
 
 

 

  

Abstract - Grammatical Evolution is an extension of Genetic 
Programming, in that it is an algorithm for evolving complete 
programs in an arbitrary language. By utilising a Backus Naur 
Form grammar the advantages of typing are achieved as well 
as a separation of genotype and phenotype. This paper 
introduces a meta-grammar into Grammatical Evolution 
allowing the grammar to dynamically define functions, self-
adaptively at the individual level without the need for special 
purpose operators or constraints. The user need not determine 
the architecture of the dynamically defined functions. As the 
search proceeds through genotype/phenotype space the number 
and use of the functions can vary. The ability of the grammar 
to dynamically define such functions allows regularities in the 
problem space to be exploited even where such regularities 
were not apparent when the problem was set up. 

I. INTRODUCTION 
Genetic Programming [1] and other evolutionary 

algorithms are a proven successful form of weak problem 
solving in AI. Rather than relying on a significant amount of 
task specific knowledge (as required by a strong method) 
evolutionary methods only require a credit assignment 
mechanism that is representation specific rather than task 
specific. A representation specific method of assigning credit 
avoids the need for explicit task knowledge. 

Angeline [2] argues that, unlike traditional weak methods, 
the adaptive nature of evolutionary methods is such that an 
empirical form of credit assignment is built into the 
dynamics of the system. This he believes supports the 
description of evolutionary computation as a “strong weak 
method”. There is a body of thought that given the lack of 
knowledge of the task domain it is important that the 
representation be sufficiently flexible to take advantage of 
any regularity in that domain, even though the existence of 
such regularity may not be known at the time the algorithm 
is run. 

In Grammatical Evolution [3] a Backus Naur Form (BNF) 
grammar is used to map the genotype to the phenotype. A 
separation of genotype and phenotype allows the 
implementation of various operators that manipulate (for 
instance by crossover and mutation) the genotype (in 
Grammatical Evolution - a sequence of bits) irrespective of 
the genotype to phenotype mapping (in Grammatical 
Evolution - an arbitrary grammar). In this paper we 
introduce an extension of the grammar used. This extended 
grammar allows functions to be dynamically defined and 
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exploited, enabling the automatic discovery of any such 
regularity in the problem domain. A sample problem 
domain, known to have an implicit regularity, is examined 
utilising grammars with (a) no functions, (b) automatically 
defined functions (i.e. where the parameters and architecture 
are user pre-defined) and (c) dynamically defined functions 
(DDFs). The DDFs are shown to exploit the regularity in a 
manner competitive with the automatically defined 
functions, whilst eliminating the need for the user to 
explicitly define the architecture of the phenotype.  

The structure of this paper is set out as follows: The next 
section (Section II) discusses related work and the 
motivation for the introduction of DDFs. Section III 
discusses the principles behind Grammatical Evolution. 
Section IV introduces the methodology behind the DDFs 
and provides details on some of the challenges created by 
their implementation. Section V introduces the problem 
domain explored and Section VI presents the results. Section 
VII is the conclusion and presents our ideas for future work. 

II. RELATED WORK 
The ability to evolve functions, as a method of exploiting 

regularity, has been the subject of much research e.g. [4] [5] 
[6]. We briefly review the most relevant work relating to the 
use of functions as well as related work involving the 
alteration of grammar as a means of biasing the search. 

A. Automatically Defined Functions 
Genetic Programming (as described by Koza [1]) involves 

the evolution of programs that can be represented as lisp s-
expressions. These are typically presented as parse trees. 
Koza’s Automatically Defined Functions (ADFs) 
methodology separates the function definition branch of the 
evolving s-expression from the main (or productive) branch 
of the program. If there are multiple functions defined then 
each of their branches are separate, ensuring that a function 
is only able to refer to one that has been previously defined. 
Using the representation proposed by Koza the user must 
decide how many functions there will be and how many 
parameters each function will have. Presumably some 
knowledge of the task domain is needed to guide this choice; 
in more complex problems this knowledge may not be 
available. Two methods were proposed by Koza to 
overcome this limitation. The first [7] involved seeding the 
initial population with a large number of different functions 
and allowing the evolutionary process to weed out the non-
advantageous representations. The second [8] involved the 
use of architectural altering operators - additional operators 
that (instead of applying crossover) delete, create or 
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duplicate functions and parameters. In both these cases 
crossover must be constrained to ensure syntactically valid 
children. The method used to constrain the crossover 
employed by Koza was point-typing crossover which 
involves flattening the structure of the point chosen on the 
second parent (called the female by Koza) and accepting the 
proposed substitute sub-tree only if the function and terminal 
sets used in that sub-tree match the function and terminal 
sets in the first parent (the father). No second child is 
produced. A fuller description can be found in [8]. As will 
be seen, unlike ADFs, the use of DDFs in GE does not 
constrain the type of crossover that can be used nor does it 
require the use of additional operators with the attendant 
further design decisions that accompany their use. 

