
Quasi-Orthogonal Maps for Dynamic Language Recognition

Alan D. Blair1 and Jordan B. Pollack2

1Dept. of Computer Science, University of Queensland, 4072, Australia, blair@cs.uq.edu.au
2Dept. of Computer Science, Brandeis University, Waltham, MA 02254, pollack@cs.brandeis.edu

Abstract

Although recurrent neural networks can be trained to recog-
nize formal languages from positive and negative examples, it
is di�cult for them to learn large and complex data sets due
to the geometry of their state space, which tends to push ac-
tivations into the corners and dilute the e�ect of di�erentials
backpropagated through multiple levels of recurrence.
We propose a new framework for dynamical recognizers in
which the state space is the surface of an n-sphere and the
maps are either orthogonal or quasi-orthogonal.

1 Introduction

A dynamical recognizer consists of a state space

X � Rn together with a partition X = fXyes;Xnog of
X into accept and reject states, an initial state x0 2 X,
and a family of maps f� : X ! X indexed by the letters
� in an alphabet A. Its purpose is to recognize a formal
language L � A� in the following manner: for any string
� = �1 : : : �T 2 A�, let x

T

= f�T � : : : � f�1 (x0). Then �
is accepted if x

T

2 Xyes, rejected if x
T

2 Xno.
This framework, introduced in (Pollack, 1991) has been

extended in a number of directions both experimental
(Giles et al., 1992, Watrous & Kuhn, 1992) and theoret-
ical (Moore, 1997, Casey, 1996). A variety of methods
have been developed for extracting a deterministic �nite
automaton (DFA) from the dynamical recognizer once
it is trained (Omlin & Giles, 1996, Das & Mozer, 1994,
Manolios & Fanelli, 1994, Zeng et al., 1994) although the
recognizer will sometimes induce a non-regular language
which cannot be modeled exactly by any DFA (Blair &
Pollack, 1997, Kolen, 1993).
Many of these approaches have used a neural network

framework in which the state space X is a hypercube and
each map f� is a composition of a linear transform and
a sigmoidal function. Such architectures have been suc-
cessfully applied to many tasks, but have generally had
di�culty learning longer strings or more complicated lan-
guages without considerable modi�cations to the learning
algorithm. Among the reasons for these di�culties have
been:
(i) the geometry of the neural network state space is such
that activations often get stuck in the corners, which can
impede further learning,
(ii) the derivative of the sigmoid function tends to dilute
the di�erentials, making it di�cult to e�ectively back-
propagate more than 5 or 6 time steps.1

1Almost all approaches have involved some kind of recur-
rence, though purely feed-forward time-delay networks have

The purpose of this paper is to propose a new frame-
work of quasi-orthogonal maps, with the aim of overcom-
ing some of these di�culties.

2 Details of Algorithm

In our proposed framework the state space X is the sur-
face of a sphere in n dimensions and, for each � 2 A, the
map f� : X! X is given by

f�(x) =
A�(x)

jjA�(x)jj
; where A� = U�(I + H�)

A� is a linear transformation composed of one map
(I + H�) which is self-transpose or symmetric (H0

� = H�)
and another U� which is orthogonal (U 0

�U� = I). We
assume that jjH�jj is small enough to keep jjA�(x)jj
bounded away from zero when jjxjj = 1. Note that A�

would be orthogonal if H� were equal to zero. We will
call it quasi-orthogonal in the general case (where H�

is small but non-zero). This setup has the following de-
sirable features:
(i) the spherical state space provides a featureless land-
scape with no corners for the activations to get stuck in,
(ii) keeping the maps nearly orthogonal helps to prevent
dilution of the di�erentials, thus allowing backpropaga-
tion to proceed e�ectively through many levels of recur-
rence.
We choose for our initial state x0 2 X � Rn the vector

[010 : : :0]0 which has second coordinate 1:0 and all other
coordinates 0. The partition into accept and reject states
is based on the �rst coordinate x

T

0 of x
T

| speci�cally,

Xyes = fx
T

jx
T

0 >= 0g, Xno = fx
T

jx
T

0 < 0g. So our aim

is to make x
T

0 close to ", where " is +1 for accept strings
and �1 for reject strings.
To achieve this, we apply a gradient descent algo-

rithm based on backpropagation through time (Williams
& Zipser, 1989) using the error function

E =
1

2
(x

T

0
� ")2

The pull-back of the di�erential �dE to the cotangent
space of X at x

T

is

dx
T

= (" � x
T

0)

�
(1� x

T

0)2

�x
T

0x̂
T

�
; where x

T

=

�
x
T

0

x̂
T

�

been able to learn languages generated from DFA's with a
special kind of internal structure (Clouse et al., 1997).

