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Abstract

Following Tesauro’s work on TD-Gammon, we used a 4000 parameter feed-for-
ward neural network to develop a competitive backgammon evaluation function.
Play proceeds by a roll of the dice, application of the network to all legal moves,
and choosing the move with the highest evaluation. However, no back-propaga-
tion, reinforcement or temporal difference learning methods were employed. In-
stead we apply simple hill-climbing in a relative fitness environment. We start
with an initial champion of all zero weights and proceed simply by playing the
current champion network against a slightly mutated challenger and changing
weights if the challenger wins. Surprisingly, this worked rather well. We investi-
gate how the peculiar dynamics of this domain enabled a previously discarded
weak method to succeed, by preventing suboptimal equilibria in a “meta-game”
of self-learning.
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1. Introduction

It took great chutzpah for Gerald Tesauro to start wasting computer cycles on tem-
poral difference learning in the game of Backgammon (Tesauro, 1992). Letting a machine
learning program play itself in the hopes of becoming an expert, indeed! After all, the
dream of computers mastering a domain by self-play or “introspection” had been
around since the early days of AI, forming part of Samuel’s checker player
(Samuel, 1959) and used in Donald Michie’s MENACE tic-tac-toe learner (Michie, 1961);
but such self-conditioning systems had later been generally abandoned by the field due
to problems of scale and weak or non-existent internal representations. Moreover, self-
playing learners usually develop eccentric and brittle strategies which appear clever but
fare poorly against expert human and computer players.

Yet Tesauro’s 1992 result showed that this self-play approach could be powerful,
and after some refinement and millions of iterations of self-play, his TD-Gammon pro-
gram has become one of the best backgammon players in the world (Tesauro, 1995). His
derived weights are viewed by his corporation as significant enough intellectual prop-
erty to keep as a trade secret, except to leverage sales of their minority operating system
(International Business Machines, 1995). Others have replicated this TD result in back-
gammon both for research purposes (Boyan, 1992) and commercial purposes.

While reinforcement learning has had limited success in other areas (Zhang and
Dietterich, 1996, Crites and Barto, 1996, Walker et al., 1994), with respect to the goal of a
self-organizing learning machine which starts from a minimal specification and rises to
great sophistication, TD-Gammon stands alone. How is its success to be understood,
explained, and replicated in other domains?

Our hypothesis is that the success of TD-gammon is not principally due to the
back-propagation, reinforcement, or temporal-difference technologies, but to an inherent
bias from the dynamics of the game of backgammon, and the co-evolutionary setup of
the training, by which the task dynamically changes as the learning progresses. We test
this hypothesis by using a much simpler co-evolutionary learning method for backgam-
mon - namely hill-climbing.

2. Implementation Details

We use a standard feedforward neural network with two layers and the sigmoid
function, set up in the same fashion as (Tesauro, 1992) with 4 units to represent the num-
ber of each player’s pieces on each of the 24 points, plus 2 units each to indicate how
many are on the bar and off the board. In addition, we added one more unit which
reports whether or not the game has reached the endgame or “race” situation, making a
total of 197 input units. These are fully connected to 20 hidden units, which are then con-
nected to one output unit that judges the position. Including bias on the hidden units,
this makes a total of 3980 weights. The game is played by generating all legal moves,
converting them into the proper network input, and picking the position judged as best
by the network. We started with all weights set to zero.
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Our initial algorithm was hillclimbing:
1. add gaussian noise to the weights

2. play the network against the mutant for a number of games

3. if the mutant wins more than half the games, select it for the next generation.

The noise was set so each step would have a 0.05 RMS distance (which is the euclidean
distance divided by ).

