

Abstract - Grammatical Evolution is an extension of Genetic
Programming, in that it is an algorithm for evolving complete
programs in an arbitrary language. By utilising a Backus Naur
Form grammar the advantages of typing are achieved as well
as a separation of genotype and phenotype. This paper
introduces a meta-grammar into Grammatical Evolution
allowing the grammar to dynamically define functions, self-
adaptively at the individual level without the need for special
purpose operators or constraints. The user need not determine
the architecture of the dynamically defined functions. As the
search proceeds through genotype/phenotype space the number
and use of the functions can vary. The ability of the grammar
to dynamically define such functions allows regularities in the
problem space to be exploited even where such regularities
were not apparent when the problem was set up.

I. INTRODUCTION
Genetic Programming [1] and other evolutionary

algorithms are a proven successful form of weak problem
solving in AI. Rather than relying on a significant amount of
task specific knowledge (as required by a strong method)
evolutionary methods only require a credit assignment
mechanism that is representation specific rather than task
specific. A representation specific method of assigning credit
avoids the need for explicit task knowledge.

Angeline [2] argues that, unlike traditional weak methods,
the adaptive nature of evolutionary methods is such that an
empirical form of credit assignment is built into the
dynamics of the system. This he believes supports the
description of evolutionary computation as a “strong weak
method”. There is a body of thought that given the lack of
knowledge of the task domain it is important that the
representation be sufficiently flexible to take advantage of
any regularity in that domain, even though the existence of
such regularity may not be known at the time the algorithm
is run.

In Grammatical Evolution [3] a Backus Naur Form (BNF)
grammar is used to map the genotype to the phenotype. A
separation of genotype and phenotype allows the
implementation of various operators that manipulate (for
instance by crossover and mutation) the genotype (in
Grammatical Evolution - a sequence of bits) irrespective of
the genotype to phenotype mapping (in Grammatical
Evolution - an arbitrary grammar). In this paper we
introduce an extension of the grammar used. This extended
grammar allows functions to be dynamically defined and

Robin Harper and Alan Blair are with the School of Computer Science

and Engineering, University of New South Wales, Sydney, 2052, Australia
and the ARC Centre of Excellence for Autonomous Systems. Email:
{robinh,blair}@cse.unsw.edu.au

exploited, enabling the automatic discovery of any such
regularity in the problem domain. A sample problem
domain, known to have an implicit regularity, is examined
utilising grammars with (a) no functions, (b) automatically
defined functions (i.e. where the parameters and architecture
are user pre-defined) and (c) dynamically defined functions
(DDFs). The DDFs are shown to exploit the regularity in a
manner competitive with the automatically defined
functions, whilst eliminating the need for the user to
explicitly define the architecture of the phenotype.

The structure of this paper is set out as follows: The next
section (Section II) discusses related work and the
motivation for the introduction of DDFs. Section III
discusses the principles behind Grammatical Evolution.
Section IV introduces the methodology behind the DDFs
and provides details on some of the challenges created by
their implementation. Section V introduces the problem
domain explored and Section VI presents the results. Section
VII is the conclusion and presents our ideas for future work.

II. RELATED WORK
The ability to evolve functions, as a method of exploiting

regularity, has been the subject of much research e.g. [4] [5]
[6]. We briefly review the most relevant work relating to the
use of functions as well as related work involving the
alteration of grammar as a means of biasing the search.

A. Automatically Defined Functions
Genetic Programming (as described by Koza [1]) involves

the evolution of programs that can be represented as lisp s-
expressions. These are typically presented as parse trees.
Koza’s Automatically Defined Functions (ADFs)
methodology separates the function definition branch of the
evolving s-expression from the main (or productive) branch
of the program. If there are multiple functions defined then
each of their branches are separate, ensuring that a function
is only able to refer to one that has been previously defined.
Using the representation proposed by Koza the user must
decide how many functions there will be and how many
parameters each function will have. Presumably some
knowledge of the task domain is needed to guide this choice;
in more complex problems this knowledge may not be
available. Two methods were proposed by Koza to
overcome this limitation. The first [7] involved seeding the
initial population with a large number of different functions
and allowing the evolutionary process to weed out the non-
advantageous representations. The second [8] involved the
use of architectural altering operators - additional operators
that (instead of applying crossover) delete, create or

Dynamically Defined Functions In Grammatical Evolution
Robin Harper and Alan Blair, Member, IEEE

0-7803-9487-9/06/$20.00/©2006 IEEE

2006 IEEE Congress on Evolutionary Computation
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

2638

duplicate functions and parameters. In both these cases
crossover must be constrained to ensure syntactically valid
children. The method used to constrain the crossover
employed by Koza was point-typing crossover which
involves flattening the structure of the point chosen on the
second parent (called the female by Koza) and accepting the
proposed substitute sub-tree only if the function and terminal
sets used in that sub-tree match the function and terminal
sets in the first parent (the father). No second child is
produced. A fuller description can be found in [8]. As will
be seen, unlike ADFs, the use of DDFs in GE does not
constrain the type of crossover that can be used nor does it
require the use of additional operators with the attendant
further design decisions that accompany their use.

