
Learning a Multi-Player Chess Game with TreeStrap

Diogo Real and Alan Blair

School of Computer Science and Engineering

University of New South Wales

Sydney, 2052, Australia

Email: d.real@student.unsw.edu.au, blair@cse.unsw.edu.au

Abstract—We train an evaluation function for a multi-player
Chess variant board game called Duchess, which is played
between two teams of two or three players, and is similar to
Chess but with extra pieces, larger board size and significantly
greater branching factor. Leaf positions in the alpha-beta search
tree are evaluated with a linear combination of features, whose
values are trained by self-play using the TreeStrap algorithm. We
find superior performance can be achieved with an incremental

approach, where the material values are learned first, followed by
the attacking and defending values, and finally the piece-square
values. To speed up the search, we evaluate board positions in
a cumulative manner – identifying only those features that have
changed, compared to the position at the previous move, and
adjusting the evaluation accordingly.

I. INTRODUCTION

In this paper we explore the learning of a single-layer neu-
ral network evaluation function for Duchess – a multi-player
Chess variant board game for up to 6 players. Duchess was
invented in 1984, and game-tested as a networked Java applet
on the Internet in 1996. The feedback from users was generally
positive, but a number of them suggested that an automatic
player should be made available – to supplement the humans,
or to take over in the event of a human player having to quit
the game on short notice. Although considerable advances had
already been made in Chess, Checkers, Backgammon and other
board games, the computing speeds available at that time made
it infeasible for these techniques to be adapted to a game
like Duchess – which is similar to Chess but with multiple
players, larger board size, additional pieces and consequently
more expensive position evaluation and significantly greater
branching factor.

Recent years have seen the introduction of a number of new
machine learning techniques for strategic games [?], [?], [?],
[?], [?]. Inspired by these advances – together with a general
increase in computing power – we describe in the present
work our preliminary attempts to learn an effective evaluation
function for Duchess, using the TreeStrap algorithm introduced
in [?] to train weights for features adapted from Chess and
Checkers. To speed up the training, features are introduced
incrementally in three stages of training.

II. DUCHESS

Duchess is played on a rose-shaped board by two teams,
with either 2 or 3 players per team (Fig. ??). In addition to
the King, Queen, Knight, Rooks, Bishops and Pawns, each
player also has a Duchess (which is capable of Bishop and
Knight moves), a Fortress (capable of Rook and Knight moves)
and a Wizard (capable of King moves). Any piece next to

Fig. 1. The Game of Duchess.

the Wizard can move “by teleportation” to a square next
to a partner’s Wizard. Pawns can move forward, backward
or sideways and capture in any diagonal direction. When a
Pawn reaches the central “square”, called the Vortex (which
is really hexagonal) it can be promoted to any piece which
has previously been captured. Full details of the rules can be
found at duchessgame.com

In this paper we concentrate on the 4-player version of
Duchess, although the approach could readily be extended to
the 6-player version. We do not consider the 3-player version,
which is played in melee mode where teams and alliances can
change throughout the game. Melee mode presents its own
particular game-theoretic and technical challenges, which have
previously been explored in the context of other games [?]
including an alternative multi-player Chess variant [?].



III. BOARD EVALUATION

Because it is deterministic, fully observable, and played
between two fixed teams, techniques developed for Chess and
Checkers can be adapted to the 4- or 6- player version of
Duchess.

We adopt the framework – common to most modern
computer chess programs – of enhanced alpha-beta search,
with leaf positions evaluated using a one-layer neural network
(although a variety of alternative approaches have also been
tried, including multi-layer network evaluation, sometimes in
combination with evolutionary computation [?], [?], [?], as
well as stochastic search techniques such as Monte Carlo Tree
Search [?]).