Surprisingly, this worked reasonably well. The networks so evolved improved rap-
idly at first, but then sank into mediocrity. The problem we perceived is that comparing
two close backgammon players is like tossing a biased coin repeatedly: it may take doz-
ens or even hundreds of games to find out for sure which of them is better. Replacing a
well-tested champion is dangerous without enough information to prove the challenger
is really a better player and not just a lucky novice. Rather than burden the system with
so much computation, we instead introduced the following modifications to the algo-
rithm to avoid this “Buster Douglas Effect”:2

Firstly, the games are played in pairs, with the order of play reversed and the same
random seed used to generate the dice rolls for both games. This washes out some of the
unfairness due to the dice rolls when the two networks are very close - in particular, if
they were identical, the result would always be one win each - though, admittedly, if
they make different moves early in the game, what is a good dice roll at a particular
move of one game may turn out to be a bad roll at the corresponding move of the paral-
lel game. Secondly, when the challenger wins the contest, rather than just replacing the
champion by the challenger, we instead make only a small adjustment in that direction:

champion := 0.95*champion + 0.05*challenger

This idea, similar to the “inertia” term in back-propagation (Rumelhart et al., 1986)
was introduced on the assumption that small changes in weights would lead to small
changes in decision-making by the evaluation function. So, by just “biting the ear” off
the challenger and adding it to the champion, most of the current decisions are pre-
served , and we would be less likely to have a catastrophic replacement of the champion
by a lucky novice challenger. In the initial stages of evolution, two pairs of parallel
games were played and the challenger was required to win 3 out of 4 of these games.

Although we would have liked to rank our players against the same players
Tesauro used - Neurogammon and Gammontool - these were not available to us.
Figure 1 shows the first 35,000 players rated against PUBEVAL, a moderately good pub-
lic-domain player trained by Tesauro using human expert preferences. There are three
things to note: (1) the percentage of wins against PUBEVAL increases from 0% to about
33% by 20,000 generations, (2) the frequency of successful challengers increases over
time as the player improves, and (3) there are epochs (e.g. starting at 20,000) where the
performance against PUBEVAL begins to falter. The first fact shows that our simple self-

2.  Buster Douglas was world heavyweight boxing champion for 9 months in 1990.

3980
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playing hill-climber is capable of learning. The second fact is quite counter-intuitive - we
expected that as the player improved, it would be harder to challenge it! This is true with
respect to a uniform sampling of the 4000 dimensional weight space, but not true for a
sampling in the neighborhood of a given player: once the player is in a good part of weight
space, small changes in weights can lead to mostly similar strategies, ones which make
mostly the same moves in the same situations. However, because of the few games we
were using to determine relative fitness, this increased rate of change allows the system
to drift, which may account for the subsequent degrading of performanceTo counteract
the drift, we decided to change the rules of engagement as the evolution proceeds
according to the following “annealing schedule”: after 10,000 generations, the number of
games that the challenger is required to win was increased from 3 out of 4 to 5 out of 6;
after 70,000 generations, it was further increased to 7 out of 8 (of course each bout was
abandoned as soon as the champion won more than one game, making the average
number of games per generation considerably less than 8). The numbers 10,000 and
70,000 were chosen on an ad hoc basis from observing the frequency of successful chal-
lenges and the Buster Douglas effect in this particular run, but later experiments showed
how to determine the annealing schedule in a more principled manner (see Section 3.2
below).

After 100,000 games using this simple hill-climb, we have developed a surprising
player, capable of winning 40% of the games against PUBEVAL. The networks were sam-
pled every 100 generations in order to test their performance. Networks at generation
1,000, 10,000 and 100,000 were extracted and used as benchmarks. Figure 2 shows the
percentage of wins for the sampled players against the three benchmark networks. Note
that the three curves cross the 50% line at 1, 10, and 100, respectively and show a general
improvement over time.

