2537

A Structure Preserving Crossover In Grammatical Evolution

Robin Harper and Alan Blair

School of Computer Science & Engineering
University of New South Wales
2052, Australia
robinh@cse.unsw.edu.au1

Abstract - Grammatical Evolution is an algorithm
for evolving complete programs in an arbitrary
language. By utilising a Backus Naur Form
grammar the advantages of typing are achieved.
A separation of genotype and phenotype allows
the implementation of operators that manipulate
(for instance by crossover and mutation) the
genotype (in Grammatical Evolution - a sequence
of bits) irrespective of the genotype to phenotype
mapping (in Grammatical Evolution - an arbitrary
grammar). This paper introduces a new type of
crossover operator for Grammatical Evolution.
The crossover operator uses information
automatically extracted from the grammar to
minimise any destructive impact from the
crossover. The information, which is extracted at
the same time as the genome is initially decoded,
allows the swapping between entities of complete
expansions of non-terminals in the grammar
without disrupting useful blocks of code on either
side of the two point crossover. In the domains
tested, results confirm that the crossover is (i)
more productive than hill-climbing; (ii) enables
populations to continue to evolve over
considerable numbers of generations without
intron bloat; and (iii) allows populations (in the
domains tested) to reach higher fitness levels,
quicker.

1 Introduction

Grammatical Evolution (GE) is a method of utilising an
evolutionary algorithm to evolve code written in any
language, provided the grammar for the language can be
expressed in a Backus Naur Form (BNF) style of notation.
[Ryan et al., 1998]. Traditional genetic programming, as
exemplified by Koza [Koza, 1992] has the requirement of
“Closure”. Closure, as defined by Koza [Koza 1992] is
used to indicate that a particular function set should be
well defined for any combination of arguments. Previous
work by Montana [Montana, 1994] suggests that superior
results can be achieved if the limitation of “closure”
required in traditional genetic programming can be
eliminated, for example through typing. @ Whigham
[Whigham, 1995] demonstrates the use of context free
grammars to define the structure of the programming
language and thereby overcome the requirement of closure
(the typing being a natural consequence of evolving
programs in accordance with the grammar). GE utilises the

! This research was partially funded by the Australian
Research Council Centre of Excellence for Autonomous Systems

0-7803-9363-5/05/$20.00 ©2005 |EEE.

advantages of grammatical programming, but, unlike the
method proposed by Whigham, separates the grammar
from the underlying representation (or as this is commonly
referred to; the genotype from the phenotype). It has been
argued that the separation of genotype from phenotype
allows unconstrained genotypes (and unconstrained
operations on genotypes) to map to syntactically correct
phenotypes. Keller [Keller 1996] presents empirical results
demonstrating the benefit of this type of mapping. One of
the interesting aspects of having such a simple underlying
genotype as GE (a bit string) is that it is possible to design
a number of operators, both stochastic hill-climbing and
more traditional genetic information swapping operators,
which act on this simple bit string. For the purposes of this
paper all such operators will be referred to as “crossover
operators” even although (as will be seen) some of them
do not utilise any information from the second entity.

GE typically utilises a simple one-point operator.
This has been criticised on the grounds that it is seemingly
destructive of the information contained in the second
contributing parent. O’Neill has defended the one-point
crossover, comparing it to a crossover which exchanges
random blocks [O’Neill & Ryan, 2000] and a form of
homologous crossover where regions of similarity are
swapped [O’Neill et al., 2001]. In both these cases the
conclusion is reached that the one-point operator is the
most consistent of the operators examined in producing
successful runs, despite its disruptive effect.

This paper introduces a method of crossover that
utilises information automatically extracted from the
grammar to reduce the disruptive impact of the crossover
operator. It then describes a series of comparisons using
one point and two point crossover operators where the
only difference between runs was the type of crossover
operator used. The results of these runs confirm the
productive effect of the single point crossover as well as
indicating that the new crossover operator proposed is
more productive than the single point crossover. Sufficient
runs were carried out in the test domains to achieve
statistically significant results.

2 Grammatical Evolution

Rather than representing programs as parse trees GE
utilises a linear genome representation to drive the
derivation of the encoded program from the rules of an
arbitrary BNF grammar. Typically the genome (being a
variable length bit string) is split up into 8 bit codons
(groups of 8 bits) and these codons are used sequentially
to drive the choices of which branch of the grammar to
follow. The maximum value of the codon is typically
many times larger than the number of possible branches

for any particular non-terminal in the grammar and a mod
operator is utilised to constrain it to the required number.

