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tA simple re
urrent neural network is trained on aone-step look ahead predi
tion task for symbol se-quen
es of the 
ontext-sensitive anbn
n language.Using an evolutionary hill 
limbing strategy forin
remental learning the network learns to pre-di
t sequen
es of strings up to depth n = 12. Ex-periments and the algorithms used are des
ribed.The a
tivation of the hidden units of the trainednetwork is displayed in a 3-D graph and analysed.1 Introdu
tionIt has been known for some time that re
ur-rent neural networks 
an be trained to re
og-nise or predi
t formal languages. (Siegelmann& Sontag, 1992) showed that neural network-s are 
apable of universal 
omputation, andtherefore able in prin
iple to pro
ess any re-
ursive language (although, if we demand ro-bustness to noise, they are limited to the reg-ular languages, see Casey, 1996, Maass & Or-ponen, 1997). However, their ability to learnlanguage pro
essing tasks is still being ex-plored.�Current address: Department of Computer S
i-en
e, University of Melbourne, 3052 Australia

Several studies have demonstrated that �rstand se
ond order re
urrent networks 
an betrained to indu
e simple regular languagesfrom examples (Polla
k, 1991, Giles et al.,1992).Wiles and Elman (1995) showed how net-works 
an be trained by ba
kpropagation topredi
t the 
ontext-free language anbn. Oth-ers have proposed hand-
rafted networks forthis task (Hoelldobler, 1997) or for re
og-nising the anbn language and the 
ontext-sensitive language anbn
n (Finn, 1998), andfor predi
ting other 
ontext-sensitive lan-guages (Steijvers & Gr�unwald, 1996) withoutaddressing learning issues.Later studies of learning have revealed thatba
kpropagation tends to en
ounter instabil-ities when training on the anbn task (Ro-driguez et al., 1999) and that evolutionaryalgorithms may be able to avoid some ofthese instabilities (Tonkes et al., 1998). In thepresent work, we extend this evolutionary ap-proa
h to the task of predi
ting the languageanbn
n.In se
tions 2 and 3 we des
ribe the neuralnetwork ar
hite
ture and the basi
 evolution-ary hill 
limbing algorithm whi
h was used totrain the networks. The anbn
n task and thein
remental learning strategy for this task aretopi
 of se
tion 4 and 5. Experiments are de-s
ribed in se
tion 6 and an analysis of theresulting neural network is given in se
tion7. An algorithm whi
h generalises our exper-imental approa
h is proposed in se
tion 8 andse
tion 9 
on
ludes with some dis
ussion andan outlook for future resear
h.2 Neural NetworkWe used a simple re
urrent neural networkar
hite
ture (Elman, 1990) with three unitsin ea
h layer, as shown in Figure 1.The most 
ommon a
tivation fun
tion forneural networks is the sigmoid fun
tion. Thisfun
tion was employed in experiments of(Wiles & Elman, 1995). In (Hoelldobler etal., 1997) the approximately linear part of the



sigmoid fun
tion was used to design a net-work for the anbn task. In our present worka hyperboli
 tangent fun
tion is used. It hasthe same shape as the standard sigmoid fun
-tion but is translated so that it is rotationallysymmetri
 about the origin.
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Figure 1. Simple re
urrent network with input u-nits I1-I3, hidden units H1-H3, state units S1-S3and output units O1-O3. Bended arrows are �xedone to one 
opy 
onne
tions. Dashed arrows 
on-ne
t the state layer to the hidden layer and oper-ate with a delay of one time step.3 Evolutionary Hill ClimbingBa
kpropagation is the most studied andused training algorithm for arti�
ial neuralnetworks ever sin
e (Rumelhart et al., 1986).(Wiles & Elman, 1995) employed it for train-ing a simple re
urrent network on the anbntask. Evolutionary hill 
limbing (see Table 1)is an alternative training algorithm.While ba
kpropagation is regarded as fasterand more sophisti
ated in general, hill 
limb-ing has some advantages, too. It 
an trainnetworks with non-di�erentiable a
tivationfun
tions; it is easy to implement and it of-fers a high degree of 
exibility in the designof the training strategy. This 
exibility is dueto an error or �tness fun
tion whi
h may benon-di�erentiable.Hill 
limbing uses bat
h learning, i.e. the de-
ision of a weight update is made at the end ofea
h epo
h on the basis of the training errorwhi
h is 
al
ulated over all patterns of thatepo
h. This is in 
ontrast to on-line learningwhere weight updates 
an be made after ea
hsingle pattern throughout the epo
h.