B. Functions in Grammatical Evolution
O’Neill and Ryan [9] discuss how to write a grammar to

utilise functions defined in a similar way to Koza’s ADFs.
([10] discuses a similar, but more general, grammar driven
approach.) Whilst this adapts ADFs to GE the adaptation
still suffers many of the same limitations of ADFs in GP;
importantly the structure has to be determined prior to the
run(s) commencing. In addition the method used to ensure
that the function cannot call itself (or in the case of a
hierarchy of functions, that the hierarchy is observed) means
that each function body consists of unique non-terminals.
Apart from the repetition in the grammar that this entails
(O’Neill and Ryan suggest that this might be overcome
through the use of an attribute grammar) this methodology
does not allow productions defined in the main body to be
incorporated into a function (and vice-versa). In other words,
like Koza’s ADFs the development of the function(s) and the
body are separate (although contemporaneous).1 In their
proposed further work O’Neill and Ryan suggest the further
investigation into dynamic grammar based function
definition and the use of attribute grammars - although there
does not appear to be any further papers published by them
in this regard. The methodology presented in the current
paper is a form of dynamically defined functions that does
not require attribute grammars and differs from their static
definition methodology in that it allows the exchange of
productions between functions and the main body (and vice
versa).

C. Altering the bias by altering grammar productions
Whigham [12] introduces a method of biasing the search

by modifying the grammar. Rather than seeking to
encapsulate higher-level functions, his method was one of
biasing the search in the grammar by identifying a
production that appears to be useful and encapsulating that
completed production as an expansion in the new grammar.
Effectively this re-writing of the grammar is designed to bias

1 It should be noted their use of the ripple crossover complicates this

analysis as one of the effects of that crossover is that codons used in one
part of the grammar can (although with a different interpretation) be used in
a different part of the grammar. This is termed ripple crossover and the
interested reader is referred to [11].

any future searches (by newly created individuals) making it
more likely that proven successful expansions would be
selected by those newly created individuals.

There are two points to note. The first is that the biasing
of the grammar occurs whenever the expansion could occur.
Certainly in problem domains such as the multiplexer
domain examined by Whigham it is likely that such an
expansion will be useful wherever it appears, but one can
imagine more complex domains where in a later part of the
program a different expansion is required than that required
in the earlier part of the program. The second point to note is
that the biasing is global; the grammar is altered for all new
individuals. The whole population being created after the
bias will be altered by it. This is in contrast to, say, Koza’s
architecturally altering operations where the change is made
for that specific individual (and its children). This move
towards a more global change is not in harmony with our
desire to have changes made only on an individual, albeit
inheritable, basis.

Rosca and Ballard [5] introduced another method of
biasing the grammar, called Adaptive Representation (AR).
The idea behind AR is that the levels in the hierarchy are
discovered by using either heuristic information as conveyed
by the environment or statistical information extracted from
the population. This information is used to introduce
functions composed of small highly fit building blocks as
additional terminals in the grammar. One more point to note
is that once the “building block” has been incorporated into
the grammar it is fixed and can no longer change (either
through crossover or mutation). As with Whigham’s
methods this method requires generational change whereby
new individuals are generated to take advantage of the
changed grammar.

Unlike the DDFs proposed in this paper both previous
methods of altering grammar production require a global
analysis of the search space and a global change to the
grammar. This runs the risk of requiring a task type specific
heuristic. Altering the grammar on a global basis contrasts
with nature’s individual alterations and, as previously
discussed, is not a route we wish to go down. [13] introduces
a method of evolving the grammar (as well as the genetic
code) on an individual basis, but this methodology still
requires work to overcome some problems with the
crossover as identified in that paper.

