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Abstract. We introduce a parallel version of hierarchical evolutionary
re-combination (herc) and use it to evolve programs for ten stan-
dard string processing tasks and a postfix calculator emulation task.
Each processor maintains a separate evolutionary niche, with its own
ladder of competing agents and codebank of potential mates. Further
enhancements include evolution of multi-cell programs and incremental
learning with reshuffling of data. We find the success rate is improved
by transgenic evolution, where solutions to earlier tasks are recombined
to solve later tasks. Sharing of genetic material between niches seems
to improve performance for the postfix task, but for some of the string
processing tasks it can increase the risk of premature convergence.

1 Introduction

Evolutionary Computation typically involves a population of agents (individuals)
undergoing repeated cycles of selection, crossover and mutation. It has long
been recognized that a large-scale crossover would normally result in an initially
inferior agent and that subsequent, smaller crossovers or mutations would be
needed before the new agent becomes competitive in the general population.
Methods have therefore been proposed to protect these young individuals for a
period of time in an age-layered population structure or similar scheme [6].

Hierarchical evolutionary re-combination and the associated hercl program-
ming language were introduced as an alternative approach to this problem [1].
hercl agents have a stack, registers and memory (Figure 1), thus combining
elements from linear gp [8] and stack-based gp [9, 10]. Programs are divided
hierarchically into cells, bars and instructions. Each cell is effectively a procedure
or subroutine, containing a sequence of executable instructions. Cells are divided
into smaller chunks called bars, delimited by the pipe symbol ( | ) – much like
the bars in a musical score. Each instruction consists of a (single-character)
command, optionally preceded by a sequence of dot/digits which form the
argument for that command. The various commands are listed in Table 1 (see [1]
for further details).

Hierarchical Evolution does not use a population in the usual sense, but
instead maintains a stack or ladder of candidate solutions (agents), and a
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input: ickey

output:
memory: Minnie..............................

registers: .....[6]..[1]. [7]

stack: MM

code: 0[is|.<sŷ 5>};i|8{ ŝ-~:+7=;wo8|-wo]

ˆ

Fig. 1. hercl simulator, showing an evolved agent executing the strcmp task, to
compare the strings “Minnie” and “Mickey”. All items are floating point numbers,
but the simulator prints them as a dot (zero), an ascii character, or bracketed in
decimal format, depending on their value.

Table 1. HERCL Commands

Input and Output Stack Manipulation and Arithmetic

i fetch input to input buffer # push new item to stack ...... 7→ ...... x
s scan item from input buffer to stack ! pop top item from stack ...... x 7→ ......
w write item from stack to output buffer c copy top item on stack ...... x 7→ ...... x, x
o flush output buffer x swap top two items ... y, x 7→ ... x, y

Registers and Memory
y rotate top three items z, y, x 7→ x, z, y
- negate top item ...... x 7→ .....(−x)

< get value from register + add top two items ... y, x 7→ ...(y+x)
> put value into register * multiply top two items ... y, x 7→ ...(y ∗ x)
ˆ increment register

Mathematical Functions
v decrement register
{ load from memory location r reciprocal .. x→ .. 1/x
} store to memory location q square root .. x→ ..

√
x

Jump, Test, Branch and Logic
e exponential .. x 7→ .. ex

n (natural) logarithm .. x 7→ .. loge(x)
j jump to specified cell (subroutine) a arcsine .. x 7→ .. sin−1(x)
| bar line (return on .| halt on 8|) h tanh .. x 7→ .. tanh(x)
= register is equal to top of stack z round to nearest integer
g register is greater than top of stack ? push random value to stack
: if true, branch forward

Double-Item Functions
; if true, branch back
& logical and % divide/modulo .. y, x 7→ .. (y/x), (ymodx)
/ logical or t trig functions .. θ, r 7→ .. r sin θ, r cos θ

~ logical not p polar coords .. y, x 7→ .. atan2(y,x),
√
x2+y2

codebank of potential mates. At each step of the algorithm, the agent at the
top rung of the ladder is selected and either mutated or crossed over with a
randomly chosen agent from the codebank, or from an external library.

Crossovers and mutations are classified into different levels (tune, point,
bar, branch, cell or block) according to what portion of code from the
primary (ladder) parent is either mutated or replaced with code from the
secondary (codebank or library) parent. A large crossover at the lowest rung
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Fig. 2. Hierarchical evolutionary re-combination. If the top agent on the ladder
becomes fitter than the one below it, the top agent will move down to replace the lower
agent (which is transferred to the codebank). If the top agent exceeds its maximum
number of allowable offspring without ever becoming fitter than the one below it, the
top agent is removed from the ladder (and transferred to the codebank). When the
algorithm is parallelized, each niche has its own ladder and codebank, but all of them
may share a common library, containing the current champ from each niche.

of the ladder is followed up by a series of progressively smaller crossovers and
mutations at higher rungs, concentrated in the vicinity of the large crossover.

