
Hill Climbing in ReurrentNeural Networks for Learningthe anbnn LanguageStephan ChalupMahine Learning Researh CentreShool of Computing Siene, FITQueensland University of TehnologyBrisbane, Australiahalup��t.qut.edu.auAlan D. Blair�Department of Computer Sieneand Eletrial EngineeringUniversity of QueenslandBrisbane, Australiablair�see.uq.edu.auAbstratA simple reurrent neural network is trained on aone-step look ahead predition task for symbol se-quenes of the ontext-sensitive anbnn language.Using an evolutionary hill limbing strategy forinremental learning the network learns to pre-dit sequenes of strings up to depth n = 12. Ex-periments and the algorithms used are desribed.The ativation of the hidden units of the trainednetwork is displayed in a 3-D graph and analysed.1 IntrodutionIt has been known for some time that reur-rent neural networks an be trained to reog-nise or predit formal languages. (Siegelmann& Sontag, 1992) showed that neural network-s are apable of universal omputation, andtherefore able in priniple to proess any re-ursive language (although, if we demand ro-bustness to noise, they are limited to the reg-ular languages, see Casey, 1996, Maass & Or-ponen, 1997). However, their ability to learnlanguage proessing tasks is still being ex-plored.�Current address: Department of Computer Si-ene, University of Melbourne, 3052 Australia

Several studies have demonstrated that �rstand seond order reurrent networks an betrained to indue simple regular languagesfrom examples (Pollak, 1991, Giles et al.,1992).Wiles and Elman (1995) showed how net-works an be trained by bakpropagation topredit the ontext-free language anbn. Oth-ers have proposed hand-rafted networks forthis task (Hoelldobler, 1997) or for reog-nising the anbn language and the ontext-sensitive language anbnn (Finn, 1998), andfor prediting other ontext-sensitive lan-guages (Steijvers & Gr�unwald, 1996) withoutaddressing learning issues.Later studies of learning have revealed thatbakpropagation tends to enounter instabil-ities when training on the anbn task (Ro-driguez et al., 1999) and that evolutionaryalgorithms may be able to avoid some ofthese instabilities (Tonkes et al., 1998). In thepresent work, we extend this evolutionary ap-proah to the task of prediting the languageanbnn.In setions 2 and 3 we desribe the neuralnetwork arhiteture and the basi evolution-ary hill limbing algorithm whih was used totrain the networks. The anbnn task and theinremental learning strategy for this task aretopi of setion 4 and 5. Experiments are de-sribed in setion 6 and an analysis of theresulting neural network is given in setion7. An algorithm whih generalises our exper-imental approah is proposed in setion 8 andsetion 9 onludes with some disussion andan outlook for future researh.2 Neural NetworkWe used a simple reurrent neural networkarhiteture (Elman, 1990) with three unitsin eah layer, as shown in Figure 1.The most ommon ativation funtion forneural networks is the sigmoid funtion. Thisfuntion was employed in experiments of(Wiles & Elman, 1995). In (Hoelldobler etal., 1997) the approximately linear part of the



sigmoid funtion was used to design a net-work for the anbn task. In our present worka hyperboli tangent funtion is used. It hasthe same shape as the standard sigmoid fun-tion but is translated so that it is rotationallysymmetri about the origin.
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Figure 1. Simple reurrent network with input u-nits I1-I3, hidden units H1-H3, state units S1-S3and output units O1-O3. Bended arrows are �xedone to one opy onnetions. Dashed arrows on-net the state layer to the hidden layer and oper-ate with a delay of one time step.3 Evolutionary Hill ClimbingBakpropagation is the most studied andused training algorithm for arti�ial neuralnetworks ever sine (Rumelhart et al., 1986).(Wiles & Elman, 1995) employed it for train-ing a simple reurrent network on the anbntask. Evolutionary hill limbing (see Table 1)is an alternative training algorithm.While bakpropagation is regarded as fasterand more sophistiated in general, hill limb-ing has some advantages, too. It an trainnetworks with non-di�erentiable ativationfuntions; it is easy to implement and it of-fers a high degree of exibility in the designof the training strategy. This exibility is dueto an error or �tness funtion whih may benon-di�erentiable.Hill limbing uses bath learning, i.e. the de-ision of a weight update is made at the end ofeah epoh on the basis of the training errorwhih is alulated over all patterns of thatepoh. This is in ontrast to on-line learningwhere weight updates an be made after eahsingle pattern throughout the epoh.