Evaluate network with initial weights W
hamp=) error
hampWHILE((errorgoal � error
hamp) and(
ounter � nEpo
hs))FOR all weights of the neural net�Wmutant  random number * stepsizeWmutant  W
hamp + �Wmutantend FOREvaluate network given by Wmutant=) errormutantIF(errormutant < error
hamp)W
hamp  Wmutanterror
hamp  errormutantend IF
ounter  
ounter + 1end WHILEreturn error
hampTable 1. Evolutionary Hill ClimbingWe trained our networks using an evolution-ary hill 
limbing algorithm whose basi
 ver-sion is displayed in Table 1. We 
all theweight matrix W
hamp =(wij) and the 
or-responding neural network the 
hampion. Aweight wij 
onne
ts unit j to unit i. In ourexperiment the initial weights were generat-ed from a N(0,0.05) normal distribution. Giv-en the 
hampion W
hamp the hill 
limber en-deavours to �nd a \better" matrix by gener-ating a mutant matrix Wmutant  W
hamp +�Wmutant and 
omparing the 
hampion andthe mutant by evaluating the 
orrespondingnetworks on the training set. The resulting t-wo error values (error
hamp and errormutant)
an be 
ompared. The 
oeÆ
ients of the ma-trix �Wmutant are randomly generated froma Cau
hy distribution. The Cau
hy distribu-tion has a similar shape to a normal distribu-tion but it has thi
ker tails whi
h sometimesis an advantage for hill 
limbing, see (Chalup& Maire, 1999).4 The anbn
n TaskThe network is presented with a series ofstrings anbn
n one after the other, for vary-



ing values of n. The task is to predi
t thenext symbol in the sequen
e as a

urately aspossible. The symbols a, b and 
 are repre-sented by ve
tors (100), (010) and (001), re-spe
tively, for both the observed input andthe target output. The next symbol predi
t-ed by the network is a, b or 
 depending onwhi
h of the three outputs has highest a
ti-vation. Sin
e the value of n is not known bythe network at the start of a new string, itis impossible for it to predi
t when the �rstb will o

ur. However, on
e it has \seen" the�rst b, it is required to predi
t n � 1 addi-tional b's, followed by n 
's, followed by anindeterminate (but nonzero) number of a's(whi
h form the beginning of the subsequentstring).5 In
remental Learning StrategyThe standard de�nition of in
remental learn-ing means that either the dataset or theneural network stru
ture is in
rementally en-larged (e.g. by insertion of additional hid-den units) during training. (Elman, 1993)used two versions of in
remental learningwhi
h were entitled: in
remental input andin
remental memory. In the in
remental in-put approa
h simple re
urrent networks weretrained to learn grammars while the 
om-plexity of the senten
es in the training da-ta was gradually in
reased. The training was
ondu
ted in �ve stages, with ea
h stage us-ing a di�erent training set. In the in
rementalmemory approa
h, the full data set was usedbut the time window of the simple re
urrentnetwork was restri
ted in the beginning andenlarged during training.The present study used a form of stagedlearning whi
h is similar to the in
rementalinput approa
h of (Elman, 1993). We gener-ated a sequen
e of ten training sets, ea
h ofthem 
orresponding to a stage of in
reaseddiÆ
ulty in the training. The training set ofstage d was the 
on
atenation of d�1 stringsof the form anbn
n, 2 � n � d. For example,the training set for stage 4 
onsisted of thefollowing sequen
e of 27 symbols:

aabb

aaabbb


aaaabbbb



The training set of the next higher stage 
on-tained the same sequen
e of symbols but withthe string aaaaabbbbb




 
on
atenated atthe end.The error 
al
ulation took all symbols of thetraining sequen
e ex
ept the �rst b of ea
hstring into 
onsideration (see se
tion 4).At ea
h training stage d the mean squared er-ror was separately 
al
ulated for the 
on
ate-nation of the �rst d�1 strings of the sequen
e(mseLow) and for the last string (mseHigh).The �tness of the network at the end of ea
hepo
h 
ould then be 
al
ulated as a linear
ombination of both errors:�tness = �Low �mseLow + �High �mseHigh;with �Low; �High > 0. Similarly the a

ura
yof 
orre
t predi
tion was separately 
al
ulat-ed for the low and the high part of the string.After some preliminary tests, we used�Low = 1:0 and �High = 0:5 and de
ided onthe following a

eptan
e rule for ea
h newmutation:A

ept the new mutant if its �tness is higherthan that of the 
hamp and if its a

ura
y onthe low part of the string equals 1:0.An ex
eption was made at the beginning ofthe training; the data set of the �rst stage
onsisted of strings for n = 2 and n = 3 andthe �tness was simply mseLow +mseHigh.6 ExperimentsIn preliminary experiments we followed thehill 
limbing strategy of (Tonkes et al., 1998)to train a simple re
urrent network on theanbn task. We were able to obtain similar re-sults when using our implementation of thealgorithms.On the anbn
n task a series of experimentswere 
ondu
ted with di�erent initial weight-s, seeds and small modi�
ations of the �t-ness fun
tion and the a
tivation fun
tions. Inthese preliminary tests, we found that most
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(b) side view (
) front viewFigure 2. Traje
tory in the 3D hidden unit spa
e, in
luding top view (a), side view (b) and front view (
).of the networks got stu
k in an early stage(below stage 6) of the in
remental training.The training strategy seemed to be too rigidfor the appropriate attra
tors and repellersto develop.The algorithm was then relaxed using two d-i�erent methods whi
h both were su