In previous work, single-cell hercl programs have successfully been evolved
for coding tasks [1], dynamically unstable control problems [2] and classification
tasks [3]. However, a number of drawbacks emerged:

(a) the algorithm sometimes experienced long periods of stagnation,
(b) for some of the more complex tasks, the single-cell programs became very

long and difficult to evolve,
(c) the number of competing agents in a single ladder is rather low, potentially

missing out on the benefits of parallelism inherent in other EC paradigms.

In the present work, we address these issues by introducing:

(a) incremental training, with reshuffling,
(b) multi-cell evolution,
(c) parallelized hierarchical evolution, on a multi-core architecture.

Aided by these enhancements, we test whether programs can be evolved to
emulate a postfix calculator, and to perform ten string processing tasks modeled
on functions from the standard C library.

2 HERCL Enhancements

(a) Incremental training, with reshuffling: Incremental training has
previously been used to evolve hercl programs for control problems such as
the double pole balancing task [2]. We now extend this approach to supervised
learning, with some additional modifications. The training items are shuffled into
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a random order and, initially, the fitness evaluation is based only on the first
two items. Once a certain target cost has been achieved on the first k items,
additional items are added, until the per-item target cost is no longer achieved.
If the system runs for an entire epoch (100,000 offspring) without adding any
new items, the last item on the list is swapped out and replaced with the next (in
order) item – thus giving the system a chance to “move on”, rather than getting
stuck on a particularly difficult item. If two difficult items occur in succession,
the algorithm will swap back and forth between them – up to a maximum of six
attempts (three for each item). After the sixth failed attempt, a reshuffle event
occurs: the training items are reshuffled into a new order, and training begins
again with the first two items (according to the new ordering). Note that this
is not the same as a random re-start, because the codebank and the champ are
retained, and only the subset of the training data changes.

This reshuffling, combined with hierarchical search, gives rise to a process
of creative destruction, where the components of agents evolved under previous
orderings are re-combined, to optimize the fitness under the new ordering. Over
time, code fragments that are advantageous for multiple sets of training items
are more likely to survive to be incorporated into a global solution.

(b) Multi-cell evolution: In order to evolve multi-cell programs we introduce
new levels of crossover beyond the cell level, labeled as block-1, block-2,
block-4, etc. For a block-k mutation, a block of k cells from the secondary
parent is transplanted into the primary parent (a jump instruction to the
modified cell(s) may optionally be inserted elsewhere in the code). Subsequent
(lower-level) mutations are concentrated in the vicinity of the transplanted block.

(c) Parallel Hierarchical Evolution: We parallelize the algorithm to run
on a multi-core machine. Each core maintains a separate niche with its own
ladder and codebank, but all of them may share a common library, comprised
of the current best agent (champ) from each of the niches (Figure 2). As soon
as a global solution is found in one niche, a terminating signal is sent to the
niches running on the other cores. Since competition between agents occurs only
within a niche, data can be reshuffled independently in each niche, thus creating
additional diversity in the system without compromising the “fairness” of the
competition.

For comparison, we include some experiments where each niche is running
completely independently, with no sharing of code between them. This allows us
to examine to what extent improved performance is due to sharing of code, and
to what extent it is due simply to a greater amount of searching.

3 String Processing Experiments

In our first set of experiments, we attempt to evolve solutions for a set of ten
string processing tasks, adapted from functions in the standard C String Library
string.h (listed in Table 2). The main motivation for choosing these tasks is to
see whether certain general-purpose programming constructs could be evolved,
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Table 2. String processing tasks and programming constructs.

task description l r v s m i

strcpy
input: a string

X
output: the same string

strcat
input: a string followed by another string

X
output: first string concatenated with second string

strlen
input: a string

X X
output: the length of that string

idxstr
input: an index followed by a (non-empty) string

X X X
output: the character at that index in the string

chrstr
input: a character followed by a string

X X X
output: index of first occurrence of that character

(or an empty message, if it does not occur)

stridx
input: a (non-empty) string followed by a list of indices

X X X X X
output: the list of characters at the specified indices

catstr
input: a string followed by another string

X X X X
output: second string concatenated with first string

strchr
input: a string followed by a character

X X X ?
output: index of first occurrence of that character

(or an empty message, if it does not occur)

strrchr
input: a string followed by a character

X X X ?
output: index of last occurrence of that character

(or an empty message, if it does not occur)

strcmp
input: a string followed by another string

X X X X X
output: difference between characters at the first place where

the two strings differ (or zero, if they are identical)

Key:
l = loop r = register v = compare value
s = subtract m = memory i = compare index

and form a kind of “standard library” for hercl, to facilitate the learning of more
complex tasks such as those proposed in [5]. The right column of Table 2 gives
a general indication of the kind of programming constructs that are required for
each task. Using this information, along with preliminary experiments, we have
tried to arrange the tasks roughly in order from easiest to hardest.