B. Functions in Grammatical Evolution 
O’Neill and Ryan [9] discuss how to write a grammar to 

utilise functions defined in a similar way to Koza’s ADFs.  
([10] discuses a similar, but more general, grammar driven 
approach.) Whilst this adapts ADFs to GE the adaptation 
still suffers many of the same limitations of ADFs in GP; 
importantly the structure has to be determined prior to the 
run(s) commencing. In addition the method used to ensure 
that the function cannot call itself (or in the case of a 
hierarchy of functions, that the hierarchy is observed) means 
that each function body consists of unique non-terminals. 
Apart from the repetition in the grammar that this entails 
(O’Neill and Ryan suggest that this might be overcome 
through the use of an attribute grammar) this methodology 
does not allow productions defined in the main body to be 
incorporated into a function (and vice-versa). In other words, 
like Koza’s ADFs the development of the function(s) and the 
body are separate (although contemporaneous).1  In their 
proposed further work O’Neill and Ryan suggest the further 
investigation into dynamic grammar based function 
definition and the use of attribute grammars - although there 
does not appear to be any further papers published by them 
in this regard. The methodology presented in the current 
paper is a form of dynamically defined functions that does 
not require attribute grammars and differs from their static 
definition methodology in that it allows the exchange of 
productions between functions and the main body (and vice 
versa). 

C. Altering the bias by altering grammar productions 
Whigham [12] introduces a method of biasing the search 

by modifying the grammar. Rather than seeking to 
encapsulate higher-level functions, his method was one of 
biasing the search in the grammar by identifying a 
production that appears to be useful and encapsulating that 
completed production as an expansion in the new grammar. 
Effectively this re-writing of the grammar is designed to bias 

                                                
1 It should be noted their use of the ripple crossover complicates this 

analysis as one of the effects of that crossover is that codons used in one 
part of the grammar can (although with a different interpretation) be used in 
a different part of the grammar. This is termed ripple crossover and the 
interested reader is referred to [11]. 

any future searches (by newly created individuals) making it 
more likely that proven successful expansions would be 
selected by those newly created individuals.  

There are two points to note. The first is that the biasing 
of the grammar occurs whenever the expansion could occur. 
Certainly in problem domains such as the multiplexer 
domain examined by Whigham it is likely that such an 
expansion will be useful wherever it appears, but one can 
imagine more complex domains where in a later part of the 
program a different expansion is required than that required 
in the earlier part of the program. The second point to note is 
that the biasing is global; the grammar is altered for all new 
individuals. The whole population being created after the 
bias will be altered by it. This is in contrast to, say, Koza’s 
architecturally altering operations where the change is made 
for that specific individual (and its children). This move 
towards a more global change is not in harmony with our 
desire to have changes made only on an individual, albeit 
inheritable, basis. 

Rosca and Ballard [5] introduced another method of 
biasing the grammar, called Adaptive Representation (AR). 
The idea behind AR is that the levels in the hierarchy are 
discovered by using either heuristic information as conveyed 
by the environment or statistical information extracted from 
the population. This information is used to introduce 
functions composed of small highly fit building blocks as 
additional terminals in the grammar. One more point to note 
is that once the “building block” has been incorporated into 
the grammar it is fixed and can no longer change (either 
through crossover or mutation). As with Whigham’s 
methods this method requires generational change whereby 
new individuals are generated to take advantage of the 
changed grammar.  