The network applies a sigmoid function to a weighted sum
of discrete features, to produce a value between 0 and 1 –
interpreted as the probability of winning from the specified
position. The range of features typically include the following
[?], [?], [?], [?]:

1) material (which pieces are remaining on the board)

2) check (whether a certain player is in check)

3) attacking and defending (whether a piece is attacking
an enemy piece, or defending a friendly piece)

4) piece-square (a particular piece on a particular
square)

These features number in the thousands, but they are
“sparse” in the sense that for any given position, the number
of active features is quite small, thus allowing rapid evaluation
via array lookups. (For example, since the White King can only
be on one square at a time, only one of the 64 piece-square
features for that piece would be active in any given situation.)

The following table gives a rough estimate of the number
of weights required for each type of feature, in Chess and
Duchess. The 4-player version of Duchess is played on a board
with 117 squares, with 9 different kinds of pieces (compared
to 6 in Chess).

Chess Duchess
material: 6 9
check/checkmate: 2 2× 4 = 8

attack/defend: 6×2×6×2 = 144 9×4×9×4 = 1296

piece-square: 64×6×2 = 768 117×9×4 = 4212

total: 920 5525

A small number of additional features need to be added, to
capture the characteristics of a multi-player game. In Duchess,
although a player in checkmate is unable to move, the game
is not finally lost until all players of the same team are in
checkmate simultaneously. We therefore add extra features to
indicate whether each of the players is in checkmate.

Other types of features are sometimes used in Chess pro-
grams, for example mobility (the number of moves available

E

C D F G

A

B

Fig. 2. TreeStrap algorithm. The values for Nodes A and B are both trained
toward that of Node C. Although Node E is not on the line of best play,
its value is still trained toward that of Node F. If F causes a cutoff (thus
pruning G) then E can be trained toward the lower or upper bound provided
by F, if its current value is on the wrong side of the bound.

to each player). But, we excluded these from the present study,
mainly because they are too costly to compute in a game like
Duchess.

IV. LEARNING THE FEATURE WEIGHTS

Once the features have been determined, the weights for
these features can be learned by various stochastic gradient
descent methods, all of which involve training the value of
earlier board positions toward the value of subsequent or
successor positions.

Temporal Difference learning [?] is a general-purpose
algorithm which trains the value of the current position toward
that of one or more subsequent positions in the game. It has
successfully been applied to stochastic games like Backgam-
mon [?]; but, for highly tactical games like Chess, better
performance can be achieved through specialized methods
which combine reinforcement learning with game tree search.
The first such method, now known as TD-Root, was introduced
in Samuel’s 1959 checkers player [?] where the heuristic
function for the current position was trained toward the result
of a minimax search from a subsequent board position. This
approach was later refined in TD-Leaf(λ) [?] where the leaf
node along the line of best play from the current position is
trained toward the leaf node along the line of best play from a
subsequent position (see also [?]). The TreeStrap algorithm [?]
does not restrict its training to the root or a single leaf node but
instead trains the value of every (non-leaf) node in the search
tree toward the value of the leaf node along the line of best
play in the subtree rooted at that node (Fig. ??). In doing so, it
refines its evaluation not only of the “good” positions that were
selected, but also of the “bad” positions which were considered
but rejected. When combined with alpha-beta pruning, the
recursive evaluation sometimes returns only an upper or lower
bound rather than an exact value. TreeStrap handles this by
training towards the upper or lower bound, if the current value
is on the wrong side of the bound.



Previous work has shown that TreeStrap could learn Chess
by self-play from random initial weights and achieve Master
level play, whereas TD-Leaf(λ) could only achieve amateur
level play under the same conditions [?]. For this reason, we
use TreeStrap in the present work on Duchess.

V. TRAINING AND SEARCH

We employ a negamax implementation of alpha-beta
search, with the evaluation always from the perspective of the
player whose turn it is to move. For the 4-player version of
Duchess, the board shape from the perspective of the even team
is different from that of the odd team (see Fig. ??). Therefore,
two separate sets of weights are maintained, and the weights
are selected based on the player whose turn it is to move.