For instance if a simple program grammar were as
follows:

<Program> :: = <Lines>
<Lines> :: = <Action> | <Action > <Lines>
<Action> ::= North | South | East | West

Assume an individual had the following DNA and codon
pattern:

DNA: 00100001 00010100 00100000 00000011 00010000
Codons: 33 20 32 3 16

No codon would be used for the first expansion (since
there is only one choice). The initial codon of the genome
would be used to determine whether to expand <Lines> to
<Action> or to <Action><Lines>. The value of 33 would
be MOD’d with two (since there are two choices) to give a
value of 1. The second choice (<Action><Lines>) would
then be chosen. The expression now s
“<Action><Lines>". The first non-terminal <Action> is
expanded by using the next codon (20). <Action> has four
choices, so 20 would be MOD’d with four, to give zero
and North would be chosen. The expression is now “North
<Lines>”. The next non-terminal (<Lines>) is expanded
using the codon 32. 32 Mod 2 = 0, so <Action> is chosen,
leaving us with “North <Action>”. <Action> is then
expanded using the next codon (3), to give us West. The
expression is now “North West”. There being no further
non-terminals in the expression the expansion is complete.
The remaining codon is not used.

If the expression can be fully expanded by the
available codons (i.e. the expansion reaches a stage where
there are no non-terminals) the individual is valid, if the
codons run out before the expression is fully expanded the
individual is invalid and removed from the population.

One of the original proposals of GE involved
utilising a wrapping of the genome to decrease the number
of individuals that are invalid [O’Neill & Ryan 1999].
Where wrapping is enabled, if the expansion is not
complete by the time all the codons have been read, the
codons are re-read from the beginning. Normally genomes
are only allowed to “wrap” a certain number of times.
Although the wrapping method is not easily
accommodated within some of the proposed crossover
methods, the traditional single point crossover and a codon
boundary single point crossover were also implemented
with wrapping enabled for the purposes of comparison.

3 Crossover Operators

A total of 12 crossover operators were implemented, the
first seven (which include the standard crossover operator)
are one point operators, the remaining five are two point
crossovers and consist of the proposed new operator (the
LHS Replacement operator) and four other two point
operators designed to provide a fair comparison. These are
introduced below.

2538

3.1 Standard bit crossover

For each of the two individuals a crossover point is
selected at random. The head (being the genome up to the
selected crossover point) of the first is combined with the
tail of the second and vice-versa. It should be appreciated
that with GE this can cause a fair amount of disruption
with respect to the “tail”. The reason for this is twofold: (i)
if the crossover point is “mid” codon, the codons in the tail
will have a different value; and (ii) especially in more
complex grammars, the tail codons will be used to
interpret a different part of the grammar in the child, than
the part they interpreted in the parent.

3.2 Codon crossover

A variation to the standard crossover limits the selection of
the crossover point to codon boundaries, thus preserving
the actual value of the codons in the tail, although as in the
standard bit crossover they may well be used to interpret a
different part of the grammar.

3.3 Matching Crossover

This crossover requires the extraction of a little additional
information from the grammar, as we now explain.

3.3.1 Extracting type information

As previously discussed when each codon is decoded the
codons are used to drive the BNF grammar in order to
derive an expression in the specified language. During this
process it is simple to store with the codon (at the time the
codon is being used to determine which RHS branch of the
grammar to use) the type of non-terminal the codon
expanded.

For instance, the following is an extract of the
grammar used for the taxi domain problem (this problem
is more fully described in paragraph 4.3) [For ease of
reference only; each rule is numbered on the left hand side
and each possible branch labelled on the right hand side.]

(1) <lines>:: =
<line> | A)
<line> <lines> B)
2) <line>:=
if (<cond>) then { <lines> }| A)
if (<cond>) then { <lines> }else { <lines> } |(B)
doLines { <lines> }until (<cond>) | ©)
<action> D)
(3) <cond>: =
<boolTest> | A)
<cond> AND <cond> | (B)
<cond> OR <cond> | ©
NOT <cond> | (D)

<IntegerValue> <comp> <IntegerValue> (E)
(4) <boolTest>:: =

havePassenger | (A)
NorthBlocked | B)
EastBlocked | ©)
WestBlocked | D)
[.etc...]