Unlike the DDFs proposed in this paper both previous 
methods of altering grammar production require a global 
analysis of the search space and a global change to the 
grammar. This runs the risk of requiring a task type specific 
heuristic. Altering the grammar on a global basis contrasts 
with nature’s individual alterations and, as previously 
discussed, is not a route we wish to go down. [13] introduces 
a method of evolving the grammar (as well as the genetic 
code) on an individual basis, but this methodology still 
requires work to overcome some problems with the 
crossover as identified in that paper. 

D. Evolutionary induction of subroutines 
Angeline and Pollack [4] introduced the idea of a Genetic 

Library Builder (GLiB). The concept here is to allow a 
separate operator to compress randomly selected subtrees. 
These compressed subtrees are placed in a library and are 
assigned a unique name. The compressed subtree is replaced 
by its unique name. Subsequently, through crossover, that 
subroutine could be passed throughout the whole population, 
each individual potentially being able to use the unique 
name to access the globally held subtree. To complement the 
compression operator an expansion operator is also 
introduced which would take a named subroutine and 
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expand it in situ in the parse tree in question. Subroutines in 
the library would be removed if they were no longer being 
used by any of the population. This differs from Rosca’s 
approach as the decision as to whether a particular 
subroutine is useful or not is left entirely to the genetic 
algorithm which, as the authors note, is more in line with the 
“enlightening” guidelines provided for genetic algorithm 
design in [14]. Two points to note are that with GLiB when a 
subtree with a function call is transferred (via crossover) to a 
new parent, the function call continues to refer to the 
function it has always referred to (i.e. it uses the same 
unique name and refers to the same code in the library) 
whereas with ADFs the function call would now refer to the 
function in the new parent. It is not clear whether this is an 
advantage or not. The second point is that whilst the 
subroutine is in the library it cannot further evolve nor can 
any subsection of its gentic material be utilised. Once 
expanded it can again evolve, but that will only be for the 
individual (and its children) that happen to have had the 
expand operator applied to them and not those that still refer 
to the code held in the library.   

E. Summary 
As discussed above it is clear that there has been a large 

amount of work on different methods of introducing 
functions into genetic algorithms and Genetic Programming 
in particular. Although each method has several of the 
features listed below none of the methods of which we are 
aware has all of them: 
• Does not require the architecture to be specified in 

advance. 
• Allows the transfer of productions between the main body 

and each of the functions. 
• Requires no high-level heuristics which attempt to modify 

or bias the genetic algorithm. 
• Requires no alteration to the crossover operator. 
• Allows the functions to continue to evolve 

contemporaneously with the main body. 
• Makes no global change to the evolutionary process. 
• Requires no additional operators to be applied (i.e. is 

completely within the control of the crossover and 
mutation operators). 

• Requires minimal changes to the representation (or 
grammar). 
DDFs have all of the features listed above. This paper 

seeks to show that DDFs are competitive with ADFs in an 
environment with known regularity where the optimal 
structure of ADFs can (from this domain knowledge) be 
identified in advance. Given that DDFs are competitive with 
optimally structured ADFs and that they require no domain 
knowledge, no special operators and minimal change to the 
grammar then we believe that they enhance the ability of GE 
and GP to solve problems. The next two sections serve to 
describe Grammatical Evolution and the implementation of 
DDFs. 

III. GRAMMATICAL EVOLUTION 

A. Introduction 
Grammatical Evolution (GE) is a form of genetic 

programming which utilises the evolutionary algorithm to 
evolve code written in any language, provided the grammar 
for the language can be expressed in a Backus Naur Form 
(BNF) style of notation [3].  Traditional genetic 
programming, as described by Koza [1] has the requirement 
of “Closure”. The term closure is used by Koza to indicate 
that a particular function set should be well defined for any 
combination of arguments. Previous work by Montana [15] 
suggests that superior results can be achieved if the 
limitation of “closure” required in traditional genetic 
programming can be eliminated, for example through typing.  
Whigham [16] demonstrates the use of context free 
grammars to define the structure of the programming 
language and thereby overcome the requirement of closure 
(the typing being a natural consequence of evolving 
programs in accordance with the grammar). GE utilises the 
advantages of grammatical programming, but, unlike the 
method proposed by Whigham, separates the grammar from 
the underlying representation (or as this is commonly 
referred to; the genotype from the phenotype).  

