reinforcement
Classifier System (ARCS) [11] is a recent LCS approach that bases the design
on abstract cognitive features, such as reinforcement of memory traces through
use, as seen in cognitive models such as ACT-R [12]. This process is used as
a basis for maintaining the rule and feature population. An implementation of
this system [13] provides a method for building a feature hierarchy of re-used el-
ements, rather than using a population of discrete rules with redundant building
blocks typical of Genetic Algorithm systems. In this feature hierarchy elements
are constructed from combinations of other features, producing a deep network
related to that found in Deep Learning neural networks.

ARCS has shown reliability in constructing a feature hierarchy on the MNIST
visual classification task [13], however the performance level reached is far outside
that found by neural networks (10% vs 1% error). Another LCS technique based
on Haar-like features has shown better performance, reaching 4% error with the
aid of confusion matrices [14], however this is based on pre-defined features and
does not build a deep feature hierarchy, and again is well outside the performance
level seen by the best neural network and kernel systems.

158 A. Knittel and A.D. Blair

The principles used for building a feature hierarchy in ARCS are very dif-
ferent to that used in RBM and convolutional neural network systems. ARCS
uses an abstract representation, borrowing principles from behavioural psychol-
ogy which deals with abstract cognitive phenomena. In contrast neural networks
relate to localized phenomena such as the interconnection and behaviour of neu-
rons, identified from studies in neuroscience [15]. Providing a different angle on
a common problem can be useful for giving a broader perspective. The broader
aim of studying the development of a feature hierarchy based on abstract repre-
sentations, is to use the model to incorporate other important effects in visual
perception, such as the role of context in the activation process and related top-
down influences. As an example the model by Bar [16, 17] describes a process
where the general context of the scene is interpreted first, largely from low spatial
frequency information, and this provides a top-down influence on the activation
of lower level features that capture details. The use of a more abstract model,
which employs a hierarchical part-based representation built in a self-organising
manner, gives a good platform for introducing and studying these kinds of effects.

Hinton’s model [18] uses unsupervised learning to build the feature network,
followed by a fine tuning process to improve classification. ARCS uses a different
approach and builds a feature network based on random creation from observa-
tions, modified according to reinforcement and selection. This may also benefit
from a related fine tuning approach to improve performance. With certain mod-
ifications it is possible to introduce back-propagation into the feature network
constructed by ARCS, allowing an alternative and reliable manner for construct-
ing features, along with a gradient descent technique to improve performance.

2 Connecting the Reinforcement-Based Feature Network
with Gradient Descent

The features used in ARCS are abstract and do not have a direct relationship
with individual neurons, but rather represent features that may be captured by
a group of neurons or connection weights. The feature network used in ARCS
consists of a population of low level atomic features, which can be directly com-
pared with observations, and a network of composite features, that represent
common combinations of smaller features. This produces a network of features
of increasing field size, each constructed from lower level elements, producing a
network related to that in models of the human visual system [3].

Atomic features are represented using a sum of weighted values, created to
respond to a section of an observation. Composite features are constructed from
approximately 2-8 other features, which may include other composites, and vec-
tors representing the relative positions of the features. When an observation is
made, each atomic fragment is tested at each position, producing a map of match
values, and each composite is tested according to the match values of each child
at their respective positions, producing a match map. Activation values are sim-
plified as binary values according to a threshold, and a composite is activated
at a given position if each child is also active.

An Abstract Deep Network for Image Classification 159

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10 12

ADN Network Depth

Fig. 1. (L) Connections between atomic and composite fragments, and maps repre-
senting match positions of each relative to the observation. (R) Histogram of depth of
network produced with the ADN system (Top-BP).

A representation of the connections between fragments and respective match
maps used by ARCS is given in Fig. 1(L).

Learning Classifier Systems act by identifying the set of classifiers, or rules,
that match the current observation, and each classifier defines an action or clas-
sification, along with a value representing the accuracy or expected reward when
the classifier matches. In the ARCS system composite features are connected to
classifications, using a weight reflecting the probability P (class|feature). Note
that this description is a simplification of that used in [13]1. For each observa-
tion a set of active composite fragments is determined, which acts in a similar
manner to the set of active rules used in standard LCS systems. From this set
the classification is chosen according to the set of Q values captured in the
P (class|feature) weights. In exploration/exploitation paradigms this is chosen
probabilistically using the Boltzmann distribution eqi∑

j eqj
, however in a classifi-

cation task the maximum value can be used. According to the result the Q value
is updated for each class for each active composite feature.