D. Evolutionary induction of subroutines
Angeline and Pollack [4] introduced the idea of a Genetic

Library Builder (GLiB). The concept here is to allow a
separate operator to compress randomly selected subtrees.
These compressed subtrees are placed in a library and are
assigned a unique name. The compressed subtree is replaced
by its unique name. Subsequently, through crossover, that
subroutine could be passed throughout the whole population,
each individual potentially being able to use the unique
name to access the globally held subtree. To complement the
compression operator an expansion operator is also
introduced which would take a named subroutine and

2639

expand it in situ in the parse tree in question. Subroutines in
the library would be removed if they were no longer being
used by any of the population. This differs from Rosca’s
approach as the decision as to whether a particular
subroutine is useful or not is left entirely to the genetic
algorithm which, as the authors note, is more in line with the
“enlightening” guidelines provided for genetic algorithm
design in [14]. Two points to note are that with GLiB when a
subtree with a function call is transferred (via crossover) to a
new parent, the function call continues to refer to the
function it has always referred to (i.e. it uses the same
unique name and refers to the same code in the library)
whereas with ADFs the function call would now refer to the
function in the new parent. It is not clear whether this is an
advantage or not. The second point is that whilst the
subroutine is in the library it cannot further evolve nor can
any subsection of its gentic material be utilised. Once
expanded it can again evolve, but that will only be for the
individual (and its children) that happen to have had the
expand operator applied to them and not those that still refer
to the code held in the library.

E. Summary
As discussed above it is clear that there has been a large

amount of work on different methods of introducing
functions into genetic algorithms and Genetic Programming
in particular. Although each method has several of the
features listed below none of the methods of which we are
aware has all of them:
• Does not require the architecture to be specified in

advance.
• Allows the transfer of productions between the main body

and each of the functions.
• Requires no high-level heuristics which attempt to modify

or bias the genetic algorithm.
• Requires no alteration to the crossover operator.
• Allows the functions to continue to evolve

contemporaneously with the main body.
• Makes no global change to the evolutionary process.
• Requires no additional operators to be applied (i.e. is

completely within the control of the crossover and
mutation operators).

• Requires minimal changes to the representation (or
grammar).
DDFs have all of the features listed above. This paper

seeks to show that DDFs are competitive with ADFs in an
environment with known regularity where the optimal
structure of ADFs can (from this domain knowledge) be
identified in advance. Given that DDFs are competitive with
optimally structured ADFs and that they require no domain
knowledge, no special operators and minimal change to the
grammar then we believe that they enhance the ability of GE
and GP to solve problems. The next two sections serve to
describe Grammatical Evolution and the implementation of
DDFs.

III. GRAMMATICAL EVOLUTION

A. Introduction
Grammatical Evolution (GE) is a form of genetic

programming which utilises the evolutionary algorithm to
evolve code written in any language, provided the grammar
for the language can be expressed in a Backus Naur Form
(BNF) style of notation [3]. Traditional genetic
programming, as described by Koza [1] has the requirement
of “Closure”. The term closure is used by Koza to indicate
that a particular function set should be well defined for any
combination of arguments. Previous work by Montana [15]
suggests that superior results can be achieved if the
limitation of “closure” required in traditional genetic
programming can be eliminated, for example through typing.
Whigham [16] demonstrates the use of context free
grammars to define the structure of the programming
language and thereby overcome the requirement of closure
(the typing being a natural consequence of evolving
programs in accordance with the grammar). GE utilises the
advantages of grammatical programming, but, unlike the
method proposed by Whigham, separates the grammar from
the underlying representation (or as this is commonly
referred to; the genotype from the phenotype).

It has been argued that the separation of genotype from
phenotype allows unconstrained genotypes (and
unconstrained operations on genotypes) to map to
syntactically correct phenotypes. Keller [17] presents
empirical results demonstrating the benefit of this type of
mapping. One of the interesting aspects of having such a
simple underlying genotype as GE (a bit string) is that it is
possible to design a number of operators that act on this
simple bit string. For instance crossovers can be designed
which mirror uniform crossover, single bit crossover and
crossovers which swap complete expansions in the
underlying grammar, each of which represent (after the
genotype to phenotype mapping has been performed)
radically different methods of searching the phenotype
space. The way that GE maps the genotype to the phenotype
is discussed in the next subsection. The style of crossover
used in this paper is discussed in subsection III.C

B. Grammatical Evolution – the mapping
Rather than representing programs as parse trees GE

utilises a linear genome representation to drive the derivation
of the encoded program from the rules of an arbitrary BNF
grammar. Typically the genome (being a variable length bit
string) is split up into 8 bit codons (groups of 8 bits) and
these codons are used sequentially to drive the choices of
which branch of the grammar to follow. The maximum value
of the codon is typically many times larger than the number
of possible branches for any particular non-terminal in the
grammar and a mod operator is utilised to constrain it to the
required number. For instance if a simple program grammar
were as follows:

2640

<Program> :: = <Lines>
<Lines> :: = <Action> | <Action > <Lines>
<Action> ::= North | South | East | West
Assume an individual had the following DNA and codon

pattern:
DNA: 00100001 00010100 00100000 00000011 00010000

Codons: 33 20 32 3 16

No codon would be used for the first expansion (since
there is only one choice). The initial codon of the genome
would be used to determine whether to expand <Lines> to
<Action> or to <Action><Lines>. The value of 33 would be
MOD’d with two (since there are two choices) to give a
value of 1. The second choice (<Action><Lines>) would
then be chosen. The expression now is “<Action><Lines>”.
The first non-terminal <Action> is expanded by using the
next codon (20). <Action> has four choices, so 20 would be
MOD’d with four, to give zero and North would be chosen.
The expression is now “North <Lines>”. The next non-
terminal (<Lines>) is expanded using the codon 32. 32 Mod
2 = 0, so <Action> is chosen, leaving us with “North
<Action>”. <Action> is then expanded using the next codon
(3), to give us West. The expression is now “North West”.
There being no further non-terminals in the expression the
expansion is complete. The remaining codon is not used.

If the expression can be fully expanded by the available
codons (i.e. the expansion reaches a stage where there are no
non-terminals) the individual is valid; if the codons run out
before the expression is fully expanded the individual is
invalid and removed from the population.

C. Crossover Operators
GE typically utilises a simple one-point operator termed

the “Ripple Crossover” [11]. Recently a different type of
crossover has been proposed for GE [18], referred to as the
LHS Crossover Operator. The LHS crossover acts as a two-
point crossover whereby the expansion of a rule of the
grammar (or the Left Hand Side of a grammatical rule) is
replaced by an expansion of the same rule found in the other
parent. Since the LHS Crossover is the closest type of
crossover operator to the operator used in GP, for the
purposes of the tests conducted in this paper we limited the
crossover to the LHS Crossover discussed in that paper,
although it should be noted DDFs can be used with any
scheme which operates on a sequence of bits.

code: i_value

i_value: xval
 | number
 | (i_value op i_value)
 | - i_value

number: 0 . digit digit digit

digit: 0 | 1 | … | 9

op: + | - | * | %

Listing 1 – a simple example grammar

IV. DYNAMICALLY DEFINED FUNCTIONS

A. Details of Implementation
In order to implement DDFs certain additional rules are

introduced into the grammar to allow the grammar itself to
define functions and determine the number of parameters.
Listing 1 contains a simple BNF Grammar that, for instance,
could be used for symbolic regression (xval represents the
value passed to the program for evaluation).

code: i_value
 | DEFUN code

DEFUN: PARAMS FUNCBODY

i_value: xval
 | number
 | (i_value op i_value)
 | - i_value
 | FUNC

number: 0. digit digit digit
 | PUSE

digit: 0 | 1 | … | 9

op: + | - | * | %

FUNCBODY: i_value

FPAR: i_value

PARAMS: NOP | PARAM | PARAM PARAMS

Listing 2 – grammar in Listing 1 adapted to use DDFs

If one were to adapt this grammar to utilise DDFs the
following are required:
(i) The keyword DEFUN must be inserted into the

grammar, specifying where a function definition may
appear. This would normally be before any of the
“main body” code. DEFUN expands into the non-
terminals PARAMS and FUNCBODY.

(ii) The expansion of the keyword PARAMS will
determine the number of parameters the function has.
Each PARAM it expands into equates to one
parameter. For instance an expansion of PARAM
would equate to one paramater, an expansion of
PARAM PARAM equates to two parameters etc. A
NOP expansion means no parameter. The PARAMS
production rule contained in Listing 2 is a typical
example definition of PARAMS allowing functions to
to have none, one or more than one parameter.

(iii) FUNCBODY needs to be defined. This specifies the
form of the function body. In Listing 2, the function
body is an <i_value>.

(iv) The terminal PUSE needs to be inserted into the
grammar. This terminal represents the use of a
parameter in a function body. Where there is more than
one parameter, the codon value is used to select
between them.

(v) The non-terminal FPAR needs to be defined. Each time
a function call is to be made the non-terminal FPAR is
used to represent each parameter to be passed to the
function. The codons in the genotype will then be used
to expand these FPARs leading to the construction of
the parameters passed to the function.