It has been argued that the separation of genotype from 
phenotype allows unconstrained genotypes (and 
unconstrained operations on genotypes) to map to 
syntactically correct phenotypes. Keller [17] presents 
empirical results demonstrating the benefit of this type of 
mapping. One of the interesting aspects of having such a 
simple underlying genotype as GE (a bit string) is that it is 
possible to design a number of operators that act on this 
simple bit string. For instance crossovers can be designed 
which mirror uniform crossover, single bit crossover and 
crossovers which swap complete expansions in the 
underlying grammar, each of which represent (after the 
genotype to phenotype mapping has been performed) 
radically different methods of searching the phenotype 
space. The way that GE maps the genotype to the phenotype 
is discussed in the next subsection. The style of crossover 
used in this paper is discussed in subsection III.C 

B. Grammatical Evolution – the mapping 
Rather than representing programs as parse trees GE 

utilises a linear genome representation to drive the derivation 
of the encoded program from the rules of an arbitrary BNF 
grammar. Typically the genome (being a variable length bit 
string) is split up into 8 bit codons (groups of 8 bits) and 
these codons are used sequentially to drive the choices of 
which branch of the grammar to follow. The maximum value 
of the codon is typically many times larger than the number 
of possible branches for any particular non-terminal in the 
grammar and a mod operator is utilised to constrain it to the 
required number. For instance if a simple program grammar 
were as follows: 

2640



 
 

 

<Program> :: = <Lines> 
<Lines> :: = <Action> | <Action > <Lines> 
<Action> ::= North | South | East | West 
Assume an individual had the following DNA and codon 

pattern: 
DNA: 00100001 00010100 00100000 00000011 00010000 

Codons:     33           20              32             3              16 

No codon would be used for the first expansion (since 
there is only one choice). The initial codon of the genome 
would be used to determine whether to expand <Lines> to 
<Action> or to <Action><Lines>. The value of 33 would be 
MOD’d with two (since there are two choices) to give a 
value of 1. The second choice (<Action><Lines>) would 
then be chosen. The expression now is “<Action><Lines>”. 
The first non-terminal <Action> is expanded by using the 
next codon (20). <Action> has four choices, so 20 would be 
MOD’d with four, to give zero and North would be chosen. 
The expression is now “North <Lines>”. The next non-
terminal (<Lines>) is expanded using the codon 32. 32 Mod 
2 = 0, so <Action> is chosen, leaving us with “North 
<Action>”. <Action> is then expanded using the next codon 
(3), to give us West. The expression is now “North West”. 
There being no further non-terminals in the expression the 
expansion is complete. The remaining codon is not used. 

If the expression can be fully expanded by the available 
codons (i.e. the expansion reaches a stage where there are no 
non-terminals) the individual is valid; if the codons run out 
before the expression is fully expanded the individual is 
invalid and removed from the population. 

C. Crossover Operators 
GE typically utilises a simple one-point operator termed 

the “Ripple Crossover” [11]. Recently a different type of 
crossover has been proposed for GE [18], referred to as the 
LHS Crossover Operator. The LHS crossover acts as a two-
point crossover whereby the expansion of a rule of the 
grammar (or the Left Hand Side of a grammatical rule) is 
replaced by an expansion of the same rule found in the other 
parent. Since the LHS Crossover is the closest type of 
crossover operator to the operator used in GP, for the 
purposes of the tests conducted in this paper we limited the 
crossover to the LHS Crossover discussed in that paper, 
although it should be noted DDFs can be used with any 
scheme which operates on a sequence of bits.  

code: i_value 

i_value: xval 
  | number 
  | ( i_value op i_value ) 
  | - i_value 

number: 0 . digit digit digit 

digit: 0 | 1 | … | 9 

op:   + | - | * | % 

Listing 1 – a simple example grammar 

IV. DYNAMICALLY DEFINED FUNCTIONS 

A. Details of Implementation 
In order to implement DDFs certain additional rules are 

introduced into the grammar to allow the grammar itself to 
define functions and determine the number of parameters. 
Listing 1 contains a simple BNF Grammar that, for instance, 
could be used for symbolic regression (xval represents the 
value passed to the program for evaluation). 