Each fragment also maintains an accessibility value, reflecting scalar rein-
forcement through use, which is used to maintain the feature population. At
each time step a value of 1 is distributed amongst the fragments connected to
the composite with the highest association with the correct class. This value is
derived from models of reinforcement of memory traces such as ACT-R, using
a decay function ft = α(ft−1 + r), and provides a ranking amongst features
in the population according to the frequency that the feature is significant for
classification. This has been modified to use an average function so there is less
variation over time for each, while providing ranking amongst the population:
ft = ft−1 + α(r − ft−1).

1 The previous implementation uses a separate population of rule features to connect
composites to classifications, which has the advantage of allowing further sparseness
as not all connections between composites and classes are represented, but requires
maintenance of another population. This has been removed to reduce complexity,
and shows the same performance.

160 A. Knittel and A.D. Blair

Performance of the feature-based ARCS system reaches approximately 10%
error on MNIST [13]. This shows an ability to construct a feature hierarchy using
reinforcement methods, and runs with stability and reliability, however classifi-
cation performance is limited compared to neural network or kernel methods.

2.1 Combining the Feature Network with Neural Network
Techniques

While ARCS is able to find a rough solution reliably, back-propagation has
many advantages in finding a more precise solution, and can be introduced with
appropriate modifications.

ARCS chooses a classification according to the feature with the highest asso-
ciation probability with a class. The classification decision is based on individual
features rather than combinations, although combinations can be constructed as
new features. One limitation of this approach is that features represent combined
positive activation of child elements, and negative weights are not used. Intro-
ducing negative weights does not fit the design of the creation process well, as
currently new features are constructed from the set of features currently active,
emphasising relevance between the features, whereas negative weights would be
randomly sampled from the set of all features currently inactive. Introducing
this did not improve performance.

The classification step can be modified such that the relationship between
composite features and classes acts as a Multi-layered Perceptron (MLP) [15],
based on a weighted sum and activation function, modified through back-
propagation, along with bias values. These weights replace the P (class|feature)
values in the previous design. Given a set of activation values of composite frag-
ments, activation of each class can be determined, and modified according to
back-propagation. This only acts on the connections between composites and
classes at this stage, not on connections between composites. As the compos-
ite network is dynamic, and connections exist between many composites and
classification nodes, the network does not have a clear layered structure, but
rather contains random or fully connected links between composite fragments at
different depths and the classification nodes. This is shown in Fig. 1. The back-
propagation method is given in the following equations [15], using a learning rate
of 0.01 and no momentum:

δk = Ok(1 −Ok)(Ok − tk) (1)

Δw(j,k) = −ηδkOj (2)

Δθk = −ηδk (3)

δj = Oj(1−Oj)
∑

k∈K

δkw(j,k) (4)

where Ox is the activation value, tx the classification target, w(x,y) the weight,
θx the bias and k ∈ K the set of parents of j.

An Abstract Deep Network for Image Classification 161

It would be more consistent with the Deep Belief Network model [18] to
perform the feature discovery process first and run fine tuning such as back-
propagation afterwards, however in ARCS the links between features and clas-
sifications use a method based on argmax, rather than summation and sigmoid
activation function common in back-propagation systems. As such it is more
suitable to change to a system based on summed activation, during the feature
discovery process as well as during fine tuning. This requires a modification to
the reinforcement method used to maintain the feature population. The impor-
tant principle followed is allocation of a fixed resource at each time step, which is
allocated to features significant to the decision made. This process has shown to
be effective in balancing general and specialised rules [11], and ensuring coverage
of observations. Instead of reinforcing the feature with highest Q value, the rein-
forcement is distributed amongst those (top-level) features that are significant in
activation of the correct class, as given in Equation 6. As such the reinforcement
of the feature population is integrated with the back-propagation process and
both are active at the same time, rather than as two separate phases.

rj = e
∑

k∈K w(j,k)xk (5)

fj = fj + α(R
rj∑
i∈I ri

− fj) (6)

where xk is 1 for the correct class and -1 for incorrect, R is the reinforcement to
be distributed (value 1), and fj is the accessibility reinforcement for the feature.

To distinguish this design from the Learning Classifier System approach, this
system is referred to as an Abstract Deep Network. In summary the first im-
plementation of this system, referred to as Top-BP, uses random creation of
atomic and composite fragments, and atom fragments use a weighted product-
sum method with sigmoid activation, and a threshold to give a binary activation
value, for each position. Composites are active at each position if all child ele-
ments are active at their respective positions. The classification layer is a fully
interlayer connected network between each composite and each classification
node, and back-propagation acts only on the classification layer connections.