For each task, 1000 training and 1000 test cases are randomly generated.
String contents are chosen uniformly from the set of all printable ascii
characters. For tasks involving a distinguished character or index, the number
of characters before and after it are geometrically distributed with a mean of
3 characters. This is equivalent to choosing the string lengths from a negative
binomial distribution NB(2, 3

4 ) and then choosing the distinguished character
uniformly within the string. Each run is conducted on a 16-core machine with
15 separate niches, plus one core dedicated to communication between the
other cores (in a star network arrangement). For the cost function we use
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the Generalized Levenshtein Edit Distance [1], which is suitable for comparing
outputs that may vary in length. The target cost is zero.

Table 3 shows the number of minutes to completion for the various evolu-
tionary runs. In the first five runs (labeled Sa to Se) each task was evolved on its
own, up to a maximum of 8 hours. In the remaining runs, labeled as transgenic,
the system attempts to evolve solutions for each task in turn, using a library
consisting of the solutions evolved for all of the previous (successful) tasks on
the list. Up to three attempts are made for each task, with each attempt running
for a maximum of 8 hours. As soon as one attempt is successful, the system adds
the solution to its library and moves on to the next task. If all three attempts
fail, the system moves to the next task without adding anything to the library.

For the runs labeled as sharing, code was shared between the 15 niches, with
space reserved in the common library for the current best agent from each niche
(updated asynchronously, at the end of each epoch). For the last three runs
(labeled as non-sharing) the cores were run completely independently, with no
genetic material transmitted between cores (and the library consisting only of
the solutions to previous tasks).

Table 4 shows the evolved code from three selected runs (TSb, TSc and Ta).
We see that almost all the runs succeeded in evolving solutions for strcpy,

strcat, strlen, idxstr, chrstr and stridx. The first two tasks – strcpy

and strcat – are easily solved within a few minutes and the resulting code is
practically identical across all runs, as follows:

strcpy 0[i|sw;o] strcat 0[i|sw;i|sw;o]

The solutions for idxstr all involve incrementing or decrementing a register,
until the required index is reached. Those for strlen and chrstr involve
counting items – either by incrementing an index, explicitly adding 1, or
computing tanh of each character (which saturates to 1). The solutions for
stridx all work by storing the string into successive memory locations and
then accessing the value at each index in the list.

The last four tasks were solved considerably more often by the transgenic
runs, and we can see several instances where code from previous tasks has been
re-combined to solve later tasks. The solution for catstr in run Ta uses code
from stridx to store the first string into memory, then transfers the second
string to the output buffer, before retrieving the first string from memory. Indeed,
stridx seems to be a kind of bottleneck task in the sense that failure on stridx

in Run Tb has led to failure on all the subsequent tasks. Run TSc has found
solutions for strchr and strrchr which invert the roles of the character and
index, storing each index (plus 0.2) into the memory location specified by the
character. If the same character occurs multiple times, the first or last occurrence
(as appropriate) will overwrite the others and its index (rounded to the nearest
integer) will be the one that prevails in the relevant memory location. We can
recognize a fragment of code from strrchr in the solution for strcmp, which
stores the first string into memory and then scans the second string, comparing
it with the one in memory, one character at a time, until a non-zero difference
is found.
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Table 3. Evolution time for string tasks.