code:  i_value 
   | DEFUN code 

DEFUN: PARAMS FUNCBODY  

i_value: xval 
  | number 
  | ( i_value op i_value ) 
  | - i_value 
  | FUNC 

number: 0. digit digit digit 
  | PUSE 

digit: 0 | 1 | … | 9 

op:   + | - | * | % 

FUNCBODY:  i_value 

FPAR: i_value 

PARAMS:  NOP | PARAM | PARAM PARAMS 

Listing 2 – grammar in Listing 1 adapted to use DDFs 

If one were to adapt this grammar to utilise DDFs the 
following are required: 
(i) The keyword DEFUN must be inserted into the 

grammar, specifying where a function definition may 
appear. This would normally be before any of the 
“main body” code. DEFUN expands into the non-
terminals PARAMS and FUNCBODY. 

(ii) The expansion of the keyword PARAMS will 
determine the number of parameters the function has. 
Each PARAM it expands into equates to one 
parameter. For instance an expansion of PARAM 
would equate to one paramater, an expansion of 
PARAM PARAM equates to two parameters etc. A 
NOP expansion means no parameter. The PARAMS 
production rule contained in Listing 2 is a typical 
example definition of PARAMS allowing functions to 
to have none, one or more than one parameter.  

(iii) FUNCBODY needs to be defined. This specifies the 
form of the function body. In Listing 2, the function 
body is an <i_value>.  

(iv) The terminal PUSE needs to be inserted into the 
grammar. This terminal represents the use of a 
parameter in a function body. Where there is more than 
one parameter, the codon value is used to select 
between them. 

(v) The non-terminal FPAR needs to be defined. Each time 
a function call is to be made the non-terminal FPAR is 
used to represent each parameter to be passed to the 
function. The codons in the genotype will then be used 
to expand these FPARs leading to the construction of 
the parameters passed to the function.  
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(vi) Finally the keyword FUNC needs to be placed in the 
grammar, to indicate where a previously defined 
function can be called. In Listing 2 a function can be 
called whenever an <i_value> is to be expanded (in the 
example this is logical as the body of the function will 
also be an <i_value>). 

The actual process carried out in the mapping of genotype 
to phenotype (originally described in section III.B) would 
now be as follows. The process would start as normal. When 
a DEFUN is encountered the mapping process would start 
creating a new function with a unique name (say, F0 for the 
first one, F1 for the second etc). In order to create the 
function it would use the next available codons to fully 
expand the PARAMS non-terminal, the number of 
“PARAM” that this expands to determines the number of 
parameters the function will have (see (ii) above). It then 
uses codons to decode the FUNCBODY non-terminal (see 
(iii) above). During this process the PUSE non-terminal (if 
encountered) expands to refer to any of the parameters 
declared for that function (see (iv) above). So, for instance, 
if a function had two parameters, PUSE would (for that 
function) expand as follows:  

PUSE: Parameter0 | Parameter1  

Where PUSE is embedded as a possible right hand 
expansion of a different non-terminal (as in Listing 2), the 
potential range of expansions of that non-terminal is 
increased. So, for instance, if FUNCBODY were being 
expanded for a function with two parameters, then (using the 
grammar in Listing 2) the expansion of <number> would 
now be (after the appropriate substitution of PUSE): 

number: 0. digit digit digit 
| Parameter0 | Parameter1 

Once FUNCBODY has been fully expanded the function 
definition is complete. The non-terminal FUNC (see (vi) 
above) is amended so that it includes the newly defined 
function as a potential expansion. If the non-terminal FUNC 
is encountered then it will expand to a call to this function 
populated with the correct number of FPARS (see (v) 
above). So for instance assuming two functions (F0 and F1) 
had been defined previously, respectively with one and three 
parameters, then, at that point and for that individual, if the 
FUNC non-terminal is encountered it would expand as 
follows: 

FUNC: F0 (FPAR) | F1 (FPAR, FPAR, FPAR) 

Listing 3 contains the grammar for the problem domain 
discussed in this paper – the Minesweeper domain. Section 
V.C contains a full discussion of the problem, but the 
grammar is presented here as an example of a slightly more 
complex grammar and to aid discussion of some of the 
intricacies that should be borne in mind when adapting a 
grammar to utilise DDFs. 