From among the standard techniques for speeding up alpha-
beta search, we employ iterative deepening search and the
killer move heuristic, but not transposition tables or quiescent
search.

The killer move heuristic is based on the assumption that
if a move at depth d in some part of the search tree is good
enough to cause a cutoff (thus pruning off some branches)
then the same move is likely to cause a cutoff at depth d in
some other part of the tree. So, for each depth d, the move at
depth d that most recently caused a cutoff is retained, and that
move is tried first (if it is legal) at subsequent depth-d nodes
in the tree.

Chess programs typically search about 14 moves ahead in
the mid-game, and the same position may re-occur many times
in different parts of the search tree. Positions are therefore
stored in a transposition table with Zobrish hashing for fast
lookup. When a previously searched position is encountered,
the stored evaluation is used instead of re-searching. In our
current implementation of Duchess, due to the significantly
larger branching factor, it is only practical to search 5 to 7
moves ahead in the mid-game and 9 to 13 moves in the end-
game, which amounts to only one or two moves for each
player. For this reason it is unlikely that the same position
would occur many times within the tree, so there is not so
much benefit to be gained from transposition tables.

Quiescent search refers to the practice of extending the
game tree in situations where a King is in Check or a valuable
piece is threatened, until we reach a quiescent position. This
technique is not easily applied in Duchess, because threats
to a King, Queen, Fortress or Duchess occur at almost every
move in the game, so the tree could potentially be extended
without limit. Instead, we must rely on the attacking and
defending features to provide an effective evaluation even for
non-quiescent positions.

A. Cumulative Evaluation:

In Chess, heuristic evaluation is normally computed from
scratch for each new position in the tree. But for Duchess, we
find it is more efficient to compute it cumulatively from the
previous position, by adjusting only those features which have
changed as a result of the latest move.

In general, when Piece X is moved from Square A to Square B,
the evaluation is achieved by the following steps:

1) Examine all squares one Knight move away from
Square A; if a Knight-capable piece is found, subtract
the feature for that piece to be attacking or defending
Piece X (or vice-versa if Piece X is Knight-capable).

2) Scan along each diagonal from Square A until you
find an occupied square, or the edge of the board. If
a Bishop-capable piece is found (or a King, Wizard
or Pawn in the case of a unit Bishop move) subtract
the feature for that piece to be attacking or defending
Piece X; also check for possible discovered attacks
along the diagonal passing through to the other side
of Square A.

3) Repeat Step 2) but this time scanning along rows
and columns, searching for Rook-capable pieces as
well as pieces attacked or defended by Piece X, and
discovered attacks along the row or column passing
through Square A.

4) Repeat Steps 1) - 3) for Square B, this time looking to
add features for Piece X to be attacking or defending
other pieces (and vice versa) as well as blocking of
Rook or Bishop attacks passing through Square B.

5) If a piece on Square B is captured, subtract the
features involving the captured piece.

6) If the move results in a new attack on a King,
or the removal of an existing attack, abandon the
cumulative approach and instead compute the entire
feature vector from scratch, for this board position.

B. Scaling of Learning Rate by Depth

When considering the learning rate for TreeStrap, we need
to bear in mind that weight updates are applied not only at
the root but at every non-leaf position in the (pruned) search
tree – thus introducing a multiplier effect which could scale
exponentially with the depth of the tree.

In the present work, we mitigate this effect by introducing
a scaling factor which assigns an exponentially lower learning
rate to positions further away from the root. Specifically, the
learning rate is

LR = LR0λ
d,

where λ =
1

3
is the discount rate, d is the depth of the node

in the tree and LR0 is the “root” learning rate (typically 10
−4

or 10
−5). There are two reasons for the exponential scaling:

Firstly, the nodes near the root of the tree are being trained on
the basis of a more extensive subtree, thus intuitively providing
“better quality” information. Secondly, it may happen that the
best move at one leaf of the search tree is also the best move
at thousands of other leaves within the tree. Although the
individual positions will differ, the difference between each leaf
node and its parent (in terms of which features are active) may
be substantially preserved, thus amplifying the modification to
those particular weights. For example, if a Pawn is promoted
to a Queen at the final move, the value of the Pawn will be
lifted toward that of the Queen (and may even exceed the value
of the Queen if the exponential scaling were not applied).



