Hill Climbing in Recurrent
Neural Networks for Learning

the a"b"c" Language

Stephan Chalup
Machine Learning Research Centre
School of Computing Science, FIT
Queensland University of Technology
Brisbane, Australia
chalup @fit. qut.edu. au

Alan D. Blair*
Department of Computer Science
and Electrical Engineering
University of Queensland
Brisbane, Australia
blair@csee.uq.edu.au

Abstract

A simple recurrent neural network is trained on a
one-step look ahead prediction task for symbol se-
quences of the context-sensitive a™”b"c" language.
Using an evolutionary hill climbing strategy for
incremental learning the network learns to pre-
dict sequences of strings up to depth n = 12. Ex-
periments and the algorithms used are described.
The activation of the hidden units of the trained
network is displayed in a 3-D graph and analysed.

1 Introduction

It has been known for some time that recur-
rent neural networks can be trained to recog-
nise or predict formal languages. (Siegelmann
& Sontag, 1992) showed that neural network-
s are capable of universal computation, and
therefore able in principle to process any re-
cursive language (although, if we demand ro-
bustness to noise, they are limited to the reg-
ular languages, see Casey, 1996, Maass & Or-
ponen, 1997). However, their ability to learn
language processing tasks is still being ex-
plored.

*Current address: Department of Computer Sci-
ence, University of Melbourne, 3052 Australia

Several studies have demonstrated that first
and second order recurrent networks can be
trained to induce simple regular languages
from examples (Pollack, 1991, Giles et al.,
1992).

Wiles and Elman (1995) showed how net-
works can be trained by backpropagation to
predict the context-free language a™b". Oth-
ers have proposed hand-crafted networks for
this task (Hoelldobler, 1997) or for recog-
nising the a™b" language and the context-
sensitive language a™b"¢" (Finn, 1998), and
for predicting other context-sensitive lan-
guages (Steijvers & Griinwald, 1996) without
addressing learning issues.

Later studies of learning have revealed that
backpropagation tends to encounter instabil-
ities when training on the a"b" task (Ro-
driguez et al., 1999) and that evolutionary
algorithms may be able to avoid some of
these instabilities (Tonkes et al., 1998). In the
present work, we extend this evolutionary ap-
proach to the task of predicting the language
a™b" ",

In sections 2 and 3 we describe the neural
network architecture and the basic evolution-
ary hill climbing algorithm which was used to
train the networks. The a™b™c" task and the
incremental learning strategy for this task are
topic of section 4 and 5. Experiments are de-
scribed in section 6 and an analysis of the
resulting neural network is given in section
7. An algorithm which generalises our exper-
imental approach is proposed in section 8 and
section 9 concludes with some discussion and
an outlook for future research.

2 Neural Network

We used a simple recurrent neural network
architecture (Elman, 1990) with three units
in each layer, as shown in Figure 1.

The most common activation function for
neural networks is the sigmoid function. This
function was employed in experiments of
(Wiles & Elman, 1995). In (Hoelldobler et
al., 1997) the approximately linear part of the

sigmoid function was used to design a net-
work for the a™b™ task. In our present work
a hyperbolic tangent function is used. It has
the same shape as the standard sigmoid func-
tion but is translated so that it is rotationally
symmetric about the origin.

Figure 1. Simple recurrent network with input u-
nits [1-13, hidden units H1-H3, state units S1-S3
and output units O1-03. Bended arrows are fixed
one to one copy connections. Dashed arrows con-
nect the state layer to the hidden layer and oper-
ate with a delay of one time step.

3 Evolutionary Hill Climbing

Backpropagation is the most studied and
used training algorithm for artificial neural
networks ever since (Rumelhart et al., 1986).
(Wiles & Elman, 1995) employed it for train-
ing a simple recurrent network on the a"b"
task. Evolutionary hill climbing (see Table 1)
is an alternative training algorithm.

While backpropagation is regarded as faster
and more sophisticated in general, hill climb-
ing has some advantages, too. It can train
networks with non-differentiable activation
functions; it is easy to implement and it of-
fers a high degree of flexibility in the design
of the training strategy. This flexibility is due
to an error or fitness function which may be
non-differentiable.