2.2 Training and Evaluation on MNIST

The MNIST dataset of handwritten digits [19] is a standard test used by many
image classification techniques. The best performing systems are kernel methods
and convolutional neural networks using a range of pre-processing and specific
transformation techniques [19, 20], and the RBM based Deep Belief Network [18]
is one of the best generalised learning systems. A convolutional RBMmethod [21]
provides another approach that captures some of the advantages of both, using
unsupervised learning in a convolutional max-pooling based architecture.

Selective training regimes are sometimes used on MNIST, such as training
individual classes before introducing wider selections of the training set [18].

162 A. Knittel and A.D. Blair

Table 1. Summary of results for ARCS and ADN systems, and comparison with
existing systems

System Features Fine tuning Error

ARCS Convolved 10.0%
ADN Convolved Top BP 1.57%
ARCS Full size 12.5%
ADN Full size Network BP 2.72%
ADN Convolved Network BP 1.39%
ADN Convolved Atom BP 1.47%
ADN Convolved Top BP, Freeze 1.23%
ADN Convolved Atom BP, Freeze 1.18% *
ADN Convolved, 100 Atom BP, Freeze 1.78%

Ebadi 12 Haar features XCS 4.0%
Hinton 06 Full size RBM 1.25%
Ranzato 07 Convolved NN 0.64%
Lee 09 Convolved RBM 0.82%

To train ARCS and the ADN system a simpler process is used, for each training
step a random image is chosen from the MNIST training set (60,000 images).
After every 100,000 training steps an evaluation is performed using each of the
10,000 test images, with no adjustments to weights or the population.

Performance of ARCS and the Top-BP implementation of the Abstract Deep
Network are shown in Table 1. The use of back-propagation gives greatly im-
proved performance, reaching a level of 1.57% (vs 10%). Analysis of the network
topology shows the number of nodes at each depth, approximately half of the
5000 composite nodes are at depth 4 or below, while the network has a maximum
depth of 10. The higher depth does not seem necessary for this problem, however
analysing the connectivity of the network shows most nodes (4571) have only 2
child elements, and as such the network is very sparse, in a sense representing
a clustering representation. The distribution of nodes with 2 children is higher
than the creation distribution, indicating a self-organising preference for nodes
with limited connectivity.

3 Gradient Descent of the Feature Network

A further advantage may be found by allowing fine tuning to influence the
weights of the composite feature network, as well as the classification stage.
This however requires a continuous activation function for composite features
rather than the existing binary approach. A softer activation function may also
handle partial activations in noisy or occluded images in a more reliable way.

A continuous approximation of the AND function used by composites can
be found by using a weighted summation method with a sigmoid activation
function, and setting the bias such that the feature is ‘active’ only when each
child is also activated. Composite features are created from observations by
selecting a number of currently active features. New composites can be created

An Abstract Deep Network for Image Classification 163

using the continuous activation function by setting the bias of the new composite
as θ = −∑

i ai+ε, where ai is the current activation of each feature at the chosen
position, ε is a margin of tolerance, and it is assumed weights wi,j are initially
set to 1.

Using this method the network produced is similar to that of MLPs [15], and
the delta values from the classification layer may be passed down through the
network. There are however a number of considerations, a) the network is not
arranged in fixed layers, which complicates the process of passing delta values
through the network, b) the external (classification) layer is connected to nodes
at different depths, and c) each feature does not have a single activation value,
but rather maintains a map of activation values at various positions.

3.1 Full-Size Features

The evolutionary ARCS system and the Abstract Deep Network described ear-
lier use atomic features with a small receptive field, that are convolved on the
observation. In contrast Hinton’s RBM method [18] uses features that match
the full-size of the image, removing translation invariance but allowing position
specific information in the features. Full-size features, which respond to a single
position, require less complexity to implement as each feature has a single acti-
vation value rather than a map, simplifying the activation process as well as the
back-propagation procedure.

An implementation is described that is based on the ARCS system, but uses
full-size features, to allow the use of gradient descent with minimum complexity.
This is done by generating atomic features that have the same dimensions as the
input image, however are defined only in a small region, using the same method
used to define the smaller size features. Potential advantages of full-size features
are position specificity and reduced processing, however disadvantages are lack
of translational invariance, such that a given feature must be identified in each
position it is to be used.

The gradient descent algorithm is slightly different to the standard approach
used in MLPs, as the network is not defined in fixed layers, and connections
between active fragments and the classification layer occur at multiple depths.