The end-game of backgammon, called the “bear-off,” can be used as another yard-
stick of the progress of learning. The bear-off occurs when all of a player’s pieces are in
their home board, or first 6 points, and then the dice rolls can be used to remove pieces
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Figure 1: Percentage of wins of our first 35,000 generation players
against PUBEVAL. Each match consisted of 200 games.
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from the board. To test our network’s ability at the end-game, we set up a racing board
with two pieces on each player’s 1 through 7 point and one piece on the 8 point. The
graph in Figure 3 shows the average number of rolls to bear-off for each network playing
itself using a fixed set of 200 random dice-streams. We note that PUBEVAL is stronger at
16.6 rolls, and will discuss its strengths and those of Tesauro’s 1992 results in Section 5.
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Figure 2: Percentage of wins against benchmark networks 1,000
[upper], 10,000 [middle] and 100,000 [lower]. This shows a noisy
but nearly monotonic increase in player skill as evolution proceeds.
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Figure 3: Average number of rolls to bearoff by each generation, sampled with 200 dice-streams.
PUBEVAL averaged 16.6 rolls for the task.
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3. Analysis

3.1.  Learnability and Unlearnability

Learnability can be formally defined as a time constraint over a search space. How
hard is it to randomly pick 4000 floating-point weights to make a good backgammon
evaluator? It is simply impossible. How hard is it to find weights better than the current
set? Initially, when all weights are random, it is quite easy. As the playing improves, we
would expect it to get harder and harder, perhaps similar to the probability of a tornado
constructing a 747 out of a junkyard. However, if we search in the neighborhood of the cur-
rent weights, we will find many similar players which make mostly the same moves but
which can capitalize on each other’s slightly different choices and exposed weaknesses
in a tournament. Note that this is a different point than Tesauro originally made - that
the feedforward neural network could exploit similarity of positions.

Although the setting of parameters in our initial runs involved some guesswork,
now that we have a large set of “players” to examine, we can try to understand the phe-
nomenon. Taking the champion networks at generation 1,000, 10,000, and 100,000 from
our run, we sampled random players in their neighborhoods at different RMS distances
to find out how likely is it to find a winning challenger. A thousand random neighbors at
each of 11 different RMS distances played 8 games against the corresponding champion,
and Figure 4 plots the fraction of games won by these challengers, as a function of RMS
distance. This graph shows that as the players improve over time, the probability of find-
ing good challengers in their neighborhood increases, which accounts for why the fre-
quency of successful challenges goes up.3 Each successive challenger is only required to

3.  But why does the number of good challengers in a neighborhood go up, and if so, why does our algo-
rithm falter nonetheless? There are several factors which require further study. It may be due to the general
growth in weights, to less variability in strategy among mature players, or less ability simply to tell expert
players apart with a few games.

Figure 4: Distance versus probability of random challenger winning
against champions at generation 1,000, 10,000 and 100,000.
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take the small step of changing a few moves of the champion in order to beat it. The
hope, for co-evolution, is that what was apparently unlearnable becomes learnable as we
convert from a single question to a continuous stream of questions, each one dependent
on the previous answer.

3.2.  Replication Experiments

After our first successful run, we tried to evolve ten more players using the same
parameters and the same annealing schedule (10,000 and 70,000), but found that only
one of these ten players was even competitive. Closer examination suggested that the
other nine runs were failing because they were being annealed too early, before the fre-
quency of successful challenges had reached an appropriate level. This premature
annealing then made the task of the challengers even harder, so the challenger success
rate fell even lower. We therefore abandoned the fixed annealing schedule and instead
annealed whenever the challenger success rate exceeded 15% when averaged over 1000
generations. All ten players evolved under this regime were competitive (though not
quite as good as our original player, which apparently benefitted from some extra induc-
tive bias due to having its own tailor-made annealing schedule). Refining other heuris-
tics and schedules could lead to superior players, but was not our goal.

3.3.  Relative versus Absolute Expertise

Does Backgammon allow relative expertise or is there some absolutely optimal
strategy? Theoretically there exists a perfect “policy” for backgammon which would
deliver the minimax optimal move for any position, and this perfect policy could exactly
rate every other player on a linear scale, in practice, and especially without running
10,000 games to verify, it seems there are many relative cycles and these help prevent
early convergence.