As an additional precaution, we enforce that no individual
weight is allowed to change by more than 0.001 in a single
move. This kind of per-weight limit was also imposed in
previous work on Chess [?], where the potential “blowing up”
of weight updates was already recognized, but was mitigated
to some extent by the use of transposition tables, ensuring that
identical positions occurring multiple times in the tree would
only be updated once.

In order to encourage diversity, the first four moves of
each game are played randomly. After that, the “best” move is
always chosen, according to the network’s current evaluation
and search. The weight updates are applied at the end of
each move, so the player’s strategy changes as each game
progresses.

There is a tradeoff between depth of lookahead and speed
of training. With four players in the game, 5-move lookahead
is the minimum depth required for the network to observe
the effect of two consecutive moves by the same player –
for example, moving the same Knight twice, moving two
mutually protective Pawns “in formation” so that they continue
to protect each other, or promoting a Pawn to a Queen, Fortress
or Wizard and then using that piece to good effect. With
only 5-move lookahead, a significant number of games end
in stagnation (indicated by 200 consecutive moves without
a capture or promotion). In order to increase the number
of games ending in a result, we insist on at least 7-move
lookahead when the number of pieces is less that 20, and
9-move lookahead when the number of pieces is less than 8.

VI. EXPERIMENTS

Stage 1: Material, Check and Checkmate

In the first stage of training, we include only weights for
material, pawn-square, check and checkmate, as well as a bias
weight.

We insist that the material weights must be the same for
all players. That is, the value of your partner’s Queen must be
equal to that of your own Queen, and the value of an enemy
Queen must be equal in magnitude (but opposite in sign) to
that of your own Queen.

Since the main value of the Wizard is to enable telepor-
tation, two Wizards provide more than twice the benefit of
a single Wizard. Therefore, we introduce a new feature to
indicate whether the team has both its Wizards still on the
board. (For the 6-player version, an extra feature for three
Wizards would also be needed.)

The bias weight serves two purposes. First, a slightly
positive bias accommodates the fact that an enemy piece may
be captured on the next move. Second, the bias for the even
and odd weights can differ – thus allowing for the fact that the
even team has a slight advantage over the odd team (at least
in the opening game) because the team members are able to
directly attack their closest enemy, without the opportunity for
other players to intervene.

Although TreeStrap was able to learn a good evaluation
for Chess from random initial weights [?], the training for
TreeStrap and other methods can be sped up considerably

P1P2

P3 P4

Pawn

Fig. 3. Initialized pawn-square weights. The odd team (P1 and P3) are playing
against the even team (P2 and P4).

TABLE I. TRAINED MATERIAL WEIGHTS

Piece Weight Feature Weight
Fortress 0.12 P1 check -0.05
Duchess 0.11 P2 check 0.08
Wizard 0.06 P3 check -0.04
Wiz(×2) 0.05 P4 check 0.04
Queen 0.13
Rook 0.09 P1 checkmate -0.33
Bishop 0.07 P2 checkmate 0.26
Knight 0.05 P3 checkmate -0.22
Pawn 0.06 P4 checkmate 0.24

by initializing the material weights [?], [?]. With this in mind,
we initialize the material weights to 0.1 for the Queen, Duchess
and Fortress, and 0.05 for the Knight, Rook, Bishop and
Pawn. We assign an initial weight of 0.05 for each Wizard
individually and an additional 0.05 if a team has both their
Wizards on the board. The weights for check and checkmate
are initialized to 0.05 and 0.25, respectively.