The error signal produced from the classification nodes provides a delta value
for each top-level feature, as described in Equation 1, and using these values
gradient descent can be applied to lower features with a variation of the standard
approach. Firstly, from the set of active top-level fragments and all associated
child elements, an ordering is constructed such that each child fragment occurs
after its parent. Examining each fragment (k) in turn , for each child (j) the
respective delta value is adjusted according to Equation 7 below, and the weight
of the connection with the parent and bias are modified according to the previous
Equations 2 and 3, updating the weights and biases in the feature network.

Δδj = Oj(1 −Oj)δkw(j,k) (7)

164 A. Knittel and A.D. Blair

3.2 Behaviour with Continuous Feature Activation and Gradient
Descent

Behaviour was tested for a number of methods, using full-size features with
ARCS, using the continuous-valued feature activation method with full-size fea-
tures, and using back-propagation, referred to as Network-BP (full-size). Results
are given in Table 1. Full-size features show a slightly worse result than convolved
features with ARCS of 12.5%, while full-size features using the continuous-
valued activation method alone is significantly poorer at 17% error. When back-
propagation is used along with continuous-value activation, passing gradient
descent adjustments through the weights of the feature network, performance
is improved to 2.72%, significantly better than the full-size feature approaches
without gradient descent, however with higher error than the convolved system
with back-propagation of the top layer.

The continuous activation function operates slightly differently to the AND
function previously used by ARCS, and on its own does not support the ac-
tivation process as effectively, however allows effective learning with gradient
descent. Full-size features are not shown to perform as well as convolved fea-
tures in this domain, however are useful for comparison as they have reduced
design complexity and require less processing time.

3.3 Gradient Descent with Convolved Features

Full-size features reduce complexity and processing, however there are concep-
tual and practical advantages with the convolved method, as individual features
can be matched in multiple positions, providing translational invariance. Convo-
lutional methods are also able to scale to larger and more realistic image sizes,
and have been shown to be a successful approach [21].

In the convolved system, each feature has a range of activation values ac-
cording to match positions, however classification nodes are activated from a
single value for each connected feature. As such the classification step acts as a
bag-of-words model according to the top-most features, while the composition
network acts as a part-based model [22]. Back-propagation from classification
provides a well defined delta value for each top-level feature, however handling
back-propagation through the network must handle a distribution of values for
each feature for various match positions.

The activation value of each top-level composite is given by the max value
over its match positions, and refers to a single location. Back-propagation can
be performed according to the value at this position, and applied to the match
position of each child that contributes to this value.

Passing delta values through the network without clearly defined layers, when
updates are applied sparsely, would require a complex procedure to combine
delta updates according to different match positions of each feature, while at
the same time identifying dependencies between nodes to ensure all parents of
a given node are updated before its children. For simplification update values
can be applied in a distributed manner, at the cost of multiple passes through

An Abstract Deep Network for Image Classification 165

the network. A distributed approach allows delta updates to refer to different
positions of a given node in different passes, as required when receiving back-
propagation signals from a number of parent features, which may each relate to
different match positions.

The distributed update procedure acts using the delta value of each active top-
level fragment, given in Equation 4. The activation value for the fragment is given
by its match position with the highest value. For each fragment a distributed
top-down pass is run on each child, setting the delta to be used for each child,
and subsequently updating the weight to the child, according to Equation 8. The
operation recurses to each child, using the activation value at the appropriate
position for the child relative to the chosen position in the top level fragment.
The weights between composite fragments and between atomic fragments and
composites are updated in this manner using a depth-first process.

δj = Oj(1−Oj)w(j,k)δk (8)

note that the δj value update is not added, but is set once and proceeds in
a depth-first pass, with the weight and bias values updated in each pass. In
contrast the full-size feature method is breadth-first.

Implementing convolved features with back-propagation (Network-BP) gives
improvement over the system based on full-size features, and is comparable to
the Top-BP system based on gradient descent of only the top layer, reaching
an error rate of 1.39%. Advantages over the Top-BP method are minor in this
domain, however it also allows greater flexibility of learning the structure of the
feature network.