2641

(vi) Finally the keyword FUNC needs to be placed in the
grammar, to indicate where a previously defined
function can be called. In Listing 2 a function can be
called whenever an <i_value> is to be expanded (in the
example this is logical as the body of the function will
also be an <i_value>).

The actual process carried out in the mapping of genotype
to phenotype (originally described in section III.B) would
now be as follows. The process would start as normal. When
a DEFUN is encountered the mapping process would start
creating a new function with a unique name (say, F0 for the
first one, F1 for the second etc). In order to create the
function it would use the next available codons to fully
expand the PARAMS non-terminal, the number of
“PARAM” that this expands to determines the number of
parameters the function will have (see (ii) above). It then
uses codons to decode the FUNCBODY non-terminal (see
(iii) above). During this process the PUSE non-terminal (if
encountered) expands to refer to any of the parameters
declared for that function (see (iv) above). So, for instance,
if a function had two parameters, PUSE would (for that
function) expand as follows:

PUSE: Parameter0 | Parameter1

Where PUSE is embedded as a possible right hand
expansion of a different non-terminal (as in Listing 2), the
potential range of expansions of that non-terminal is
increased. So, for instance, if FUNCBODY were being
expanded for a function with two parameters, then (using the
grammar in Listing 2) the expansion of <number> would
now be (after the appropriate substitution of PUSE):

number: 0. digit digit digit
| Parameter0 | Parameter1

Once FUNCBODY has been fully expanded the function
definition is complete. The non-terminal FUNC (see (vi)
above) is amended so that it includes the newly defined
function as a potential expansion. If the non-terminal FUNC
is encountered then it will expand to a call to this function
populated with the correct number of FPARS (see (v)
above). So for instance assuming two functions (F0 and F1)
had been defined previously, respectively with one and three
parameters, then, at that point and for that individual, if the
FUNC non-terminal is encountered it would expand as
follows:

FUNC: F0 (FPAR) | F1 (FPAR, FPAR, FPAR)

Listing 3 contains the grammar for the problem domain
discussed in this paper – the Minesweeper domain. Section
V.C contains a full discussion of the problem, but the
grammar is presented here as an example of a slightly more
complex grammar and to aid discussion of some of the
intricacies that should be borne in mind when adapting a
grammar to utilise DDFs.

code: defineFunc lines
 | defineFunc code

defineFunc: NOP | DEFUN

lines: line
 | line lines

line: action
 |if (obstacle_ahead)
 { lines } else { lines }
 | complex_line
 | doFunc

doFunc: FUNC

complex_line: frog (line)
 | v8A (line , line)

action: move
 | left
 | v8
 | PUSE

v8: (digit , digit)

digit: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

FUNCBODY: lines

PARAMS: NOP | PARAM | PARAM PARAMS

FPAR: v8

Listing 3 – the MineSweeper DDF Grammar

B. Number of functions and parameters determined
dynamically
As can be seen from the grammars in Listing 2 and

Listing 3, implementing DDFs can be designed so that the
number of DEFUN keywords in any particular decoding
depends on the specific genotype of each individual. The
number of functions therefore is under the control of the
evolutionary mechanism. Similarly with the parameters for
each function – with an appropriately designed grammar the
number of parameters are under genotype (and hence
evolutionary) control. Listing 2 and 3 are examples of
grammars that can contain zero or more parameters.

C. Implicit Architecture Altering Operations
Using, for illustrative purposes, the grammar in Listing 3

and the functionality of the LHS Crossover operator it is
easy to see how the crossover operator can bring in or delete
functions in a child or change the number of parameters used
by a function.

Assume Parent 1 has a parse tree which commences as
follows (using the grammar in listing 3):

<code> -> <defineFunc> <code> -> NOP <code>
-> NOP <defineFunc> <lines>

-> NOP DEFUN <lines>

And Parent 2 has a parse tree that commences as follows:
<code> -> <defineFunc> <lines>
 -> DEFUN <lines>

It can be seen that both Parent 1 and Parent 2 each define
one function. Now if the two <defineFunc> in bold are
swapped by the crossover operator (note although not shown
here, the whole expansion of DEFUN, including expansion
of PARAMS and the expansion of FUNCBODY are
swapped), child1 will become:

2642

<code> -> <defineFunc> <code>

-> DEFUN <code>

-> DEFUN DEFUN <lines>

and child 2 will be
<code> -> <defineFunc> <lines>

 -> NOP <lines>

representing an insertion of a function (child1) and the
deletion of a function (child2).