Hill climbing uses batch learning, i.e. the de-
cision of a weight update is made at the end of
each epoch on the basis of the training error
which is calculated over all patterns of that
epoch. This is in contrast to on-line learning
where weight updates can be made after each
single pattern throughout the epoch.

Evaluate network with initial weights Wenamyp
= €erTrorchamp

WHILE((errorgoa < errorchamp) and
(counter < nEpochs))

FOR all weights of the neural net
AW utant < random number * stepsize
Wmutant — Wchamp + AVVmutant

end FOR

Evaluate network given by W,utant
= errormutant

IF(errormutant < €rrorchamp)
Wchamp — Wmutant
ErTor champ $— €rTOTmutant

end IF

counter < counter + 1
end WHILE

return errorchomp

Table 1. Evolutionary Hill Climbing

We trained our networks using an evolution-
ary hill climbing algorithm whose basic ver-
sion is displayed in Table 1. We call the
weight matrix Wepamp =(wij) and the cor-
responding neural network the champion. A
weight w;; connects unit j to unit i. In our
experiment the initial weights were generat-
ed from a N(0,0.05) normal distribution. Giv-
en the champion Wepamp the hill climber en-
deavours to find a “better” matrix by gener-
ating a mutant matrix Wyutant < Wehamp +
AWnutant and comparing the champion and
the mutant by evaluating the corresponding
networks on the training set. The resulting t-
wo error values (errorehamp and errorpyiant)
can be compared. The coefficients of the ma-
trix AWutant are randomly generated from
a Cauchy distribution. The Cauchy distribu-
tion has a similar shape to a normal distribu-
tion but it has thicker tails which sometimes
is an advantage for hill climbing, see (Chalup
& Maire, 1999).

4 The a"b"c" Task

The network is presented with a series of
strings a”b"c" one after the other, for vary-

ing values of n. The task is to predict the
next symbol in the sequence as accurately as
possible. The symbols a, b and ¢ are repre-
sented by vectors (100), (010) and (001), re-
spectively, for both the observed input and
the target output. The next symbol predict-
ed by the network is a, b or ¢ depending on
which of the three outputs has highest acti-
vation. Since the value of n is not known by
the network at the start of a new string, it
is impossible for it to predict when the first
b will occur. However, once it has “seen” the
first b, it is required to predict n — 1 addi-
tional b’s, followed by n ¢’s, followed by an
indeterminate (but nonzero) number of a’s
(which form the beginning of the subsequent
string).

5 Incremental Learning Strategy

The standard definition of incremental learn-
ing means that either the dataset or the
neural network structure is incrementally en-
larged (e.g. by insertion of additional hid-
den units) during training. (Elman, 1993)
used two versions of incremental learning
which were entitled: incremental input and
incremental memory. In the incremental in-
put approach simple recurrent networks were
trained to learn grammars while the com-
plexity of the sentences in the training da-
ta was gradually increased. The training was
conducted in five stages, with each stage us-
ing a different training set. In the incremental
memory approach, the full data set was used
but the time window of the simple recurrent
network was restricted in the beginning and
enlarged during training.

The present study used a form of staged
learning which is similar to the incremental
input approach of (Elman, 1993). We gener-
ated a sequence of ten training sets, each of
them corresponding to a stage of increased
difficulty in the training. The training set of
stage d was the concatenation of d —1 strings
of the form a"b"c", 2 < n < d. For example,
the training set for stage 4 consisted of the
following sequence of 27 symbols:

aabbccaaabbbeccaaaabbbbecce

The training set of the next higher stage con-
tained the same sequence of symbols but with
the string aaaaabbbbbcecce concatenated at
the end.

The error calculation took all symbols of the
training sequence except the first b of each
string into consideration (see section 4).

At each training stage d the mean squared er-
ror was separately calculated for the concate-
nation of the first d—1 strings of the sequence
(msepow) and for the last string (msemign)-
The fitness of the network at the end of each
epoch could then be calculated as a linear
combination of both errors:

fitness = Apow * MSeLow + AHigh * MS€High,

with Apow, AHign > 0. Similarly the accuracy
of correct prediction was separately calculat-
ed for the low and the high part of the string.