In order to encourage Pawns to move toward the Vortex
for promotion, we include a weight for the location of each
Pawn, which is

0.04− 0.01 d

where d is the distance (number of King moves) from its
current location to the Vortex (see Fig. ??).

This network was trained for 8 hours (140 games) with a
root learning rate of 10−4. The values that emerged are shown
in Table ??.

Pawns in Duchess are much more valuable than in Chess
because they can move or capture in any direction, and have
a greater likelihood of being promoted. The Knight has a low
value compared to the Bishop (and even the Pawn) due to its
limited mobility, in relation to the larger board size.

Checkmate has a large (negative) value for the player
whose turn it is to move (P1) and steadily declines for Players
P2, P3 and P4. The weight for P2 being in check is relatively
large, because P1 may have a chance to capture one of his
pieces. The previous player (P4) can only be in check if he
is also in checkmate, so these two weights are only active in
combination.



Stage 2: Attacking and Defending Weights

In the second stage, we add additional weights to indicate
whether one piece is attacking or defending another piece.

To avoid a blowout in the number of activated features, we
do not include attacking and defending when it is achieved by
teleportation. Thus, a piece next to a Wizard is considered to
be protected by the Wizard itself, but not by any other piece
next to the Wizard (or the partner’s Wizard).

As a starting point, we took the existing weights from the
(trained) Stage 1 network and initialized the (new) attacking
and defending weights to zero. The full set of weights in this
new (Stage 2) network was then trained for 20 hours (220
games) with a root learning rate of 10−5.

We compared the two networks by having them play a
number of games against each other and counting the number
of wins, losses and draws. The first four moves of each game
are chosen randomly. Games are played in duplicate pairs, with
the two networks swapping roles for the second game in each
pair, and both games beginning with the same sequence of four
moves (chosen randomly).

Out of 100 games played under this protocol, the Stage 2
network achieved 85 wins, 13 losses and 2 draws against the
Stage 1 network.

In situations where it is not possible to force a material
advantage within the search horizon, the Stage 2 network is
able to choose moves which lead to a favorable arrangement
of pieces attacking and defending each other, giving it a
significant advantage over the Stage 1 network.

The attacking and defending weights from the Stage 2
network are shown in Fig. ??.

Row 1, columns 2 and 4 are active when pieces belonging
to the player whose turn it is to move (P1) are attacking enemy
pieces (P2, P4). High weight is assigned to a Queen, Fortress
or Rook attacking an enemy piece, or to any piece attacking
an enemy Queen, Fortress, Rook, Wizard or Pawn. Attacks on
the King are supplementary to the check feature being active.

The four blocks of weights along the diagonal in Fig. ??
are active when a player’s own pieces are defending each other.
High weight is given for a King next to a Wizard (allowing
teleportation out of check) and for two Pawns defending each
other in a mutually protective formation. Blocks P1↔ P3,
P2↔ P4 reflect the benefit of defending your partner’s pieces –
either by moving into the center of the board, or by teleporting
a piece (especially the Queen) to a square next to your partner’s
Wizard.

Similar to what has previously been reported for
TD-Leaf(λ) [?], [?], networks trained directly using the
attacking and defending weights combined with material
weights (with either high or low learning rate) perform
poorly compared to the Stage 2 network trained using
the Stage 1 weights as a starting point. The reason
seems to be that the untrained material weights lead
to a number of games ending early, with the winning
team having several of their pieces remaining in their
initial locations. The attacking and defending weights are
therefore being used as a “proxy” for the material weights.

P1 P2 P3 P4

P1

P2

P3

P4

K
Q

F
R

D
B

W
N

P K
Q

F
R

D
B

W
N

P K
Q

F
R

D
B

W
N

P K
Q

F
R

D
B

W
N

P

K
Q

F
R

D
B

W
N

P

K
Q

F
R

D
B

W
N

P

K
Q

F
R

D
B

W
N

P

K
Q

F
R

D
B

W
N

P

Fig. 4. Hinton diagram showing the weight of one piece (row) attacking or
defending another piece (column), from the perspective of player P1 (whose
turn it is to move). P3 is the partner of P1; the opposing team are P2, P4.
Positive weights are indicated by filled-in squares; negative weights by empty
squares.