As can be seen from the above example the use of the
extra non-terminal <defineFunc> with a potential expansion
to a NOP dummy function or a productive DEFUN serves as
a “reserve” spot on the list of codons to facilitate the
swapping of complete expansions of function definitions.

D. Ability to swap genotypes between functions and the
main body
Using the LHS crossover, an expansion of, say, <line> in

the main body of the program could be swapped for a similar
expansion in a function (or vice-versa). Unless the grammar
specifically defines different expansions within a function
body the LHS crossover will swap matching non-terminals
regardless of where they appear in the phenotype. Other
operators that act on the bit stream equally ignore
function/main body boundaries.

The transfer of codons from one location to another (for
instance from the main body to a function) does raise with it
the question as to whether these codons will have the same
effect (or meaning) in their new location. A thoughtfully
designed grammar can increase the chances of some of the
structure being preserved; for example, by “isolating”
keywords which are likely to change in meaning depending
on their location (such as FUNC) – see listing 3 for an
example.

V. THE TEST ENVIRONMENT

A. The GE environment
All the problem domains were tested in a constant GE

environment. The following strategies were used:
• Selection of individuals was based on a probability

selector, i.e. the chance of any particular individual being
chosen to breed was directly proportional to its fitness.

• Although there was no random reproduction or copying
of individuals, a strategy of retaining the fittest 5% of
individuals was adopted.

• A constant mutation rate of 1 in 2,000 (independent of the
length of the DNA string) was applied to each child
generated.

• Two children were generated for each crossover operator
and the mutation operator was applied to each bit of the
genotype of each child.

• Invalid individuals were given zero fitness and were not
eligible for selection or breeding.

• Individuals were started with a random bit string; in
particular no attempt was made to ensure that the first

random individuals were a minimum size, although if an
individual was invalid it was regenerated.

• Given that GE seems to perform best with small
populations (say, 200) over multiple generations (say,
2,500), these were the parameters used for the reported
test results. Similar results (although generally with lower
overall averages) were obtained with a more typical GP
population size and generation count (5,000 and 50), but
space prevents the reporting of these runs here.

B. Bloat control
Like all GP, GE has the potential to suffer from what has

been termed “bloat”. In order to avoid this issue, the system
utilised a mild fitness pressure on DNA size. The rule used
was: if DNA size exceeds 3000 bits, then if two entities had
the same fitness then the entity with the smaller DNA is
ranked ahead. This only impacts on the decision as to the top
5% of individuals to copy across to the next generation (it
does not impact on the probabilities of selection for
crossover). This strategy appears to be sufficient to contain
bloat in GE. During a typical long run, with each increase in
fitness, DNA sizes of the top individuals increase then
slowly shrink again – until the next fitness improvement is
encountered. Finally DNA sizes were capped at 7000 bits; if
they exceeded this then the entity was deemed illegal.

C. Problem Domain - The Minesweeper Problem
In this problem, used by Koza in his analysis of ADFs [6],

an agent (the minesweeper) needs to traverse a toroidal 8x8
grid. There are six squares in the grid that will terminate the
agent (mines). The agent needs to visit each of the 58 other
squares without being terminated (blown up). Following
Koza’s design each agent is tested on two different maps
leading to a maximum score of 116. Since this was
originally a GP problem the grammar is closed. The
operators used by Koza are MOVE, which moves the agent
one forward, LEFT which turns it left. To ensure closure
both MOVE and LEFT return a vector in the form of (0,0).
FROG, which takes one vector argument and moves the
agent to the location specified by that vector and returns its
argument (i.e. it acts as an identity operator with a side
effect). IF-OBSTACLE, which acts on the first or second
branch dependent on whether a mine lies ahead of the agent.
V8A, which takes two vectors and returns their addition
(moded by 8), RV8, which is a constant vector and PROGN,
which serves to concatenate the other functions. Koza
decided on an ADF hierarchy with two functions, neither of
which had parameters. On examining the preliminary results
from the MineSweeper problem we noticed that most runs of
the DDFs seemed to prefer a single function definition, so
we included an additional run of ADFs defined using one
ADF rather than the two utilised by Koza.

In order to implement the above in GE, separate
grammars were written which replicated both the Non-ADF
grammar and the ADF grammars in the manner illustrated
by [9]. Unfortunately space precludes their replication in this
paper.

2643

VI. RESULTS

Chart 1 shows the fitness averaged over each of the 250
independent runs (note that the Fitness axis (the y-axis) does
not go down to zero so as to enable the difference between
the runs to be more easily seen). As can be seen from
Chart 1 DDFs performed as well as (and towards the end of
the runs better than) ADFs with one or two functions. The
poor performance of the run with no functions confirms
Koza’s findings with respect to the improvement engendered
by the use of functions in solving this problem domain.