Evaluate network with initial weights Whamp=) errorhampWHILE((errorgoal � errorhamp) and(ounter � nEpohs))FOR all weights of the neural net�Wmutant  random number * stepsizeWmutant  Whamp + �Wmutantend FOREvaluate network given by Wmutant=) errormutantIF(errormutant < errorhamp)Whamp  Wmutanterrorhamp  errormutantend IFounter  ounter + 1end WHILEreturn errorhampTable 1. Evolutionary Hill ClimbingWe trained our networks using an evolution-ary hill limbing algorithm whose basi ver-sion is displayed in Table 1. We all theweight matrix Whamp =(wij) and the or-responding neural network the hampion. Aweight wij onnets unit j to unit i. In ourexperiment the initial weights were generat-ed from a N(0,0.05) normal distribution. Giv-en the hampion Whamp the hill limber en-deavours to �nd a \better" matrix by gener-ating a mutant matrix Wmutant  Whamp +�Wmutant and omparing the hampion andthe mutant by evaluating the orrespondingnetworks on the training set. The resulting t-wo error values (errorhamp and errormutant)an be ompared. The oeÆients of the ma-trix �Wmutant are randomly generated froma Cauhy distribution. The Cauhy distribu-tion has a similar shape to a normal distribu-tion but it has thiker tails whih sometimesis an advantage for hill limbing, see (Chalup& Maire, 1999).4 The anbnn TaskThe network is presented with a series ofstrings anbnn one after the other, for vary-



ing values of n. The task is to predit thenext symbol in the sequene as aurately aspossible. The symbols a, b and  are repre-sented by vetors (100), (010) and (001), re-spetively, for both the observed input andthe target output. The next symbol predit-ed by the network is a, b or  depending onwhih of the three outputs has highest ati-vation. Sine the value of n is not known bythe network at the start of a new string, itis impossible for it to predit when the �rstb will our. However, one it has \seen" the�rst b, it is required to predit n � 1 addi-tional b's, followed by n 's, followed by anindeterminate (but nonzero) number of a's(whih form the beginning of the subsequentstring).5 Inremental Learning StrategyThe standard de�nition of inremental learn-ing means that either the dataset or theneural network struture is inrementally en-larged (e.g. by insertion of additional hid-den units) during training. (Elman, 1993)used two versions of inremental learningwhih were entitled: inremental input andinremental memory. In the inremental in-put approah simple reurrent networks weretrained to learn grammars while the om-plexity of the sentenes in the training da-ta was gradually inreased. The training wasonduted in �ve stages, with eah stage us-ing a di�erent training set. In the inrementalmemory approah, the full data set was usedbut the time window of the simple reurrentnetwork was restrited in the beginning andenlarged during training.The present study used a form of stagedlearning whih is similar to the inrementalinput approah of (Elman, 1993). We gener-ated a sequene of ten training sets, eah ofthem orresponding to a stage of inreaseddiÆulty in the training. The training set ofstage d was the onatenation of d�1 stringsof the form anbnn, 2 � n � d. For example,the training set for stage 4 onsisted of thefollowing sequene of 27 symbols:

aabbaaabbbaaaabbbbThe training set of the next higher stage on-tained the same sequene of symbols but withthe string aaaaabbbbb onatenated atthe end.The error alulation took all symbols of thetraining sequene exept the �rst b of eahstring into onsideration (see setion 4).At eah training stage d the mean squared er-ror was separately alulated for the onate-nation of the �rst d�1 strings of the sequene(mseLow) and for the last string (mseHigh).The �tness of the network at the end of eahepoh ould then be alulated as a linearombination of both errors:�tness = �Low �mseLow + �High �mseHigh;with �Low; �High > 0. Similarly the aurayof orret predition was separately alulat-ed for the low and the high part of the string.After some preliminary tests, we used�Low = 1:0 and �High = 0:5 and deided onthe following aeptane rule for eah newmutation:Aept the new mutant if its �tness is higherthan that of the hamp and if its auray onthe low part of the string equals 1:0.An exeption was made at the beginning ofthe training; the data set of the �rst stageonsisted of strings for n = 2 and n = 3 andthe �tness was simply mseLow +mseHigh.6 ExperimentsIn preliminary experiments we followed thehill limbing strategy of (Tonkes et al., 1998)to train a simple reurrent network on theanbn task. We were able to obtain similar re-sults when using our implementation of thealgorithms.On the anbnn task a series of experimentswere onduted with di�erent initial weight-s, seeds and small modi�ations of the �t-ness funtion and the ativation funtions. Inthese preliminary tests, we found that most
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(b) side view () front viewFigure 2. Trajetory in the 3D hidden unit spae, inluding top view (a), side view (b) and front view ().of the networks got stuk in an early stage(below stage 6) of the inremental training.The training strategy seemed to be too rigidfor the appropriate attrators and repellersto develop.The algorithm was then relaxed using two d-i�erent methods whih both were suessfulin training the network up to depth 10 or12. First the hill limber was modi�ed to asimulated annealing algorithm with relative-ly high temperature. The bakward steps al-lowed a form of relaxed training. In the se-ond method we used the standard hill limberand when the training got stuk (in our ase