For example, if the game is won with the Wizard and Knight
having not moved at all, the weight for a Wizard protecting
a Knight will be boosted unreasonably. By first training the
material weights, we ensure that games continue long enough
for most pieces to be deployed, and also ensure that the
attacking and defending weights are properly tuned to the value
of the piece being attacked or defended.

Looking again at column 1 of Fig. ??, we see that some
weights in rows 2 and 4 are positive when we would perhaps
expect them to be negative. These weights might be acting to
some extent as a proxy for the material weights, if the material
weights are not quite settled. Another consideration is the
mode of attack. We expect the weight for P2’s Queen attacking
P1’s Queen to be positive, because it logically follows that
P1’s Queen would also be attacking P2’s Queen, and P1 will
have the advantage of moving first. When it comes to the
Queen attacking the Fortress, this could be either good or
bad depending on whether the Fortress is also attacking the
Queen, i.e. whether the Queen is attacking with a Rook move
or a Bishop move. In future work, it may be advantageous to
introduce additional weights which distinguish these different
modes of attack.

Stage 3: Piece-Square Weights

In the final stage, we add additional weights for the location
of each piece on the board [?], and train the full set of weights
in this new network for a further 4 hours (60 games). The
resulting piece-square weights are shown in Fig. 5.



P1P2

P3 P4

King
P1P2

P3 P4

Queen

P1P2

P3 P4

Fortress
P1P2

P3 P4

Rook

P1P2

P3 P4

Duchess
P1P2

P3 P4

Bishop

P1P2

P3 P4

Wizard
P1P2

P3 P4

Knight

Fig. 5. Trained piece-square weights for pieces belonging to P1, whose turn it is to move.

Positive weights are indicated by filled-in circles; negative weights by empty circles.



We see that the initial square(s) for the Fortress, Duchess,
Queen and Rook end up with a negative weight, thus encour-
aging these pieces to move away from their initial location and
toward the center of the board. The Vortex is highly favored,
along with other squares from which enemy pieces can most
easily be attacked.

In contrast, the network has developed a suspicious pref-
erence for the King, Wizard and Knight to remain in their
initial locations – perhaps a consequence of the fact that a
triumphant player can sometimes capture enemy material, or
force a checkmate, with these pieces not having moved at all.
For the Bishop and Pawn, some of the initial locations are
positive while others are negative.

The Rook, Queen, Fortress and especially the King are
encouraged to teleport to P3’s section of the board. Locating
the Wizard next to the Vortex is also beneficial, because it
allows Pawns to teleport directly to the Vortex for promotion.

In a contest of 100 games, the Stage 3 network won
53 games, lost 38 games and drew 9 games, against the
Stage 2 network. Thus, the inclusion of the piece-square
weights appears to provide some additional benefit, compared
to the material and attacking-defending weights on their own,
but we cannot say at this stage that it is a significant benefit.

It may be that piece-square weights in Duchess are inher-
ently less important than in Chess, because the board quickly
opens up and the effect of the initial configuration is dissipated.
Locations that are good in the mid-game might be bad in
the end-game and vice-versa. This problem could perhaps be
addressed by training different networks for different stages
of the game, and switching when the number of pieces falls
below a pre-defined threshold.

It may also be that greater search depth is required in order
to get maximal benefit from the TreeStrap algorithm. If the
search depth in the mid-game were increased to 9 or 13, the
network would have the opportunity to learn from a sequence
of 3 or 4 moves by the same player. In the endgame, the same
piece may need to be moved three or four times in order to
threaten an opponent’s King; additional features such as the
number of moves required to reach the King(s) may prove
beneficial in this situation.