Similar results are obtained if one looks at the percentage
of independent runs generating 100% successful solutions –
see chart 2 (note that this chart uses 116 fitness as a criteria
of success– not the 112 success level used by Koza)

Again, as with Koza’s results, the improved ability to
solve the problem by utilising functions is demonstrated.
The success rate with DDFs also appears to continue to
rise with the number of generations at a higher rate than
experienced with the ADFs. Each of the runs is
independent of the others and this indicates that a
grammar using DDFs, for this problem domain, appears to
be more capable of continued evolution. An analysis of
the number of functions contained within the genotypes
(and expressed in the phenotype) of the individuals
indicates that the runs tend to converge quickly (within

200 generations) to using one (approx. 64% of the runs) or
two functions (approx 28% of the runs). However, within
the population at any time there tends to be a few
individuals with a different number of functions.
Occasionally in certain runs the dominant number of
functions shifts, from one to two functions or vice-versa.
Sometimes this shift is permanent, sometimes it lasts for
several hundred generations. Chart 3 shows a function
distribution of a successful run which, whilst more
volatile than most, illustrates some of the shifts that may
occur. As can be seen individuals with no functions are
quickly eliminated. Initially the dominant genome
contains two functions. Although not very clear in the
graph, the odd individual or small group of individuals
with three or four functions are tried (for instance at
generation 700 8 of the 200 individuals have three
functions). At about 1050 generations a shift occurs to
using one function. The system is in a state of flux
between 1550 generations and 1650 generations - where
there are a large number of individuals with one and two
functions and some with three functions, before things
settle down and the one function individuals then
dominate the population until the end of the run.

One of the questions raised by the above results is
why, in this problem domain, DDFs appear to be more
successful than ADFs in the continued evolution of
solutions. The solutions found by the DDFs do not
materially differ from those found by the ADFs, given
that the DDFs appear to utilise one or two functions.
Consequently, we do not believe that it’s a matter of a
difference in the expressive power between the two
methods (since a one function ADF has the same
expressive power as a DDF which happens to have one
function) nor is it a matter simply of DDFs replicating
successful solutions as we are looking at the number of
independent runs which succeed. Instead, we believe the
answer to this question might lie with the ability of DDFs
to increase or decrease the number of functions during the
course of a run. This ability to dynamically change the

Chart 2 – Percentage of successful solutions

Chart 1- Average fitness over 250 runs

Chart 3 - Analysis of function distribution in a sample run

2644

number of functions may allow not only the optimal
architecture to be evolved (rather than created by the user)
but also may allow the run to escape from local maxima
that would otherwise trap it.

VII. CONCLUSIONS AND FUTURE WORK
This paper serves as a proof of concept for DDFs. We

have shown how a BNF grammar can be modified to allow
the genome to dictate the number and use of functions
freeing the user from the need to try and predict an optimal
architecture beforehand. Our further goal was to allow such
functions to be used without changing any other part of GE,
i.e. without changing the mutation operator and without
requiring changes to the crossover operator or the inclusion
of different (architecture altering) operators.

We have shown that in the domain discussed in this paper,
which does have a regularity to it (but not an obvious one
function/two function regularity) DDFs are able to exploit
that regularity. The runs show that even a small population
(200) is capable of supporting a shift in the number of
functions as the run explores the search space. In the
problem domain examined this proved to be an advantage
over a fixed architecture. We acknowledge it is likely that
where there is clearly one optimal architecture which the
user can define then DDFs might not be as efficient in
finding a solution as the user pre-defined (and therefore
smaller) search space. However, as the problems tackled by
Genetic Programming and GE increase in complexity the
difficulty in designing such hierarchies will also increase.

We see the main advantage of DDFs as freeing the user
from guessing the hierarchy. We also hope that they prove
conducive in problem sets where the fitness landscape varies
during the search process.

One concern we still have with the functions is that a
change in the number of parameters a function uses causes a
“ripple” in the designation of which codons interpret which
part of the grammar and will cause a large change in the
phenotype (although as noted in [11] such a “ripple” is not
per se destructive and can be beneficial). On way round this
would be to employ some of the ideas of StackGP [19]
whereby the number of parameters pushed onto the stack are
chosen by the genome when calling the function (and not
fixed by reference to the number of parameters the function
expects). If too many parameters are pushed the excess ones
are ignored. If too few (e.g. two parameters are pushed but
the function expects three) an access of the excess
parameters by the function returns a neutral or nil value.
Whether this trade-of between expanding the search space
and preventing the “ripple” effect currently experienced is
beneficial will be interesting to explore.