3.4 Adjustment of Atomic Fragments

Atomic features are created from an observation and remain fixed. Passing the
BP updates to the atomic fragments allows them to be modified to better suit
the observations matched by the feature, and greater sensitivity. The BP pro-
cess described previously passes a delta value to each atomic fragment, which
can be used to alter the feature. The top-down operation also passes position
information about where the feature matches the observation. Adjustment to
the feature is performed according to: ΔF(x,y) = −ηδjI(x′,y′), where F(x,y) is the
weight value of the feature at a given position, and I(x′,y′) is the respective ob-
served value. Behaviour (Atom-BP shown in Table 1) shows similar performance
on MNIST as with the Network-BP and Top-BP methods of 1.47%, and offers
further flexibility with adjusting the feature network to fit observations.

3.5 Fine Tuning

Each of the described approaches act in an online manner, continuously updating
the feature population and the weights between features with each new training
example. More detailed fine tuning can be performed by freezing the feature
population, and allowing the back-propagation to continue independently. This

166 A. Knittel and A.D. Blair

was carried out by running the online system for 106 examples, before halting
population updates and continuing training of the network weights.

Operation using this approach shows less variation in the result, and gives an
improved classification level of 2.26% (vs 2.72%) for full-size features, of 1.23%
for convolved features (Top-BP), and 1.18% (vs 1.49%) for convolved features
(Atom-BP), taken as the average over four runs. This result shows classification
performance equivalent to that shown by the Deep Belief Network used in [18].

3.6 Reduced Feature Set

In the previously described runs, 1000 atomic fragments and 5000 composites
have been used. In order to test the influence of a reduced feature set, a popu-
lation of 100 atoms is used, as shown in Table 1. The full-size system showed a
significantly increased error level of 13.53% (from 2.26%), while with convolved
features it is able to maintain a level of 1.78% (compared to 1.18% with 1000
atoms). For the convolved system, using a reduced population gives a good com-
promise, maintaining good performance while reducing processing time.

Fig. 2. Example of atomic features produced in the Atom-BP Abstract Deep Network

4 Discussion and Conclusions

We have described the use of an Abstract Deep Network, that builds a feature
network using reinforcement related to Evolutionary Computing, along with a
fine tuning step similar to that used by MLPs. This has been applied to the
MNIST dataset without pre-processing, and only using spatial assumptions, us-
ing vectors to describe relationships between features. In general the system has
shown strong reliability, producing similar behaviour with each run and robust-
ness to parameter value changes.

An Abstract Deep Network for Image Classification 167

The feature network is self-organising rather than pre-defined. A hierarchical
feature network with a depth of 11 was able to be maintained and used for clas-
sification, the number of nodes at each depth is shown in Figure 1(R). The large
depth is due to the sparseness of the network, with approximately 2-6 child ele-
ments for each feature, dominated by 2-child connections, far fewer weights than
an equivalent fully connected network. Gradient descent updates were passed
through this network to perform fine tuning.

Classification performance is comparable with existing deep learning tech-
niques [18], giving an equivalent classification error rate of 1.18% compared to
1.25%. A careful training routine is not needed, training is performed simply by
selecting random examples from the training set, and is able to act in a contin-
uous online manner, without separate feature training and fine-tuning regimes,
although a slight improvement to results was produced after freezing the feature
population. Specialised approaches have shown lower error rates on MNIST, such
as using specific convolutional neural nets [19, 20], although the ADN system is
arguably a more general machine learning approach. Convolutional DBNs [21]
capture some advantages of both, allowing scalability, accuracy and unsupervised
learning, however our approach provides a different design angle, with likely ad-
vantages in terms of reliability, and the abstract nature allows more flexibility
to capture more complex processes seen in visual perception.

One of the important principles of Deep Learning methods is the use of unsu-
pervised learning [1, 2], as this allows the structure of the observed environment
to be captured without training examples. The ADN does not directly follow this
approach, as the feature population is modified according to reinforcement. The
unsupervised aspect of this system occurs in feature generation, as new atomic
features are constructed statistically related to the presence of a feature in ob-
servations, and composites are created from features activated from observation.
As features are reinforced through use the population becomes biased towards
useful features however, diverging from unsupervised learning.

The Abstract Deep Network system produces a sparse neural network based
on features found from observations. The abstract representation enables func-
tions such as convolution to be introduced, which allows translation invariance,
and activation of a feature in multiple positions. The design also allows further
processes to be introduced such as top-down influences resulting from context,
which may be more easily incorporated than in systems based on RBMs or con-
volutional neural nets. In human visual processing, a number of influences can
be seen in behavioural and neuroscience studies that play an important role in
visual perception, and capturing these effects is important for artificial object
recognition and understanding visual cognition. The use of an Abstract Deep
Network allows these effects to be explored in a self-organising manner, and
provides more freedom to study the big picture of processes involved in visual
perception, and their benefits for artificial systems.