(5) <comp>:: =
<| &)
>| ®)
= ©

(6) <IntegerValue> ::=

2538

2539

currentXpos | (A)
currentYpos | (B)
(<IntegerValue> MINUS <IntegerValue>)| (C)
(<IntegerValue> PLUS <IntegerValue>)| (D)

[...etc...]

(7) <Action>:: =
Pickup | A)
Putdown | (B)
North | ©
[...etc...]

Listing 1. Simplified Extract of the Taxi Domain Grammar

In decoding a particular codon we might have the
following partial sequence of codons which have not yet
been used ... 120 26 30 83 ... and we might, say, have
reached a non-terminal of <line>.

Traditionally the next codon would be used to
expand the <line> branch — labelled 2 in Listing 1. There
are 4 alternative expansions, 120 MOD 4 gives 0, so
branch (A) is chosen.

The symbol for <line> in the expression is replaced
by the following code

if (<cond>) then { <lines> }
and the next non-terminal (in this example <cond>) would
be considered and expanded utilising the next codon in
sequence (in this example 26).

In order to extract the information required by the
Matching Crossover operator, all that is required is to
associate with the codon the type of non-terminal that was
expanded by the codon. (In this case the codon (120)
expanded non-terminal (2) <line> and the next codon (26)
will be used to expand the non-terminal (3) <cond>). At
this stage we have something like this:

DNA: ... 01111000 00011001 00100100 ...
Codons: ... 120 26 30...
Expands: ... 2 K

3.3.2 Implementing the Matching Crossover

The Matching Crossover proceeds as per the simple
one point crossover, however the crossover point selected
on the second parent is constrained to that of a codon on
the second parent that expands (or is associated with) the
same type of non-terminal as the codon following the
crossover point on the first parent. For instance, using the
example codon extract discussed in paragraph 3.3.1 — if
the second codon (which is 26 and has been used to
expand a non-terminal of type 3 (<cond>)) happens to be
chosen, the crossover will occur at a point in the second
entity where the codon at the crossover is also used to
expand a non-terminal of type 3. This codon is located by
generating a random crossover point and then searching,
incrementally, above and below the point until an
appropriate match is found. Once the second crossover
point has been determined the tails are swapped as in the
simple one point crossover. If no match is found in the
entity then the crossover operation fails and a new initial
crossover point is randomly selected. Whilst this crossover
does mean that the tail codons are used to interpret the
same part of the grammar as in their donating parent, this
crossover can still cause disruption further along the
sequence. To appreciate this consider the following simple
grammar

2539

(1) Lines ::= Line| Lines
(2)Line::=X 1Y | Z.

Assume we have parents A and B which, when
interpreted, have an expansion of the grammar like this:

Parent A: Parent B:
Lines Lines
/A \
Line Lines Line
/ \ \
Y Line X

\
Z

For example, Parent A might have the following codons 1,
4,0, 2,4 ... This would expand as follows:

<Lines> ->

<Line><Lines> -> [codon at position 1 relates to rule (1))

Y <Lines> -> [codon at position 2 relates to rule (2)]

Y <Line> ->... [codon at position 3 relates to rule (1)]

YZ [codon at position 4 relates to rule (2)]
The remaining codons are not used.

Assume a second Parent with codons 0,0,10,5...

This becomes:

<Lines>->

<Line>-> [codon at position 1 relates to rule (1)]

X [codon at position 2 relates to rule (2)]
The remaining codons are not used.

If these parents were to be crossed over at codon
position 2 in Parent A and codon position 2 in Parent B
(both these points relate to Grammar rule (2)), then the
child would only inherit the first codon from Parent A and
all the rest from Parent B i.e. the child’s codons would be
1,0,10,5...

The first codon (from Parent A) (1) would expand
<Lines> to <Line> <Lines> then the second codon in the
child, being a codon from Parent B (0) would Expand
<Line> to X, the expression now being X <Lines>.
<Lines> would then need to be expanded but it will now
be expanded utilising the previously unsused codons in
Parent B (the 10, 5 etc) not the previous codons in Parent
A. This has been termed the “Ripple Effect”.

3.4 Tailless Crossover

In order to provide a test of the productivity of the
crossover operator a tailless crossover, effectively a
stochastic hill-climbing algorithm, was implemented,;
following the concepts discussed in [Jones 1995]. In this
case the first crossover point was determined randomly as
described in 3.1, however, instead of swapping the tail
with the tail of a second parent individual, the tail was
swapped with a randomly generated bit—string. This would
serve to compare each of the other crossover operations
with one where the second parent was a randomly
generated parent.