After some preliminary tests, we used
ALow = 1.0 and Agjgn = 0.5 and decided on
the following acceptance rule for each new
mutation:

Accept the new mutant if its fitness is higher
than that of the champ and if its accuracy on
the low part of the string equals 1.0.

An exception was made at the beginning of
the training; the data set of the first stage
consisted of strings for n = 2 and n = 3 and
the fitness was simply msepoy + msepigh.

6 Experiments

In preliminary experiments we followed the
hill climbing strategy of (Tonkes et al., 1998)
to train a simple recurrent network on the
a™b™ task. We were able to obtain similar re-
sults when using our implementation of the
algorithms.

On the a"b"c" task a series of experiments
were conducted with different initial weight-
s, seeds and small modifications of the fit-
ness function and the activation functions. In
these preliminary tests, we found that most

3D view

(b) side view

-1 0 1

(c) front view

Figure 2. Trajectory in the 3D hidden unit space, including top view (a), side view (b) and front view (c).

of the networks got stuck in an early stage
(below stage 6) of the incremental training.
The training strategy seemed to be too rigid
for the appropriate attractors and repellers
to develop.

The algorithm was then relaxed using two d-
ifferent methods which both were successful
in training the network up to depth 10 or
12. First the hill climber was modified to a
simulated annealing algorithm with relative-
ly high temperature. The backward steps al-
lowed a form of relaxed training. In the sec-
ond method we used the standard hill climber
and when the training got stuck (in our case

at stage 5) we replaced the original training
set by a training set in which the order of
the patterns was slightly permuted, and re-
trained the network on this new set. The hill
climber was able to reach stage 9 using this
training set, after which it got stuck again.
We then returned to the original training set,
and the network quickly trained up to level
12. The outcome of this training experiment
is the network which is analysed in the next
section. Finally in section 8 a generalisation
of the second training strategy, the Data Jug-
gling Algorithm is proposed.

7 Analysis

Figure 2 shows all the points visited, with-
in the 3-dimensional hidden unit activation
space of the network, as it processes the se-
ries of strings a"b"c", for 2 < n < 12. Ac-
tivations at which the network predicts an
a, b or ¢ are indicated by a ‘x’; ‘+’ or ‘.,
respectively. The lines in the figures indi-
cate the path through the activation space
as the final string a'?b'2¢!'? is processed. The
way the task is accomplished can be under-
stood by analogy with previously known so-
lutions for the a™b" prediction task (Wiles &
Elman 1995), which involved a combination
of an attractor and a repeller. The network
achieved the task by effectively “counting up”
the number of a’s as it converged to the at-
tractor, and then “counting down” the same
number of b’s as it diverged from the repeller.

In the present case, the network begins by
counting up the number of a’s as it converges
to an attractor in the top right corner of the
hidden unit space (Figure 2(a)). Upon pre-
sentation of the first b, the activation shifts
to the left side of the space (more clearly vis-
ible in Figure 2(b)), where it employs a two-
pronged strategy of counting down by diver-
gence from a repeller in the H3 dimension,
while simultaneously counting up by conver-
gence to an attractor in the H2 dimension.
The former ensures that the first ¢ is predict-
ed correctly, while the latter prepares for the
¢’s to be counted down by divergence from a
new repeller (Figure 2(c)), ready to predict
the a at the beginning of the next string.

8 Data Juggling Algorithm

The idea of the Data Juggling Algorithm
whose pseudo code is listed in Table 2 is to
use the function ’juggle’ to permute the or-
der of the symbol strings in the training se-
quence and to continue training on the modi-
fied training set. juggle’ can be called at any
time depending on some conditions, e.g. as
soon as the champion has reached a new stage
or after a fixed number (nEpochs) of itera-

tions (i.e. when the algorithm got stuck). Us-
ing the Data Juggling Algorithm the network
learned further up to stage 15. The network
generalised to some of the permuted strings
perfectly and to most of the others with rea-
sonably high accuracy.