In cellular studies of iterated prisoner’s dilemma following (Axelrod, 1984) a stable
population of “tit for tat” can be invaded by “all cooperate,” which then allows exploita-
tion by “all defect”. This kind of relative-expertise dynamics, which can be seen clearly
in the simple game of rock/paper/scissors (Littman, 1994) might initially seem very bad
for self-play learning, because what looks like an advance might actually lead to a cycle
of mediocrity. A small group of champions in a dominance circle can arise and hold a
temporal oligopoly preventing further advance. On the other hand, it may be that such a
basic form of instability prevents the formation of sub-optimal oligopolies and allows
learning to progress. These problems are specific to non-zero-sum games; in zero sum
games, appropriate use of self-play can be shown to converge to optimal play for both
parties (Littman96)

4. Discussion

We believe that our evidence of success in learning backgammon using simple hill-
climbing in a relative fitness environment indicates that the reinforcement and temporal
difference methodology used by Tesauro in his 1992 paper which led to TD-Gammon,
while providing some advantage, was not essential for its success. Rather, a major contri-
bution came from the co-evolutionary learning environment and the dynamics of back-
gammon. Our result is thus similar to the bias found by Mitchell et al in Packard’s
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evolution of cellular automata to the “edge of chaos” (Packard, 1988, Mitchell
et al., 1993).

Obviously, we are not suggesting that 1+1 hillclimbing is an advanced machine
learning technique which others should bring to many tasks! Without internal cognition
about an opponent’s behavior, co-evolution usually requires a population. Therefore,
there must be something about the domain itself which is helpful because it permitted
both TD learning and hill-climbing to succeed through self-play, where they would
clearly fail on other problem-solving tasks of this scale. In this section we discuss some
issues about co-evolutionary learning and the dynamics of backgammon which may be
critical to learning success.

4.1.  Evolution versus Co-evolution

TD-Gammon is a major milestone for a kind of evolutionary machine learning in
which the initial specification of the model is far simpler than expected because the
learning environment is specified implicitly, and emerges as a result of the co-evolution
between a learning system and its training environment: the learner is embedded in an
environment which responds to its own improvements - hopefully in a never-ending
spiral, though this is an elusive goal to achieve in practice. While this co-evolutionary
effect has been seen in population models, it is completely unexpected for a “1+1” hill-
climbing evolution. Co-evolution has been explored on the sorting network problem
(Hillis, 1992), on tic-tac-toe and other strategy games (Angeline and Pollack, 1994, Rosin
and Belew, 1995, Schraudolph et al., 1994), on predator/prey games (Cliff and
Miller, 1995, Reynolds, 1994) and on classification problems such as the intertwined spi-
rals problem (Juille and Pollack, 1995). However, besides Tesauro’s TD-Gammon, which
has not to date been viewed as an instance of co-evolutionary learning, Sims’ artificial
robot game (Sims, 1994) is the only other domain as complex as backgammon to have
had substantial success.

Since a weak player can sometimes defeat a strong one, it should in theory be pos-
sible for a network to learn backgammon in a static evolutionary environment (playing
against a fixed opponent) rather than a co-evolutionary one (playing against itself). Of
course this is not as interesting an acheivement as learning without an expert on hand,
and if TD-gammon had simply learned from Neurogammon, it wouldn’t have been as
startling a result. In order to further isolate the contribution of co-evolutionary learning,
we had to modify our training setup because our original algorithm was only appropri-
ate to self-play. In this new setup the current champion and mutant both play a number
of games against the same opponent (called the foil) with the same dice-streams, and the
weights are adjusted only if the champion loses all of these games while the mutant wins
all of them. The number of pairs of games was initially set to 1 and incremented when-
ever the challenger success rate exceeded 15% when averaged over 1000 generations.
The lower three plots in Figure 5, which track the performance of this algorithm with
each of the three benchmark networks from our original experiments acting as foil, seem
to show a relationship between learning rate and probability of winning.