at stage 5) we replaed the original trainingset by a training set in whih the order ofthe patterns was slightly permuted, and re-trained the network on this new set. The hilllimber was able to reah stage 9 using thistraining set, after whih it got stuk again.We then returned to the original training set,and the network quikly trained up to level12. The outome of this training experimentis the network whih is analysed in the nextsetion. Finally in setion 8 a generalisationof the seond training strategy, the Data Jug-gling Algorithm is proposed.



7 AnalysisFigure 2 shows all the points visited, with-in the 3-dimensional hidden unit ativationspae of the network, as it proesses the se-ries of strings anbnn, for 2 � n � 12. A-tivations at whih the network predits ana, b or  are indiated by a `�', `+' or `.',respetively. The lines in the �gures indi-ate the path through the ativation spaeas the �nal string a12b1212 is proessed. Theway the task is aomplished an be under-stood by analogy with previously known so-lutions for the anbn predition task (Wiles &Elman 1995), whih involved a ombinationof an attrator and a repeller. The networkahieved the task by e�etively \ounting up"the number of a's as it onverged to the at-trator, and then \ounting down" the samenumber of b's as it diverged from the repeller.In the present ase, the network begins byounting up the number of a's as it onvergesto an attrator in the top right orner of thehidden unit spae (Figure 2(a)). Upon pre-sentation of the �rst b, the ativation shiftsto the left side of the spae (more learly vis-ible in Figure 2(b)), where it employs a two-pronged strategy of ounting down by diver-gene from a repeller in the H3 dimension,while simultaneously ounting up by onver-gene to an attrator in the H2 dimension.The former ensures that the �rst  is predit-ed orretly, while the latter prepares for the's to be ounted down by divergene from anew repeller (Figure 2()), ready to preditthe a at the beginning of the next string.8 Data Juggling AlgorithmThe idea of the Data Juggling Algorithmwhose pseudo ode is listed in Table 2 is touse the funtion 'juggle' to permute the or-der of the symbol strings in the training se-quene and to ontinue training on the modi-�ed training set. 'juggle' an be alled at anytime depending on some onditions, e.g. assoon as the hampion has reahed a new stageor after a �xed number (nEpohs) of itera-

tions (i.e. when the algorithm got stuk). Us-ing the Data Juggling Algorithm the networklearned further up to stage 15. The networkgeneralised to some of the permuted stringsperfetly and to most of the others with rea-sonably high auray.WHILE(depthstage � depthMAX)Evaluate hampFOR e = 1 to nEpohsGenerate mutantEvaluate mutantIF(mutant better than hamp)hamp  mutantIF(depthhamp > depthstage)depthstage  depthhampbreakend IFend IFend FORIF(juggling onditions)juggle(depthstage)end IFend WHILETable 2. Data Juggling Algorithm.9 ConlusionWe have shown that a neural network usinga simple evolutionary algorithm an learn topredit the language anbnn with a �xed or-der and an generalise to other orderings withgood auray.Within the Chomskyan framework, theontext-sensitive language anbnn is onsid-ered to be at a distintly higher level of om-plexity than the ontext-free language anbn.The fat that a neural network an learn topredit anbnn, using similar tehniques tothose employed for anbn, provides support tothe view that the language omplexity lass-es appropriate for dynamial systems may bedi�erent from those developed for symbol-i systems. Evolutionary tehniques seem tooverome some of the instability issues en-ountered with bakpropagation. In furtherwork we hope to ondut a more omprehen-
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