 

code:  defineFunc lines  
 | defineFunc code 

defineFunc: NOP | DEFUN 
 
lines:  line  
 | line lines 

line:  action  
 |if ( obstacle_ahead )  
       { lines } else { lines }  
 | complex_line  
 | doFunc 

doFunc: FUNC 

complex_line: frog ( line ) 
 | v8A ( line , line )     

action:  move  
  | left  
  | v8  
  | PUSE 

v8:   ( digit , digit ) 

digit:  0 | 1 | 2 | 3 | 4 | 5 | 6 | 7   

FUNCBODY: lines 

PARAMS:  NOP | PARAM | PARAM PARAMS 

FPAR:  v8  
 

Listing 3 – the MineSweeper DDF Grammar  

B. Number of functions and parameters determined 
dynamically 
As can be seen from the grammars in Listing 2 and 

Listing 3, implementing DDFs can be designed so that the 
number of DEFUN keywords in any particular decoding 
depends on the specific genotype of each individual. The 
number of functions therefore is under the control of the 
evolutionary mechanism. Similarly with the parameters for 
each function – with an appropriately designed grammar the 
number of parameters are under genotype (and hence 
evolutionary) control. Listing 2 and 3 are examples of 
grammars that can contain zero or more parameters. 

C. Implicit Architecture Altering Operations 
Using, for illustrative purposes, the grammar in Listing 3 

and the functionality of the LHS Crossover operator it is 
easy to see how the crossover operator can bring in or delete 
functions in a child or change the number of parameters used 
by a function. 

Assume Parent 1 has a parse tree which commences as 
follows (using the grammar in listing 3): 

<code> -> <defineFunc> <code> -> NOP <code>  
-> NOP <defineFunc> <lines>  

-> NOP DEFUN <lines> 

And Parent 2 has a parse tree that commences as follows: 
<code> -> <defineFunc> <lines>  
 -> DEFUN <lines> 

It can be seen that both Parent 1 and Parent 2 each define 
one function. Now if the two <defineFunc> in bold are 
swapped by the crossover operator (note although not shown 
here, the whole expansion of DEFUN, including expansion 
of PARAMS and the expansion of FUNCBODY are 
swapped), child1 will become: 
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<code> -> <defineFunc> <code>  

-> DEFUN <code>  

-> DEFUN DEFUN <lines> 

and child 2 will be  
<code> -> <defineFunc> <lines>  

 -> NOP <lines> 

representing an insertion of a function (child1) and the 
deletion of a function (child2). 

As can be seen from the above example the use of the 
extra non-terminal <defineFunc> with a potential expansion 
to a NOP dummy function or a productive DEFUN serves as 
a “reserve” spot on the list of codons to facilitate the 
swapping of complete expansions of function definitions. 

D. Ability to swap genotypes between functions and the 
main body  
Using the LHS crossover, an expansion of, say, <line> in 

the main body of the program could be swapped for a similar 
expansion in a function (or vice-versa). Unless the grammar 
specifically defines different expansions within a function 
body the LHS crossover will swap matching non-terminals 
regardless of where they appear in the phenotype. Other 
operators that act on the bit stream equally ignore 
function/main body boundaries.  

The transfer of codons from one location to another (for 
instance from the main body to a function) does raise with it 
the question as to whether these codons will have the same 
effect (or meaning) in their new location. A thoughtfully 
designed grammar can increase the chances of some of the 
structure being preserved; for example, by “isolating” 
keywords which are likely to change in meaning depending 
on their location (such as FUNC) – see listing 3 for an 
example. 

V. THE TEST ENVIRONMENT 

A. The GE environment 
All the problem domains were tested in a constant GE 

environment. The following strategies were used: 
• Selection of individuals was based on a probability 

selector, i.e. the chance of any particular individual being 
chosen to breed was directly proportional to its fitness. 

• Although there was no random reproduction or copying 
of individuals, a strategy of retaining the fittest 5% of 
individuals was adopted. 

• A constant mutation rate of 1 in 2,000 (independent of the 
length of the DNA string) was applied to each child 
generated. 