Against a weak foil (1k) learning is fast initially, when the probability of winning is
around 50%, then tapers off as this probability increases. Against a strong foil (100k)
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learning is very slow initially, when the probability of winning is small, but speeds up as
it increases towards 50%. All of these evolutionary runs were outperformed by a co-evo-
lutionary version of the foil algorithm (co-ev) in which the champion network itself
plays the role of the foil. Co-evolution seems to maintain a high learning rate throughout
the run by automatically providing, for each new generation player, an opponent of the
appropriate skill level to keep the probability of winning near 50%. Moreover, weak-
nesses in the foil are less likely to bias the learning process because they can be automat-
ically corrected as the co-evolution proceeds (see also Section 4.3).

4.2.  The Dynamics of Backgammon

In general, the problem with learning through self-play discovered repeatedly in
early AI and ML is that the learner could keep playing the same kinds of games over and
over, only exploring some narrow region of the strategy space, missing out on critical
areas of the game where it would then be vulnerable to other programs or human
experts. This problem is particularly prevalent in deterministic games such as chess or
tic-tac-toe. Tesauro (1992) pointed out some of the features of backgammon that make it
suitable for approaches involving self-play and random initial conditions. Unlike chess,
a draw is impossible and a game played by an untrained network making random
moves will eventually terminate (though it may take much longer than a game between
competent players). Moreover the randomness of the dice rolls leads self-play into a
much larger part of the search space than it would be likely to explore in a deterministic
game. We have worked on using a population to get around the limitations of self-play
(Angeline and Pollack, 1994). Schraudolph et al., 1994 added non-determinism to the
game of Go by choosing moves according to the Boltzmann distribution of statistical
mechanics. Others, such as Fogel, 1993, expanded exploration by forcing initial moves.
Epstein, 1994, has studied a mix of training using self-play, random testing, and playing
against an expert in order to better understand these aspects of game learning.
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Figure 5: Performance against PUBEVAL of players evolved by playing benchmark networks from our original
run at generation 1k, 10k and 100k, compared with a co-evolutionary variant of the same algorithm. Each of these
plots is an average over four runs. The performance of our original algorithm is included for comparison.
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We believe it is not enough to add randomness to a game or to force exploration
through alternative training paradigms. There is something critical about the dynamics
of backgammon which sets its apart from other games with random elements like
Monopoly - namely, that the outcome of the game continues to be uncertain until all con-
tact is broken and one side has a clear advantage. In Monopoly, an early advantage in
purchasing properties leads to accumulating returns. What many observers find exciting
about backgammon, and what helps a novice sometimes overcome an expert, is the
number of situations where one dice roll, or an improbable sequence, can dramatically
reverse which player is expected to win.

In order to quantify this “reversibility” effect we collected some statistics from
games played by our 100,000th generation network against itself. For each n between 0
and 120 we collected 100 different games in which there was still contact at move n, and,
for n>6, 100 other games which had reached the racing stage by move n (but were still in
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progress). We then estimated the probability of winning from each of these 100 positions
by playing out 200 different dice-streams. Figure 6 shows the standard deviation of this
probability (assuming a mean of 0.5) as a function of n, as well as the probability of a
game still being in the contact or racing stage at move n. Figure 7 shows the distribution
in the probability of winning, as a function of move number, symmetrized and smoothed
out by convolution with a gaussian function.