168 A. Knittel and A.D. Blair

References

1. Bengio, Y., Courville, A.C., Vincent, P.: Unsupervised feature learning and deep
learning: A review and new perspectives. CoRR abs/1206.5538 (2012)

2. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2,
1–127 (2009)

3. Rousselet, G.A., Thorpe, S.J., Fabre-Thorpe, M.: How parallel is visual processing
in the ventral pathway? Trends in Cognitive Sciences 8(8), 363–370 (2004)

4. Serre, T., Kreiman, G., Kouh, M., Cadieu, C., Knoblich, U., Poggio, T.: A quan-
titative theory of immediate visual recognition. In: Paul Cisek, T.D., Kalaska,
J.F. (eds.) Computational Neuroscience: Theoretical Insights into Brain Function.
Progress in Brain Research, vol. 165, pp. 33–56. Elsevier (2007)

5. Weng, J.: A 5-chunk developmental brain-mind network model for multiple events
in complex backgrounds. In: IJCNN, pp. 1–8 (July 2010)

6. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neu-
ral networks. Science 313(5786), 504–507 (2006)

7. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why
does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11, 625–
660 (2010)

8. Fischer, A., Igel, C.: Empirical Analysis of the Divergence of Gibbs Sampling Based
Learning Algorithms for Restricted Boltzmann Machines. In: Diamantaras, K.,
Duch, W., Iliadis, L.S. (eds.) ICANN 2010, Part III. LNCS, vol. 6354, pp. 208–
217. Springer, Heidelberg (2010)

9. Desjardins, G., Courville, A., Bengio, Y., Vincent, P., Delalleau, O.: Tempered
Markov Chain Monte Carlo for training of restricted Boltzmann machines. In:
Teh, Y.W., Titterington, M. (eds.) Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, Chia Laguna Resort, Sardinia,
Italy, May 13-15, pp. 145–152 (2010)

10. Urbanowicz, R.J., Moore, J.H.: Learning classifier systems: a complete introduc-
tion, review, and roadmap. J. Artif. Evol. App. 2009, 1:1–1:25 (2009)

11. Knittel, A.: An activation reinforcement based classifier system for balancing
generalisation and specialisation (ARCS). In: Proceedings of the 12th Annual
Conference on Genetic and Evolutionary Computation, pp. 1871–1878. ACM, New
York (2010)

12. Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An
integrated theory of the mind. Psychological Review 111(4), 1036–1060 (2004)

13. Knittel, A.: Learning feature hierarchies under reinforcement. In: IEEE Congress
on Evolutionary Computation (CEC). IEEE (2012)

14. Ebadi, T., Zhang, M., Browne, W.: XCS-based versus UCS-based feature pattern
classification system. In: Proceedings of the Fourteenth International Conference
on Genetic and Evolutionary Computation Conference, GECCO 2012, pp. 839–
846. ACM, New York (2012)

15. Haykin, S.: Neural networks and learning machines. Prentice Hall (2009)

16. Bar, M.: A cortical mechanism for triggering top-down facilitation in visual object
recognition. J. Cognitive Neuroscience 15(4), 600–609 (2003)

17. Bar, M.: Visual objects in context. Nature Reviews Neuroscience 5(8), 617–629
(2004)

18. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief
nets. Neural Comput. 18(7), 1527–1554 (2006)

An Abstract Deep Network for Image Classification 169

19. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

20. Ranzato, M., Huang, F.J., Boureau, Y.L., LeCun, Y.: Unsupervised learning of
invariant feature hierarchies with applications to object recognition. In: CVPR
2007, pp. 1–8 (June 2007)

21. Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks
for scalable unsupervised learning of hierarchical representations. In: ICML, pp.
609–616. ACM, New York (2009)

22. Grauman, K., Leibe, B.: Visual Object Recognition. Synthesis Lectures on Artifi-
cial Intelligence and Machine Learning. Morgan & Claypool Publishers (2011)

	An Abstract Deep Network for Image Classification

	Introduction
	Connecting the Reinforcement-Based Feature Network with Gradient Descent
	Combining the Feature Network with Neural Network Techniques
	Training and Evaluation on MNIST

	Gradient Descent of the Feature Network
	Full-Size Features
	Behaviour with Continuous Feature Activation and Gradient Descent
	Gradient Descent with Convolved Features
	Adjustment of Atomic Fragments
	Fine Tuning
	Reduced Feature Set

	Discussion and Conclusions
	References