essfulin training the network up to depth 10 or12. First the hill 
limber was modi�ed to asimulated annealing algorithm with relative-ly high temperature. The ba
kward steps al-lowed a form of relaxed training. In the se
-ond method we used the standard hill 
limberand when the training got stu
k (in our 
ase

at stage 5) we repla
ed the original trainingset by a training set in whi
h the order ofthe patterns was slightly permuted, and re-trained the network on this new set. The hill
limber was able to rea
h stage 9 using thistraining set, after whi
h it got stu
k again.We then returned to the original training set,and the network qui
kly trained up to level12. The out
ome of this training experimentis the network whi
h is analysed in the nextse
tion. Finally in se
tion 8 a generalisationof the se
ond training strategy, the Data Jug-gling Algorithm is proposed.



7 AnalysisFigure 2 shows all the points visited, with-in the 3-dimensional hidden unit a
tivationspa
e of the network, as it pro
esses the se-ries of strings anbn
n, for 2 � n � 12. A
-tivations at whi
h the network predi
ts ana, b or 
 are indi
ated by a `�', `+' or `.',respe
tively. The lines in the �gures indi-
ate the path through the a
tivation spa
eas the �nal string a12b12
12 is pro
essed. Theway the task is a

omplished 
an be under-stood by analogy with previously known so-lutions for the anbn predi
tion task (Wiles &Elman 1995), whi
h involved a 
ombinationof an attra
tor and a repeller. The networka
hieved the task by e�e
tively \
ounting up"the number of a's as it 
onverged to the at-tra
tor, and then \
ounting down" the samenumber of b's as it diverged from the repeller.In the present 
ase, the network begins by
ounting up the number of a's as it 
onvergesto an attra
tor in the top right 
orner of thehidden unit spa
e (Figure 2(a)). Upon pre-sentation of the �rst b, the a
tivation shiftsto the left side of the spa
e (more 
learly vis-ible in Figure 2(b)), where it employs a two-pronged strategy of 
ounting down by diver-gen
e from a repeller in the H3 dimension,while simultaneously 
ounting up by 
onver-gen
e to an attra
tor in the H2 dimension.The former ensures that the �rst 
 is predi
t-ed 
orre
tly, while the latter prepares for the
's to be 
ounted down by divergen
e from anew repeller (Figure 2(
)), ready to predi
tthe a at the beginning of the next string.8 Data Juggling AlgorithmThe idea of the Data Juggling Algorithmwhose pseudo 
ode is listed in Table 2 is touse the fun
tion 'juggle' to permute the or-der of the symbol strings in the training se-quen
e and to 
ontinue training on the modi-�ed training set. 'juggle' 
an be 
alled at anytime depending on some 
onditions, e.g. assoon as the 
hampion has rea
hed a new stageor after a �xed number (nEpo
hs) of itera-

tions (i.e. when the algorithm got stu
k). Us-ing the Data Juggling Algorithm the networklearned further up to stage 15. The networkgeneralised to some of the permuted stringsperfe
tly and to most of the others with rea-sonably high a

ura
y.WHILE(depthstage � depthMAX)Evaluate 
hampFOR 
e = 1 to nEpo
hsGenerate mutantEvaluate mutantIF(mutant better than 
hamp)
hamp  mutantIF(depth
hamp > depthstage)depthstage  depth
hampbreakend IFend IFend FORIF(juggling 
onditions)juggle(depthstage)end IFend WHILETable 2. Data Juggling Algorithm.9 Con
lusionWe have shown that a neural network usinga simple evolutionary algorithm 
an learn topredi
t the language anbn
n with a �xed or-der and 
an generalise to other orderings withgood a

ura
y.Within the Chomskyan framework, the
ontext-sensitive language anbn
n is 
onsid-ered to be at a distin
tly higher level of 
om-plexity than the 
ontext-free language anbn.The fa
t that a neural network 
an learn topredi
t anbn
n, using similar te
hniques tothose employed for anbn, provides support tothe view that the language 
omplexity 
lass-es appropriate for dynami
al systems may bedi�erent from those developed for symbol-i
 systems. Evolutionary te
hniques seem toover
ome some of the instability issues en-
ountered with ba
kpropagation. In furtherwork we hope to 
ondu
t a more 
omprehen-



sive set of experiments, and to 
he
k morethoroughly the generalisation abilities of thenetwork. It is hoped that this study may openthe door for appli
ation of neural networkte
hniques to a wider variety of languages.A
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