These data indicate that the probability of winning tends to hover near 50% in the
early stages of the game, gradually moving out as play proceeds, but typically remaining
within the range of about 15% to 85% as long as there is still contact, thus allowing a rea-
sonable chance for a reversal. These numbers could be different for other players, less
reversability for stronger players perhaps and more for weaker ones, but we believe the
effect remains an integral part of the game dynamics regardless of expertise. Our conjec-
ture is that these dynamics facilitate the learning process by providing, in almost every
situation, a nontrivial chance of winning and a nontrivial chance of losing, therefore
potential to learn from the consequences of the current move. This is in deep contrast to many
other domains in which early blunders could lead to a hopeless situation from which
learning is virtually impossible because the reward has already become effectively unat-
tainable. It seems this feature of backgammon may also be shared by other tasks for
which TD-learning has been successful (Zhang and Dietterich, 1996, Crites and
Barto, 1996, Walker et al., 1994).

4.3.  Avoiding Suboptimal Equilibria in the Meta-Game of Learning

A learning system can be viewed as an interaction between teacher and student in
which the teacher’s goal is to expose the student’s weaknesses and correct them, while
the student’s goal is to placate the teacher and avoid further correction.

 We can build a model of this teacher/student interaction as a formal game, which
we will call the Meta-Game of Learning (MGL) to avoid confusion with the game being
learned. In this meta-game, the teacher T presents the student S with a sequence of ques-
tions Qi prompting responses Ri from the student. (In the backgammon domain, all the
questions and responses would be legal positions, rolls and moves). S and T each receive
payoffs in the process, which they attempt to maximize through their choices of ques-
tions and answers, and their limited abilities at self-modification.

We generally assume the goal of learning is to prepare the student for interaction
with a complex environment E that will provide an objective measure of its perfor-
mance.4 E and T thus play similar roles but are not assumed to be identical.   The ques-
tion then is: Can we find a payoff matrix for S and T which will enable the performance
of S to continually improve (as measured by E)? If the rewards for T are too closely corre-
lated with those for S, T may be tempted to ask questions that are too easy. If they are
anti-correlated (for example if T=E),   the questions might be too difficult. In either case it
will be hard for S to learn (see Section 4.1).

4.   For a general theory of evolution or self-organization, E is not necessary.
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An attractive solution to this problem is to have two or more students play the role
of teacher for each other, or indeed a single student act as its own teacher, thus providing
itself with questions that are always at the appropriate level of difficulty. The dynamics
of the MGL, under such a self-teaching or co-evolutionary situation, would hopefully
lead to a continuing spiral of improvement but may instead get bogged down by antago-
nistic or collusive dynamics, depending on the payoff structure.

In our hillclimbing setup we may think of the mutant (teacher) trying to gain
advantage (adjustment in the weights) by exploiting weaknesses in the champion, while
the champion (student) is trying to avoid such an adjustment by not allowing its weak-
nesses to be exploited. Since the student and teacher are of approximately equal ability, it
is to the advantage of the student to narrow the scope of the search, thus limiting the
domain within which the teacher is able to look for a weakness. In most games, such as
chess or tic-tac-toe, the student could achieve this by aiming for a draw instead of a win,
or by always playing a particular style of game. If draws are not allowed, the teacher and
student may figure out some other way to collude with each other - for example, each
“throwing” alternate games (Angeline, 1994) by making a suboptimal sequence of early
moves. These effects in self-learning systems, which may appear as early convergence in
evolutionary algorithms, narrowing of scope, drawing or other collusion between
teacher and student, are in fact Nash equilibria in the MGL, which we call Mediocre Stable
States.5

Our hypothesis is that certain features of backgammon operate against the forma-
tion of mediocre stable states in the MGL: backgammon is ergodic in the sense that any
position can be reached from any other position6 by some sequence of moves, and the
dice rolls apparently create enough randomness to prevent either player from following
a strategy that narrows the scope of the game appreciably. Moreover, early suboptimal
moves are unlikely to provide the opponent with an easy win (see Section 4.2), so collu-
sion by the throwing of alternate games is prevented.

Mediocre stable states can also arise in human education systems, for example
when the student gets all the answers right and rewards the teacher with positive teach-
ing evaluations for not asking harder questions. In further work, we hope to apply the
same kind of MGL equilibrium analysis to issues in human education.