3.5 Headless Crossover

This crossover is similar in principal to the tailless
crossover except that the head was filled with a random bit
string. Note that this is likely to be highly disruptive in GE
as there is no guarantee that the interpretation of the new
head will not terminate before the crossover point is

reached. This “crossover” operator is in effect more akin
to the production of a completely new individual.

3.6 Wrapping Bit Crossover

As discussed in paragraph 2, GE can utilise a method of
“wrapping” the genome. That is, if the codons end before
the grammar has terminated (i.e. before all non-terminals
have expanded into terminals) the codons are re-read from
the beginning. This crossover is the same as the Bit
Crossover (one random crossover point on each parent),
save that wrapping is enabled.

3.7 Wrapping Codon Crossover

This crossover is the same as the Codon Crossover (which
constrains the crossover to codon boundaries), save that
wrapping (as discussed in paragraph 2) is enabled.

3.8 Two Point — Bit Crossover

Here the first point is selected at random in each of the
parents and a second point is selected after the first point
and before the end of the Useful DNA (the Useful DNA is
the part of the genome actually used to interpret the
genotype — this is further explained in paragraph 4.2). This
designates a codon sequence. A similar codon sequence is
selected in the second parent. These two sequences are
swapped.

3.9 Two Point — Codon Crossover

This is similar to the Two Point — Bit Crossover, except
that the selected points are constrained to fall at codon
boundaries.

3.10 Two Point — Left Matching Crossover

The two crossover points in the first parent are selected as
in the Two Point — Codon Crossover, however (as in the
Matching Crossover — paragraph 3.3) the choice of the
first point in the second parent is constrained to a codon
which expands the same type of non-terminal in the
grammar. The second crossover point in the second parent
is chosen randomly as in the Two Point — Codon
Crossover.

3.11 LHS Replacement Crossover

This crossover uses the grammar to constrain both the
second point in the first parent and the first and second
points in the second parent, as we now explain.

3.11.1 Extracting length information

The final piece of information we need to extract is the
number of codons that are required to expand fully the
non-terminal selected by the first crossover point. When a
codon is used to expand the grammar, as well as saving
the type information as described in 3.3.1, we can also
push the current codon position onto a stack and add a
POP operator after the expansion. If this were to occur the
expression in 3.3.1 would look like this after the codon
(120) had been used to expand <line>:

... if (<cond>) then { <lines> } POP ...

The stack and the POP operator allow the number of
codons utilised in fully expanding the non terminal to be
determined. (This number is the codon reading position

2540

when the POP is encountered less the codon position
stored at the top of the stack.)

The computational cost in extracting this information
is negligible. It is true that a certain amount of additional
storage is now required to store each codon (32 bits per
codon rather than 8) but as we demonstrate we believe the
benefits outweigh this cost.

3.11.2 Implementing the LHS Crossover Operator

With this type of crossover, the first crossover point in the
first parent is, as before, selected randomly. The first
crossover point in the second parent is selected as
described in 3.3, however, instead of swapping tails
between the two entities the number of codons required to
fully expand the expression in the first entity are
exchanged for the number of codons which are required to
fully expand the expression in the second entity. (To put
this another way, the second point in each parent is
selected so that the codon sequence in between the two
crossover points fully expands the non-terminal designated
by the first crossover point.)

Building on the example in 3.3.1, the second codon
in the example (which was 26), was used to expand the
non-terminal <cond>. Assuming the codon sequence
continued as:

30, 83, 45,61
Then this would have been expanded as follows:

<cond> -> <cond> AND <cond>
(26 MOD 5 = 1 = branch (B))
<cond> AND <cond> ->
<boolTest> AND <cond>
(30 MOD 5 =0 = branch (A))
<boolTest> AND <cond> ->
WestBlocked AND <cond>
(83 MOD 5 = 3 = branch (D))
WestBlocked AND <cond> ->
WestBlocked AND <boolTest>
(45 MOD 5 = 0 = branch (A))
WestBlocked AND <boolTest> ->
WestBlocked AND NorthBlocked
(61 MOD 5 =1 = branch (B))

Therefore associated with the codon 26 would be the non-
terminal it expands, here <cond> and the number of
codons required to fully expand it (here 5, being the 26
plus the following sequence of codons: 30, 83, 45, 61). If
this codon was selected as the first crossover point then it
and the next 4 codons would be replaced by a codon which
expands the <cond> non-terminal together with sufficient
codons from the second individual to complete the full
expansion of the <cond> non-terminal. In the second
individual the same would happen, the list of codons (26,
30,83,45,61) would replace a sequence of codons that
were used to fully expand a <cond> non-terminal.