Recall that, for 1 � t � T ,

xt =
yt

jjytjj
; where yt = A�(xt�1)

Subsequent di�erentials can be computed by iterating the
following formulas:

dyt =
(I� xtxt

0)

jjytjj
dxt; dxt�1 = A 0

�t
dyt

The idea is to move A�t in the direction of dA(t) = dytx
0

t�1

while preserving its symmetric-orthogonal decomposi-
tion. This is achieved by decomposing U 0

�t
dA(t) into

U 0

�t
dA(t) = dU(t) + dH(t)

where dH(t) is symmetric and dU(t) is skew-symmetric.
The following updates are then performed:

dU� � dU� +
X
�t=�

dU(t)

dH� � dH� +
X
�t=�

dH(t)

U� U�e
�dU� ; H� �H� + � dH�

Here � is the learning rate, � is the momentum and � is
the weight decay factor (Hinton, 1986) which we rely on
to keep jjH�jj small.
It should be noted that this procedure is computation-

ally intensive and highly non-local. We are certainly not
proposing it as a biologically plausible model of learning
in the brain, nor as an e�cient alternative to symbolic
language induction algorithms (Lang, 1992, Trakhten-
brot & Barzdin', 1973). Our purpose is rather to explore
the capabilities of new dynamical recognizer architectures
and look for more elegant ways to expand their applica-
tion to larger and more challenging data sets.
Rather than �xing the number of dimensions in ad-

vance, we follow a strategy of starting with only 3 dimen-
sions and gradually adding dimensions as the learning
proceeds. Note that U� lies in the group On of n � n

orthogonal matrices, H� in the space Hn of symmetric
n � n matrices. On embeds naturally into On+1 (simi-
larly Hn into Hn+1). Whenever learning at a particular
dimension appears to have stagnated2 we increment the
dimension and use these embeddings to locate U� and
H� within On+1 and Hn+1, respectively,3 so the extra
dimensions can provide more leeway for the (real valued)
activation vectors to gradually spread apart as the train-
ing proceeds.

2The heuristic we used to detect stagnation was to keep
track of the lowest value the error function had reached so
far, and check every 50 epochs to see whether this had been
reduced by a non-trivial amount from its previous value.

3We also add a little noise to U� in the directions orthog-
onal to On inside On+1.

0 5 10
0

0.2

0.4

0.6

0.8

1

10
20

30
40

47

Figure 1: Error function per string (upper) and misclassi-
�cation rate (lower) for orthogonal recognizer. Horizontal
axis measures time in 1000's of epochs; vertical lines track
the growth of the state space dimension.

3 Experiments

We tested our architecture on Training Set 7 of the
Abbadingo DFA Competition,4 which consists of 1521
strings selected randomly from a uniform distribution of
strings of length � 15, and classi�ed by a randomly gen-
erated DFA with 65 states.
We believe this kind of data would present a serious

challenge for earlier architectures, which had generally
relied on datasets in which shorter strings were over-
represented (Tomita, 1982) classi�ed by DFA's with many
fewer states (Watrous & Kuhn, 1992) or with a special
kind of internal structure (Clouse et al., 1997).
The training was done in batch mode, using a fully par-

allel algorithm on a MasPar MP-2, with two processors
devoted to each string.

Experiment 1: The Orthogonal Case

In our �rst experiment, we set � = 0 which implies that
A� = U� is always orthogonal. The other parameters
were � = 0:0003, � = 0:9. The results are shown in Fig-
ure 1, where the upper plot shows the average value of
E per string, while the lower plot shows the fraction of
training strings classi�ed incorrectly. The vertical dotted
lines indicate the time at which the dimension reached
10, 20, 30, 40, etc. This orthogonal recognizer ultimately
achieved a misclassi�cation rate of less than 5%, but re-
quired 47 dimensions to do so.

Experiment 2: Quasi-Orthogonal Case

In our second experiment we set set � = 0:9 so that A�

is no longer orthogonal. We kept � = 0:9 and, after
some preliminary trials, reduced � to 0:00002. As Fig-
ure 2 shows, this recognizer learned well initially, but
started to be unstable as the dimension increased from
20 to 30 (truncated plot). We therefore adopted an an-
nealing schedule, reducing � gradually from 0.00002 to

4http://abbadingo.cs.unm.edu/

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

10

20

30

20

30 36

Figure 2: Quasi-orthogonal recognizer without annealing
(truncated) and with annealing (extended).

0.000015 in steps of 0.000001 between d = 19 and d = 24
(extended plot). Compared to the original algorithm,
the annealed version showed slower but more reliable im-
provement, achieving approximately the same value of E
and error rate at the same dimension. After 20,000 epochs
this quasi-orthogonal recognizer, operating within a 36-
dimensional state space, achieved a misclassi�cation rate
of less than 0.4% on the training data.