References
[1] J.R. Koza Genetic Programming MIT Press/Bradford Books,

Cambridge M.A., 1992
[2] Angeline, P. J. 1994. Genetic programming and emergent intelligence.

In Advances in Genetic Programming, K. E. Kinnear, Ed. Mit Press In

Series In Complex Adaptive Systems. MIT Press, Cambridge, MA, 75-
97.

[3] Ryan C., Collins J.J., O’Neill M. Grammatical Evolution: Evolving
Programs for an Arbitrary Language. Lecture Notes in Computer
Science 1391. First European Workshop on Genetic Programming
1998.

[4] Angeline PJ and Pollack JB (1992) "The Evolutionary Induction of
Subroutines," The Proceedings of the 14th Annual Conference of the
Cognitive Science Society. Hillsdale, NJ: Lawrence Erlbaum, pp 236-
241

[5] J. P. Rosca and D. H. Ballard. Genetic programming with adaptive
representations. Technical Report TR 489, University of Rochester,
Computer Science Department, Rochester, NY, USA, Feb. 1994.

[6] J.R. Koza Genetic Programming II: Automatic Discovery of Reusable
Programs. MIT Press, Cambridge, Mass., 1994.

[7] J.R. Koza Genetic Programming II: Automatic Discovery of Reusable
Programs. MIT Press, Cambridge, Mass., 1994. Chapter 21.

[8] Koza, John R. 'Architecture-Altering Operations for Evolving the
Architecture of a Multi-Part Program in Genetic Programming',
Technical Report STAN-TR-CS-94-1528, Computer Science
Department, Stanford University, 21 October.

[9] Michael O'Neill, Conor Ryan: Grammar based function definition in
Grammatical Evolution. GECCO 2000: 485-490

[10] Ernesto Rodrigues and Aurora Pozo Grammar-Guided Genetic
Programming and Automatically Defined Functions, Advances in
Artificial Intelligence: 16th BrazilianSymposium on Artificial
Intelligence, SBIA 2002

[11] Keijzer, M., Ryan, C., O'Neill, M., Cattolico, M., and Babovic, V.
2001. Ripple Crossover in Genetic Programming. In Proceedings of the
4th European Conference on Genetic Programming (April 18 - 20,
2001). J. F. Miller, M. Tomassini, P. L. Lanzi, C. Ryan, A. Tettamanzi,
and W. B. Langdon, Eds. Lecture Notes In Computer Science, vol.
2038. Springer-Verlag, London, 74-86

[12] P.A. Whigham, Inductive Bias and Genetic Programming (1995) First
International Conference on Genetic Algorithms in Engineering
Systems: Innovations and Applications, GALESIA

[13] O’Neill, Michael and Ryan, Connor (2004). Grammatical evolution by
grammatical evolution: The evolution of grammar and genetic code. In
Keijzer, Maarten, O’Reilly, Una-May, Lucas, Simon M., Costa,
Ernesto, and Soule, Terence, editors, Genetic Programming 7th
Euorpean Conference, EuorGP 2004, Proceedings, volume 3003 of
LNCS, pages 138-149, Coimbra, Portugal. Springer-Verlag.

[14] Goldberg, D., 1989, “Zen and the Art of Genetic Algorithms”, In
Proceedings of the Third International Conference on Genetic
Algorithms, J. Schaffer (ed), Los Altos, CA: Morgan Kaufmann
Publishers, Inc.

[15] Montana D, (1994) Strongly Typed Genetic Prgramming. Technical
Report 7866, Bolt Beranek and Newman Inc.

[16] Whigham P.A, Grammatically-based Genetic Programming (1995)
Proceedings of the Workshop on Genetic Programming: From Theory
to Real-World Applications, pages 33-41. Morgan Kaufmann Pub.

[17] Robert E. Keller, Wolfgang Banzhaf 1996. Genetic Programming
using Genotype-Phenotype Mapping from Linear Genomes into Linear
Phenotypes (1996) Genetic Programming 1996: Proceedings of the
First Annual Conference

[18] Robin Harper and Alan Blair, A Structure Preserving Crossover in
Grammatical Evolution, 2005 IEEE Congress on Evolutionary
Computation, 2537

[19] Perkis, T. 1994. Stack-Based Genetic Programming. In Proceedings of
the 1994 IEEE World Congress on Computational Intelligence. pp.
148--153.

2645