5. Conclusions

TD-Gammon remains a tremendous success in Machine Learning, but the causes
for its success have not been well understood. The fundamental research in Tesauro’s
1992 paper which was the basis for TD-Gammon, reportedly beat Sun’s Gammontool 60-
65% of the time (depending on number of hidden units) and achieved parity against
Neurogammon 1.0.

Following this seminal 1992 paper, Tesauro incorporated a number of hand-crafted
expert-knowledge features, eventually engineering a network which achieved world

5.  MSS follows Maynard Smith’s ESS (Maynard Smith, 1982)
6. with the exception of racing situations and positions with some pieces out of play.
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master level play (Tesauro, 1995). These features included concepts like existence of a
prime, probability of blots being hit, and probability of escape from behind the oppo-
nent’s barrier. The evaluation function was also improved using multiple ply search.

The best players we’ve been able to evolve can win about 45% of the time against
PUBEVAL, which we believed to be about the same level at Tesauro’s 1992 networks.
Because Tesauro had never compared his 1992 networks to PUBEVAL, and because he
used Gammontool’s heuristic endgame in the ratings, the level of play achieved by these
players has been somewhat murky:

“the testing procedure is to play out the game with the network until it becomes a
race, and then use Gammontool’s algorithm to move for both sides until the end.
This also does not penalize the TD net for having learned rather poorly the racing
phase of the game.”(p 272)

When we compare our network’s performance to PUBEVAL, it must be noted that
we use our network’s own (weak) endgame, rather than substituting in a much stronger
expert system like Gammontool. Gerald Tesauro, in a commentary in this issue, has gra-
ciously cleared up the matter of comparing PUBEVAL to his 1992 results, and differs
somewhat from our conclusions below.

There are two other phenomena fom the 1992 paper, which are relevant to our
work:

“Performance on the 248-position racing test set reached about 65%. (This is sub-
stantially worse than the racing specialists described in the previous section.)” (p.
271)

“The training times ...were on the order of 50,000 training games for the networks
with 0 and 10 hidden units, 100,000 games for the 20-hidden unit net, and 200,000
games for the 40-hidden unit net.” (p. 273)

Because we achieve similar levels of skills, and observe these same phenomena in
training, endgame weakness, and convergence, we believe we have achieved results
substantially similar to Tesauro’s 1992 result, without any advanced learning algorithms.
We could make stronger players by tuning the learning parameters, and adding more
input features, but that is not our point.

We do not claim that our 100,000th generation player is anywhere near as good as
the current enhanced versions of TD-Gammon, ready to challenge the best humans, but
it is surprisingly good considering its humble origins from hill-climbing with a relative
fitness measure. Tuning our parameters or adding more input features would make
more powerful players, but that was not the point of this study.

We also do not claim there is anything “wrong” with TD learning, or that hillclimb-
ing is just as good as reinforcement learning in general! Of course it isn’t! Our point is
that once an environment and representation have been refined to work well with a
machine learning method, it should be benchmarked against the weakest possible algo-
rithm so that credit for learning power can be properly distributed.

We have noticed several weaknesses in our player that stem from the training
which does not yet reward or punish the double and triple costs associated with severe
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losses (“gammoning” and “backgammoning”) nor take into account the gambling pro-
cess of “doubling.” We are continuing to develop the player to be sensitive to these
issues in the game. Interested players can challenge our 100,000th network using a web
browser through our home page at:

http://www.demo.cs.brandeis.edu

In conclusion, replicating some of Tesauro’s 1992 TD-Gammon success under a
much simpler learning paradigm, we find that the reinforcement and temporal differ-
ence methods are not the primary cause for success; rather it is the dynamics of back-
gammon combined with the power of co-evolutionary learning. If we can isolate the
features of the backgammon domain which enable co-evolutionary and reinforcement
learning to work so well, it may lead to a better understanding of the conditions neces-
sary, in general, for complex self-organization.
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