It can be seen from this that, in the first individual, the
codon which follows the 61 and was used to decode the
<lines> non-terminal of the if statement will still continue
to do so, despite the fact that the prior sequence of codons
has been changed.

It will be noted that the LHS Replacement crossover
has many similarities with the type of crossover utilised by
Koza in genetic programming [Koza, 1992]. There are,
however, differences between the two methods, including,
for instance, the automatic encoding of type through the

2540

2541

use of the grammar. Not only does this avoid the need for
closure (e.g. there is no need to assign arbitrary values to
the <Action> expressions in the taxi domain), there is
research indicating that strong typing can aid in reducing
the search space [Montana 1994]. In addition there are no
limits on the depth of any part of the expression (although
there are limits on the length of the bit string). A
comparison between the normal GE crossover and a parse
tree crossover [Keijzer 1991] showed areas where the GE
crossover (termed the “ripple crossover”) proved superior
to the parse tree operator. We believe that more structural
information is preserved with the LHS Replacement
Crossover whilst maintaining the advantages of using a
full BNF grammar. This could explain the increased
productivity of the LHS Replacement Crossover.

3.12 Gutless Crossover

This crossover proceeds as per the Two Point — Bit
Crossover, save that the selected sequences are filled with
a random bit pattern rather than swapped. Again this
“crossover” operator will operate like a stochastic hill-
climbing algorithm.

4. The Test procedures

4.1 The GE environment

All the crossover operators were tested in various problem
domains against a constant GE environment. In particular
the following strategies were used:

- Selection of individuals was based on a probability
selector, that is the chance of any particular individual
being chosen to breed was directly related to its fitness.

- An elitist strategy of retaining the fittest 5% of
individuals was adopted.

- A constant mutation rate of 1 in 2,000 (independent of
the length of the DNA string) was applied to each child
generated.

- Two children were generated for each crossover operator
and the mutation operator was applied to each child.

- Invalid individuals were given zero fitness and were not
eligible for selection or breeding.

- Individuals were started with a random bit string, in
particular no attempt was made to ensure that the first
random individuals were a minimum size, although if an
individual was invalid it was regenerated.

4.2 Bloat control

As noted in paragraph 2 the wrapping operator sometimes
used in GE is not compatible with either of the two new
crossover operators and it was turned off other than in
respect of the two wrapping crossover operators (the
Wrapping Bit Crossover — paragraph 3.6, and the
Wrapping Codon Operator — paragraph 3.7). Previous
work [O’Neill and Ryan, 1999] indicates that the wrapping
procedure is effective in helping to contain bloat within
GE. In this case an alternative strategy was adopted and
tested against the Santa Fe ant domain described in their
paper. The system had no problems correctly evolving fit
individuals for the Santa Fe problem domain.

In formulating the bloat control strategy employed it
was noted that there is typically, within any individual, a
difference between the number of codons stored by the

2541

individual (the DNA Length) and the number of codons
actually utilised by that individual (the Useful DNA
Length). If a first crossover point is selected anywhere
within the DNA Length, then there is a tendency for
individuals to evolve long DNA Lengths, whilst keeping
their Useful DNA Lengths short. In extreme cases this
makes it unlikely any random crossover point will hit
within the Useful DNA Length and thus the crossover will
have no effect on the individual. By constraining the
crossover points (and in the case of two-bit operators both
crossover points) to be within the Useful DNA Length this
problem is avoided. It should also be noted that it was
found to be important to copy the whole of the DNA as the
tail (not just the Useful DNA of the tail parent). The
reason for this is that additional DNA may be needed if the
tail happens to start interpreting at a different place in the
grammar tree and requires more codons.

Both the Matching crossover and LHS Replacement
crossover operators require this limitation, as the codon
expansion information is only available for codons that are
actually used in creating the expression. In other words for
these crossover operators crossover can only occur within
the Useful DNA part of the DNA.