• Two children were generated for each crossover operator 
and the mutation operator was applied to each bit of the 
genotype of each child. 

• Invalid individuals were given zero fitness and were not 
eligible for selection or breeding. 

• Individuals were started with a random bit string; in 
particular no attempt was made to ensure that the first 

random individuals were a minimum size, although if an 
individual was invalid it was regenerated. 

• Given that GE seems to perform best with small 
populations (say, 200) over multiple generations (say, 
2,500), these were the parameters used for the reported 
test results. Similar results (although generally with lower 
overall averages) were obtained with a more typical GP 
population size and generation count (5,000 and 50), but 
space prevents the reporting of these runs here. 

B. Bloat control 
Like all GP, GE has the potential to suffer from what has 

been termed “bloat”. In order to avoid this issue, the system 
utilised a mild fitness pressure on DNA size. The rule used 
was: if DNA size exceeds 3000 bits, then if two entities had 
the same fitness then the entity with the smaller DNA is 
ranked ahead. This only impacts on the decision as to the top 
5% of individuals to copy across to the next generation (it 
does not impact on the probabilities of selection for 
crossover). This strategy appears to be sufficient to contain 
bloat in GE. During a typical long run, with each increase in 
fitness, DNA sizes of the top individuals increase then 
slowly shrink again – until the next fitness improvement is 
encountered. Finally DNA sizes were capped at 7000 bits; if 
they exceeded this then the entity was deemed illegal. 

C. Problem Domain - The Minesweeper Problem 
In this problem, used by Koza in his analysis of ADFs [6], 

an agent (the minesweeper) needs to traverse a toroidal 8x8 
grid. There are six squares in the grid that will terminate the 
agent (mines). The agent needs to visit each of the 58 other 
squares without being terminated (blown up). Following 
Koza’s design each agent is tested on two different maps 
leading to a maximum score of 116. Since this was 
originally a GP problem the grammar is closed. The 
operators used by Koza are MOVE, which moves the agent 
one forward, LEFT which turns it left. To ensure closure 
both MOVE and LEFT return a vector in the form of (0,0). 
FROG, which takes one vector argument and moves the 
agent to the location specified by that vector and returns its 
argument (i.e. it acts as an identity operator with a side 
effect). IF-OBSTACLE, which acts on the first or second 
branch dependent on whether a mine lies ahead of the agent. 
V8A, which takes two vectors and returns their addition 
(moded by 8), RV8, which is a constant vector and PROGN, 
which serves to concatenate the other functions. Koza 
decided on an ADF hierarchy with two functions, neither of 
which had parameters. On examining the preliminary results 
from the MineSweeper problem we noticed that most runs of 
the DDFs seemed to prefer a single function definition, so 
we included an additional run of ADFs defined using one 
ADF rather than the two utilised by Koza. 

In order to implement the above in GE, separate 
grammars were written which replicated both the Non-ADF 
grammar and the ADF grammars in the manner illustrated 
by [9]. Unfortunately space precludes their replication in this 
paper. 
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VI. RESULTS 

Chart 1 shows the fitness averaged over each of the 250 
independent runs (note that the Fitness axis (the y-axis) does 
not go down to zero so as to enable the difference between 
the runs to be more easily seen). As can be seen from 
Chart 1 DDFs performed as well as (and towards the end of 
the runs better than) ADFs with one or two functions. The 
poor performance of the run with no functions confirms 
Koza’s findings with respect to the improvement engendered 
by the use of functions in solving this problem domain. 

Similar results are obtained if one looks at the percentage 
of independent runs generating 100% successful solutions  – 
see chart 2 (note that this chart uses 116 fitness as a criteria 
of success– not the 112 success level used by Koza) 

Again, as with Koza’s results, the improved ability to 
solve the problem by utilising functions is demonstrated. 
The success rate with DDFs also appears to continue to 
rise with the number of generations at a higher rate than 
experienced with the ADFs. Each of the runs is 
independent of the others and this indicates that a 
grammar using DDFs, for this problem domain, appears to 
be more capable of continued evolution. An analysis of 
the number of functions contained within the genotypes 
(and expressed in the phenotype) of the individuals 
indicates that the runs tend to converge quickly (within 