4 Conclusions and Further Work

These experiments seem to indicate a tradeo� between
rigidity and
exibility. The
exibility of neural networks
to bend and stretch their state space in various direc-
tions makes them versatile enough to be good universal
function approximators, but restricts the number of levels
through which di�erentials can be successfully backprop-
agated. On the other hand, the rigidity of the orthogonal
maps in Experiment 1 allow successful backpropagation
through many levels by ensuring that the di�erentials re-
tain their size no matter how many times they are back-
propagated. However, the fact that they always preserve
the distance between activation vectors { never allowing
them to be moved closer together or farther apart { makes
them an unnatural model for �tting data generated by a
typical dynamical system or symbolic DFA.
The quasi-orthogonal maps employed in Experiment 2

seem to �nd a good compromise between these extremes,
allowing the state space to be slightly deformed each time
a map is applied, but keeping it rigid enough to allow
successful backpropagation through many levels.
We have shown that large, complex data sets can be

successfully learned with this paradigm. In further work
we hope to address the issue of language induction { ex-
amining how quasi-orthogonal maps might generalize to
classify new, unseen strings { and apply clustering tech-
niques, analysis of attractor dynamics and other methods
to gain a better understanding of the properties and ca-
pabilities of this class of dynamical recognizers.

Acknowledgments

This work was funded by ONR grant N00014-96-1-0418,
NSF grant IRI-95-29298 and by a University of Queens-
land Postdoctoral Fellowship.

References

Blair, A.D. & J.B. Pollack, 1997. Analysis of Dynamical
Recognizers, Neural Computation 9(5), 1127{1142.

Casey, M. 1996. The Dynamics of Discrete-Time Compu-
tation, with Application to Recurrent Neural Networks
and Finite State Machine Extraction, Neural Compu-

tation 8(6).
Clouse, D.S., C.L. Giles, B.G. Horne & G.W. Cottrell,
1997. Representation and Induction of Finite State
Machines using Time-Delay Neural Networks, Neural
Information Processing Systems 10, 403{409.

Das, S. & M.C. Mozer, 1994. A Uni�ed Gradient-
Descent/Clustering Architecture for Finite State Ma-
chine Induction, Neural Information Processing Sys-

tems 6, 19{26.
Giles, C.L., C.B. Miller, D. Chen, H.H. Chen, G.Z. Sun &
Y.C. Lee, 1992. Learning and Extracting Finite State
Automata with Second-Order Recurrent Neural Net-
works, Neural Computation 4(3), 393{405.

Hinton, G.E., 1986. Learning Distributed Representa-
tions of Concepts, Proc. Eighth Annual Conference of

the Cognitive Science Society, Amherst, MA, 1{12.
Kolen, J.F. 1993. Fool's Gold: Extracting Finite State
Machines from Recurrent Network Dynamics, Neural
Information Processing Systems 6, 501{508.

Lang, K.J. 1992. Random DFA's can be Approximately
Learned from Sparse Uniform Examples, Proc. Fifth
ACM Workshop on Comp. Learning Theory, 45{52.

Manolios, P. & R. Fanelli, 1994. First order recur-
rent neural networks and deterministic �nite state au-
tomata, Neural Computation 6(6), 1155{1173.

Moore, C., 1997. DynamicalRecognizers: Real-timeLan-
guage Recognition by Analog Computers, Theoretical
Computer Science (to appear).

Omlin, C.W. & C.L. Giles, 1996. Extraction of Rules
from Discrete-Time Recurrent Neural Networks, Neu-
ral Networks 9(1), 41.

Pollack, J.B. 1991. The Induction of Dynamical Recog-
nizers, Machine Learning 7, 227{252.

Tomita, M. 1982. Dynamic construction of �nite-state
automata from examples using hill-climbing, Proc.

Fourth Annual Conference of the Cognitive Science So-

ciety, Ann Arbor, MI, 105{108.
Trakhtenbrot, B.A. & Ya.M. Barzdin' 1973. Finite Au-

tomata; Behavior and Synthesis (North-Holland).
Watrous, R.L. & G.M. Kuhn, 1992. Induction of Finite
State Languages Using Second-Order Recurrent Net-
works, Neural Computation 4(3), 406{414.

Williams, R.J. & D. Zipser, 1989. A learning algorithm
for continually running fully recurrent neural networks,
Neural Computation 1(2), 270.

Zeng, Z., R.M. Goodman & P. Smyth, 1994. Learning
Finite State Machines with Self-Clustering Recurrent
Networks, Neural Computation 5(6), 976{990.