Finally where DNA sizes in excess of 4000 bits were
encountered, if two entities had the same score then the
entity with the smaller DNA was ranked ahead. If DNA
sizes exceeded 6000 the entity was deemed illegal.

4.3 Problem Domains

The results of two problem domains are presented here,
the Minesweeper Domain discussed by Koza [Koza 1994]
and the Taxi Domain [Diettrich 1998]. It should be noted
that the results were tested (and confirmed) against other
problem domains, including the Mower, Mopper and San
Mateo Trail problems discussed by Koza [Koza 1994].
Despite the Santa Fe trail being the problem domain
presented by previous papers which analyzed the effect of
different crossovers in GE (see for instance [O’Neill ez al.,
2001]) this was not used here as it is too easily solved by
GE, and no statistically significant results could be
obtained with respect to most of the crossover operators.
As mentioned, whilst the same results were obtained in
each of these domains, the difference between each of the
five crossover operators tested was most apparent in the
more difficult domains.

The Taxi Domain is not a problem that we are aware
of previously being used as a test for genetic programming
or grammatical evolution, although it is used in
demonstrations of new algorithms in Hierarchical
Reinforcement Learning. The essence of the problem is
that a taxi inhabits a 5 by 5 grid world (see figure 1).

Taxi

Loc Loc

Figure 1 — Taxi Domain

There are 4 specially marked locations that may be
either the pickup point of a passenger or the putdown point
of a passenger (or both). The Taxi has to navigate (from a
random start point) to the correct pickup point, pick up the
passenger, navigate to the putdown point and deliver the
passenger, within a fixed number of moves. Some
modifications to the rewards for the agent were made to
make the fitness functions suitable for a genetic algorithm
technique. Typically the taxi receives a reward for
successful completion and a penalty for an incorrectly
executed pickup or putdown. We added an additional
reward for a successful pickup as well as giving the taxi a
small reward for the first time it moves closer to the
pickup point or destination point (as appropriate). The taxi
has access to complete information regarding the game
world. Finally, whilst evaluation of fitness would normally
be against random maps, the variation in reported fitness
over time made it difficult to compare results between the
crossover operators. Consequently, the taxi was evaluated
against 20 fixed maps, the fitness being its combined score
in all of the maps. (An extract of the grammar used is
shown in listing 1.)

5 Results

5.1 Population Size versus Generation Count

Koza generally found with his GP experiments that it was
better to have a large population with only about 50
generations [Koza 1992; Koza 1994], but in our case we
have found that it is better to have smaller populations
running for longer.

For instance, initial results using a typical
grammatical programming profile of a large population
(5000) over limited generations (50) produced barely
acceptable results over 40 runs on the Minesweeper
problem and disappointing results for the taxi domain

2542

problem. However, by decreasing the population to 100
and increasing the generations to 2500 (keeping the
number of individuals generated at 250,000), the results
were vastly improved. It is worth noting that although both
runs require the same number of computations (250,000
individuals generated), the run with 5,000 individuals
requires a lot more information to be kept in memory at
the same time.

Our results indicate that the GE system described
here is able to continue to evolve over a large number of
generations (especially in the more difficult taxi domain,
the results of which are presented below) and that, if
analysed by numbers of agents created and evaluated, a
low population size and long generation count provides
better results. Figure 2, taken from the Minesweeper
Problem domain, plots two 5,000 member population runs
(using two of the crossover operators, namely Single Point
Codon and LHS Replacement) as against two 100 member
population runs (using the same two crossover operators).
The 95% confidence interval is shown for each run.
Although the X-axis represents different generations for
each run (one unit = one generation in the 5000 population
runs, one unit = 50 generations in the 100 population runs)
they each equate to the same number of crossovers
performed (one unit = 5000 crossovers). The top line in
the chart equates to the LHS replacement crossover
operator, with a population of 100 and 2500 generations.
As can be seen it continues to improve (albeit slowly in
this example, as increasingly the runs reach maximum
fitness). The LHS Replacement operator with 100
population and 2500 generations was the only one of the
four operators illustrated to score the maximum fitness
(116), which it did so in 9 out of the 40 runs. The average
fitness it achieved over the 40 runs (112) equates to the
threshold fitness used by Koza [Koza, 1994] in his
description of the problem.