200 generations) to using one (approx. 64% of the runs) or 
two functions (approx 28% of the runs). However, within 
the population at any time there tends to be a few 
individuals with a different number of functions. 
Occasionally in certain runs the dominant number of 
functions shifts, from one to two functions or vice-versa. 
Sometimes this shift is permanent, sometimes it lasts for 
several hundred generations. Chart 3 shows a function 
distribution of a successful run which, whilst more 
volatile than most, illustrates some of the shifts that may 
occur. As can be seen individuals with no functions are 
quickly eliminated. Initially the dominant genome 
contains two functions. Although not very clear in the 
graph, the odd individual or small group of individuals 
with three or four functions are tried (for instance at 
generation 700 8 of the 200 individuals have three 
functions). At about 1050 generations a shift occurs to 
using one function. The system is in a state of flux 
between 1550 generations and 1650 generations - where 
there are a large number of individuals with one and two 
functions and some with three functions, before things 
settle down and the one function individuals then 
dominate the population until the end of the run.  

One of the questions raised by the above results is 
why, in this problem domain, DDFs appear to be more 
successful than ADFs in the continued evolution of 
solutions. The solutions found by the DDFs do not 
materially differ from those found by the ADFs, given 
that the DDFs appear to utilise one or two functions. 
Consequently, we do not believe that it’s a matter of a 
difference in the expressive power between the two 
methods (since a one function ADF has the same 
expressive power as a DDF which happens to have one 
function) nor is it a matter simply of DDFs replicating 
successful solutions as we are looking at the number of 
independent runs which succeed. Instead, we believe the 
answer to this question might lie with the ability of DDFs 
to increase or decrease the number of functions during the 
course of a run. This ability to dynamically change the 

Chart 2 – Percentage of successful solutions 

Chart 1- Average fitness over 250 runs 

Chart 3 - Analysis of function distribution in a sample run 
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number of functions may allow not only the optimal 
architecture to be evolved (rather than created by the user) 
but also may allow the run to escape from local maxima 
that would otherwise trap it. 

VII. CONCLUSIONS AND FUTURE WORK 
This paper serves as a proof of concept for DDFs. We 

have shown how a BNF grammar can be modified to allow 
the genome to dictate the number and use of functions 
freeing the user from the need to try and predict an optimal 
architecture beforehand. Our further goal was to allow such 
functions to be used without changing any other part of GE, 
i.e. without changing the mutation operator and without 
requiring changes to the crossover operator or the inclusion 
of different (architecture altering) operators.  

We have shown that in the domain discussed in this paper, 
which does have a regularity to it (but not an obvious one 
function/two function regularity) DDFs are able to exploit 
that regularity. The runs show that even a small population 
(200) is capable of supporting a shift in the number of 
functions as the run explores the search space. In the 
problem domain examined this proved to be an advantage 
over a fixed architecture. We acknowledge it is likely that 
where there is clearly one optimal architecture which the 
user can define then DDFs might not be as efficient in 
finding a solution as the user pre-defined (and therefore 
smaller) search space. However, as the problems tackled by 
Genetic Programming and GE increase in complexity the 
difficulty in designing such hierarchies will also increase. 

We see the main advantage of DDFs as freeing the user 
from guessing the hierarchy. We also hope that they prove 
conducive in problem sets where the fitness landscape varies 
during the search process. 

One concern we still have with the functions is that a 
change in the number of parameters a function uses causes a 
“ripple” in the designation of which codons interpret which 
part of the grammar and will cause a large change in the 
phenotype (although as noted in [11] such a “ripple” is not 
per se destructive and can be beneficial). On way round this 
would be to employ some of the ideas of StackGP [19] 
whereby the number of parameters pushed onto the stack are 
chosen by the genome when calling the function (and not 
fixed by reference to the number of parameters the function 
expects). If too many parameters are pushed the excess ones 
are ignored. If too few (e.g. two parameters are pushed but 
the function expects three) an access of the excess 
parameters by the function returns a neutral or nil value. 
Whether this trade-of between expanding the search space 
and preventing the “ripple” effect currently experienced is 
beneficial will be interesting to explore. 
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