VII. CONCLUSION

We have successfully trained a Duchess-playing agent,
using the TreeStrap algorithm to learn feature values for a
single-layer neural network evaluation function combined with
alpha-beta search.

The inclusion of attacking and defending weights provides
a substantial benefit over material weights alone. Piece-square
weights also provide some additional benefit, but the TreeStrap
algorithm seems to have difficulty in fully optimizing these

weights, possibly due to the limited search depth in the mid-
game. In future work, we aim to optimize our implementation
and extend the search depth to 9 or 11 moves in the mid-game,
in order to measure the effect of search depth on the quality
of the evaluation. We also plan to refine the attacking and
defending weights, based on the mode of attack (Rook, Bishop
or Knight), and explore additional features such as number of
moves to the opponent King (particularly in the endgame) to
see what additional benefit they may provide.

Alternative approaches such as evolution, MCTS and deep
learning of board features would also be interesting to explore.

ACKNOWLEDGMENT

The authors would like to thank Joel Veness for helpful
advice and discussions.

REFERENCES

[1] Baxter, J., A. Tridgell & L. Weaver, 1998. Knightcap: a chess program
that learns by combining TD(lambda) with game-tree search, Proc. 15th

International Conf. on Machine Learning, 28–36, Morgan Kaufmann,
San Francisco, CA.

[2] Beal, D.F. & M.C. Smith, 1999. Learning piece-square values using
temporal differences, Journal of the International Computer Chess

Association, 22(4), 223-235.

[3] Buro, M., 1998. From simple features to sophisticated evaluation func-
tions, Computers and Games, Springer, 126-145.

[4] Campbell, M., A. Hoane & F. Hsu, 2002. Deep Blue, Artificial Intelli-

gence 134, 57–83.

[5] Chellapilla, K. & D.B. Fogel, 2001. Evolving an expert checkers playing
program without using human expertise, IEEE Trans. Evolutionary

Computation 5(4), 422-428.

[6] David, O.E., H.J. van den Herik, M. Koppel & N.S. Netanyahu, 2014.
Genetic algorithms for evolving computer chess programs, IEEE Trans.

Evolutionary Computation 18(5), 779-789.

[7] Fogel, D.B., T.J. Hays, S.L. Hahn & J. Quon, 2004. A Self-Learning
Evolutionary Chess Program, Proceedings of the IEEE 92(12), 1947-
1954.

[8] Lorenz, U. & T. Tscheuschner, 2006. Player modeling, search algorithms
and strategies in multi player games, in Advances in Computer Games,
210–224, Springer Berlin Heidelberg.

[9] Ramanujan, R. & B. Selman, Trade-Offs in Sampling-Based Adversarial
Planning, Proc. 21st Int. Conf. Automat. Plan. Sched., Freiburg, Ger-
many, 2011, pp. 202209.

[10] Samuel, A.L., 1959. Some studies oin machine learning using the game
of checkers, IBM Journal of Research and Development 3, 211–229.

[11] Schaeffer, J., M. Hlynka & V. Jussila, 2001. Temporal difference
learning applied to a high performance game playing program, Proc. 17th

Int’l Joint Conf. on Artificial Intelligence, 529–534, Morgan Kaufmann.

[12] Sturtevant, N.R., 2003. Multi-player games: Algorithms and ap-

proaches, Doctoral dissertation, University of California Los Angeles.

[13] Sutton, R., 1988. Learning to predict by the method of temporal
differences, Machine Learning 3, 9–44.

[14] Tesauro, G., 1992. TD-gammon, a self-teaching backgammon program,
achieves master-level play, Neural Computation, 6, 215–219.

[15] Veness, J., D. Silver, W. Uther & A. Blair, 2009. Bootstrapping from
game tree search, Advances in Neural Information Processing Systems
19, 1937-1945.