Population Size .v. Generation Count
959% Confidence Bars

120

100 e

80 -+

M@ EE2EXEZELXZERTERZEZRIEIZZXXXRIZTZZX *

,3uww}********ﬁ

ik -
R

g 60 | |
w2 LHS replacement (100 population)
40 ¢ - - |LHS Replacement (5000 population)
—& Single Codon (100 population)
- SingleCodon (5000 population)
0 b

0 5 10 15 20

25 30 35 40 45 50

Figure 2: Population .v. Generation comparison Generations (for 5000 population)
Generations/50 (for 100 Population)

2542

2543

Taxi 100 population, 2500 Generations, 50 runs.
Average Fitness with 95% confidence bars

900
800 ; - {
4—HTWI 4 aal B :WWE -
700 WIW% i s e 1 1 !
i |
600 | J‘M Fododo i:‘%xi‘i ofod

500

400 |

300 44°

Average Fitness over 50 runs

200 |

s 4 SingleMatched AR
i TwoPOINtCodON
e SingleCodon
TwoPointMatched

100 |

== LHS Replacement
< SingleCodonWrapped

+ SingleBitWrapped
st TWoPDINtGUtless
e SingleBit
TwoPointBit
s TailleSS
SingleHeadless

|
;:; i
"

S R

0 5 10 15 20

30 35 40 45

%4
o

Generations divided by 50

Figure 3: Comparison of Crossover Operators

5.2 Comparison of crossover operators

The crossover operators described in paragraph 3 were
compared with each other across all problem domains, but
most extensively on the minesweeper and taxi domains
described in this paper where runs were made with
population sizes of 5000 (50 generations) and 100 (2500
generations). Consistent results were achieved.

The results of the taxi domain for a 100 population
and 2500 generations are reproduced in figure 3. Figure 3
shows the average of the highest fitness levels achieved by
each crossover operator across the 50 runs and the 95%
confidence interval levels in each case. To improve the
readability of the graph (there being a large number of
operators) the key is reproduced in the same order that the
operators finish on the graph (highest scoring = top of
key). The LHS Replacement Crossover performed
significantly better than all the other crossover operators,
followed by the Wrapping Codon Crossover.

In order to determine if there was a significant
difference between the LHS Replacement operator and the
other operators, a Student’s T-Test was performed
comparing the final fitness values of the LHS
Replacement operator against each of the other operators.
This gives 98 degrees of freedom and should be robust,
even if the data is not normally distributed. It was assumed
the runs had different variances; the two-sample unequal

variance (heteroscedastic) test was used. The null-
hypothesis was rejected at a level of 0.0001 (0.01%) (the
null hypothesis being that the results of the runs are
“drawn” from the same population). The reason such a
low value is used is that there are over 66 operator to
operator comparisons (if each operator was to be tested
against each other operator), increasing the likelihood of,
say, a 5% chance occurring. Table | shows the results of
this comparison and a similar one for the Two Point
Gutless operator (the best performing stochastic hill
climbing operator), where rejections are labelled as “YES”

i.e. there is a statistical difference or “NO” — there is no
statistical difference.
The table confirms the benefit of the LHS

Replacement operator; namely that it is safe to reject any
hypothesis that its results were merely due to random
variation. Of interest as well is that it is not safe (on this
data) to reject the hypothesis that any of the bit operators
performed better than the gutless operator, although the
codon operators (other than the two point matched
crossover) would all appear to be significantly better than
the two point gutless crossover operator.

6 Conclusions and Future Work

The results demonstrate that the LHS Replacement
Crossover provides substantial benefits over all other

[SingleBit | SingleCodon | SingleMatched [SingleHeadless | SingleTailess [TwoPointBit |
LHS Replacement [YES [YES [YES YES | YES | YES
Two Point Gutless [NO [YES [YES [YES [NO | NO |

[TwoPointCodon

[TwoPointMatched | LHS Replacement [Single Bit Wrapped |
[

Single Codon Wrapped | TwoPointGutless

LHS Replacement | YES [YES | B

YES [YES [YES

Two Point Gutless I YES [NO [YES

[NO [YES | -

Table 1 - Student's t-test applied for the LHS Replacement and the Single Point Tailless crossover operator as against each other operator.

YES means there is a significant difference (0.01% level)

2543

operators tested including the normal single point operator
(the Codon crossover), at least in the domains explored so
far.

The retention of structural information from fit
individuals and the swapping of complete expansions of
non-terminals without disrupting the existing blocks of
information was, in every case, a better method of
traversing the search space to reach higher fitness levels.