WHILE(depthsiage < deptharax)
Evaluate champ

FOR ce = 1 to nEpochs
Generate mutant
Evaluate mutant
IF(mutant better than champ)
champ < mutant
IF(depthchamp > depthstage)
depthstage <~ depthchamp
break
end IF
end IF
end FOR

IF(juggling conditions)
juggle(depthsiqage)
end IF

end WHILE

Table 2. Data Juggling Algorithm.

9 Conclusion

We have shown that a neural network using
a simple evolutionary algorithm can learn to
predict the language a"b"c" with a fixed or-
der and can generalise to other orderings with
good accuracy.

Within the Chomskyan framework, the
context-sensitive language a™b"c" is consid-
ered to be at a distinctly higher level of com-
plexity than the context-free language a"b™.
The fact that a neural network can learn to
predict a™b™c", using similar techniques to
those employed for ab", provides support to
the view that the language complexity class-
es appropriate for dynamical systems may be
different from those developed for symbol-
ic systems. Evolutionary techniques seem to
overcome some of the instability issues en-
countered with backpropagation. In further
work we hope to conduct a more comprehen-

sive set of experiments, and to check more
thoroughly the generalisation abilities of the
network. It is hoped that this study may open
the door for application of neural network
techniques to a wider variety of languages.

Acknowledgements

Thanks to Frederic Maire, Elizabeth Sklar
and Janet Wiles for helpful comments.

References

Casey, M. The dynamics of discrete-time
computation, with application to recurrent
neural networks and finite state machine ex-
traction, Neural Computation 8(6), pp. 1135—
1178, 1996.

Chalup, S., F. Maire. A study on hill climb-
ing algorithms for neural network training,
Proceedings of the Congress on Evolutionary
Computation (CEC’99), Washington D.C., p-
p. 2014-2021, 1999.

Elman, J.L. Finding structure in time, Cog-
nitive Science 14, pp. 179-211, 1990.

Elman, J.L. Learning and development in
neural networks: The importance of starting
small, Cognition 48, pp. 71-99, 1993.

Finn, G.D. A recurrent neural network for
the language a"0": Encoding and decod-
ing binary strings in a neuron’s activation
function, Internal Report, Machine Learning
Research Centre, Queensland University of
Technology, 1998.

Giles, C.L., C.B. Miller, D. Chen, H.H. Chen,
G.Z. Sun, Y.C. Lee. Learning and extracting
finite state automata with second-order re-
current neural networks, Neural Computation

4(3), pp. 393-405, 1992.

Hoelldobler, S., Y. Kalinke, H. Lehmann. De-
signing a counter: another case study of dy-
namics and activation landscapes in recurren-
t networks, Proceedings of 21st German Con-

ference on Artificial Intelligence, LNAT 1301,
Springer Verlag, pp. 313-324, 1997.

Maass, W., P. Orponen. On the effect of
analog noise in discrete-time analog compu-
tation, Proceedings Neural Information Pro-
cessing Systems, pp. 218-224, 1996.

Pollack, J. The induction of dynamical rec-
ognizers, Machine Learning 7, pp. 227-252,
1991.

Rodriguez, P., J. Wiles, J.L. Elman. A re-
current neural network that learns to count,
Connection Science 11(1), pp. 5-40, 1999.

Rumelhart, D.E., G.E. Hinton & R.J.
Williams. Learning representations by back-
propagating errors, Nature 323, pp. 533-536,
1986.

Siegelmann, H.T., E.D. Sontag. Neural net-
works with real weights: Analog compu-
tational complexity, Report SYCON-92-95,
1992.

Steijvers, M., P. Griinwald. A recurrent net-
work that performs a context-sensitive pre-
diction task, Proceedings of the 18th Annual
Conference of the Cognitive Science Society,
Morgan Kauffman, pp. 335-339, 1996.

Tonkes, B., A. Blair, J. Wiles. Inductive bias
in context-free language learning, Proceedings
of the Ninth Australian Conference on Neural
Networks (ACNN’98), Brisbane, pp. 52-56,
1998.

Wiles, J., J. Elman. Learning to count with-
out a counter: a case study of dynamics and
activation landscapes in recurrent neural net-
works, Proceedings of the Seventeenth Annual
Conference of the Cognitive Science Society,
pp- 482487, 1995.