Perhaps surprisingly, there appeared to be little
difference between most of the “codon” boundary
crossover operators, although all performed better than the
stochastic hill climbers. As might be expected the bit
crossovers were amongst the poorest performers. The
impact of the bit crossovers is that 7 times out of 8, not
only are the tail codons put into a new context, but also
their values are changed. Across all the problem domains
that were examined the bit operators performed
substantially the same as the stochastic hill-climbing
operators, indicating that they offer little benefit as
crossover operators. Finally all the crossover operators
performed better than the Headless Crossover, confirming
that in each case the crossover (or hill climbing) is
productive in improving the population. The performance
of the Wrapping Codon Crossover confirms previous
findings relating to its productivity e.g. [O’Neill and Ryan
2001; Keijzer 19911].

The work here demonstrates that, at least in the
domains explored, the LHS Replacement Crossover is the
most successful in exploring the search space. The
problem domains we have used are quite distinct despite
some superficial similarities (e.g. involving the control of
an agent). What will be important is to expand the problem
domains to see whether the same benefits are seen over a
wider range of problem types. The hope is that the LHS
Replacement Crossover is an efficient way of searching
the genotype irrespective of the phenotype into which it is
translated.

In addition there appears to be some evidence as to
the ability of GE, with an appropriate crossover operator,
to continue to explore effectively the fitness landscape
even after the individuals have apparently converged to
similar structures, partly by providing an effective control
over bloat. The ability of the LHS Replacement Crossover
to continue to evolve even when faced with more difficult
problems needs to be further explored. If the LHS
Replacement Crossover is able to evolve relatively small
populations through a large number of generations to solve
problems that currently require populations of tens of
thousands of individuals then this will allow the genetic
programming technique to be used in a far wider range of
situations. The ability to search the problem space whilst
keeping a smaller population current reduces the amount
of information needed to be kept in main memory, even
although the number of crossovers performed may be the
same.

References

[Dietterich 1998] Thomas G. Dietterich The MAXQ
method for Hierarchical Reinforcement Learning Proc.
15" International Conf. on Machine Learning

[Jones 1995] T. C. Jones. Crossover, macromutation, and
population-based search. In Larry J. Eshelman, editor,

2544

Proceedings of the Sixth International Conference on
Genetic Algorithms, pages 73-80, San Francisco, 1995.
Morgan Kaufmann.

[Keijzer 1991] Keijzer M., Ryan C., Cattolico M., and
Babovic V. Ripple Crossover in Genetic Programming.
In proceedings of EuroGP 2001.

[Keller 1996] Robert E. Keller, Wolfgang Banzhaf 1996.
Genetic Programming using Genotype-Phenotype
Mapping from Linear Genomes into Linear Phenotypes
(1996) Genetic Programming 1996: Proceedings of the
First Annual Conference

[Koza 1992] J.R. Koza Genetic Programming MIT
Press/Bradford Books, Cambridge M.A., 1992

[Koza 1994] JR. Koza Genetic Programming II:
Automatic Discovery of Reusable Programs. MIT
Press, Cambridge, Mass., 1994.

[Montana, 1994] Montana D, Stronly Typed Genetic
Prgramming. Technical Report 7866, Bolt Beranek and
Newman Inc.

[O°Neill and Ryan 1999] O°Neill M., Ryan C. Under the
Hood of Grammatical Evolution. In Banzhaf, W.,
Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V.,
Jakiela, M., & Smith, R.E. (eds.). GECCO-99:
Proceedings of the Genetic and Evolutionary
Computation Conference, July 13-17, 1999.

[O’Neill and Ryan 2000] Crossover in Grammatical
Evolution: A Smooth Operator? In Proceedings of the
Third European Workshop on Genetic Programming
2000, pages 149-162

[O’Neill et al., 2001] O’Neill M., Ryan C., Keijzer M.,
Cattolico M., Crossover in Grammatical Evolution:
The Search Continues. In Proceedings of EuroGP
2001.

[Ryan et al, 1998] Ryan C., Collins J.J., O’Neill M.
Grammatical Evolution: Evolving Programs for an
Arbitrary Language. Lecture Notes in Computer
Science 1391. First European Workshop on Genetic
Programming 1998.

[Whigham, 1995] Whigham P.A, Grammatically-based
Genetic Programming (1995) Proceedings of the
Workshop on Genetic Programming: From Theory to
Real-World Applications

2544