Run Sa Sb Sc Sd Se TSa TSb TSc TS2 Ta Tb T2

transgenic ← No → ← Yes →
time limit 480 mins 3× 480 = 1440 mins

sharing ← Yes → ← No →
cells ← 1 → 2 1 2

strcpy 2 3 1 4 2 2 4 1 4 1 3 3
strcat 15 6 19 15 15 15 15 16 17 16 8 11
strlen 2 1 190 2 12 109∗ 5 2 3 1 2 1
idxstr 8 2 275∗ 3 2 4 5 2 4 3 81 5
chrstr 122 44∗ 46 × 466 6 16 1 109 22 7 21
stridx 319 124 117 214 251 420 127 163 795 749 × 191
catstr × × × × × × × × 20 342 × 130
strchr × × × × × × 56 32 × × × ×
strrchr 97 × 37 × × 272 5∗ 3 × 918 × 14
strcmp × × × × × × × 174 × × × ×

Key: × = failed to achieve zero cost on the training set
∗ = achieved zero cost on training set but not on test set

Runs Sa, Sc, TSa, Ta and T2, which failed to evolve a solution for strchr,
end up solving strrchr by storing each index and character alternately on the
stack, then searching backwards. When the relevant character is found, the next
number on the stack will be the correct index.

Run TSb provides a good example of how a suboptimal “gene” from one task
can find its way into later tasks. For a string of length n, the solution for strlen
is achieved not by incrementing a register but instead by computing the nearest
integer to log

√
(7.5)n ' 1.0075n . This gives the correct answer for all strings

up to length 67. The pattern then finds its way (with a slight twist) into the
solution for strchr – which computes a formula based on the sum of the logs
of the characters in the string, with an expected value of 1.04 + 0.985(k − 1).
In other words, the agent is exploiting the independent distribution of the
characters, to find a solution which is good enough to give the correct answer
for all 1000 training and test cases, but would not work for all possible inputs.
The solution for strrchr similarly computes a function whose expected value
is 0.79 + 1.02(k − 1). It satisfies all the training data but makes an off-by-one
error on 1 of the 1000 test items.

In three cases (Sb chrstr, Sc idxstr and TSa strlen) a very long sub-
optimal solution has been found which explicitly scans items one at a time, then
prints out a hard-coded answer. In general, the non-sharing runs tend to produce
code which is shorter and more robust than that of the sharing runs. The reason
may be that a suboptimal solution can develop in one niche and then spread like
a virus to the other niches. In that case, a system with all niches “quarantined”
from each other may produce a global solution faster. For example, Run Ta
(without sharing) has found a global solution for catstr using memory, whereas
the three sharing runs all got stuck in suboptimal solutions which manage to
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Table 4. Evolved code for selected runs of the string tasks.

Run TSb (sharing)

strlen 0[1#i|y*7.5#s;}qnzwo]
idxstr 0[isi|=̂ :sx;|swo]

chrstr 0[i{s>i|=h:+s;|!wo]
stridx 0[i|s}̂ ;is:o.|>{ws;o]
catstr −
strchr [i|ss;>is|=:x>;o.|!=h;eex=*;{e|6#**x.=x1;7><xgq;qnzwo]
strrchr [i|ss;>is|=:x>;o8|!he|7#**><xgq;qnzwo]

strcmp −
Run TSc (sharing) Run Ta (no sharing)

strlen 0[i|<ŝ ;wo] 0[is:{wo1:|}1.#+s;wo]
idxstr 0[is>2gi|<.=:s5̂ ;|swo] 0[isi|%̂ g:s;|swo]

chrstr 0[i<s>is|=h:+s;|!wo] 0[i<s>is|=h:+s;|>wo]

stridx 0[i|s}̂ ;is:o8|>{ws;o] 0[is|}̂ s;is|~:>{|ws1;o]
catstr − 0[i|}̂ s;is|ws;1̂ {g:;|o]
strchr 0[.2#i>|<ŝ ;}|>};is>{9=z~:o8|wo] −
strrchr 0[.2#i>|.<ŝ 5>};is>{3=z:w|o] 0[i|<̂ s;is>}|=:};o8|%wo]
strcmp 0[is|.<sŷ 5>};i|8{̂ s-~:+7=;wo8|-wo] -

store and retrieve up to 5 or 6 characters of the string using specific registers
and stack manipualations, but fail for longer strings. The two-cell runs (TS2
and T2) were able to solve catstr, but their solutions avoid using memory and
instead use recursion, with one recursive call for each item.

It is hard to say whether sharing makes a significant difference in the
evolution times – although the sharing runs may finish slightly faster (or more
often) than the non-sharing runs on tasks like stridx and strrchr where
suboptimal solutions are unlikely to occur. It may be that some of these tasks
– when provided with evolved solutions to the preceding tasks – effectively
require only one new “trick” in order to succeed. Once this trick is discovered,
the evolution rapidly proceeds to completion. Under this hypothesis, 15 niches
running concurrently would be expected to find the vital “trick” in equal
time, whether they are sharing code or evolving independently. Each trick then
becomes a stepping stone to aid in the evolution of subsequent tasks [7].

4 Postfix Calculator

In order to further explore the issue of sharing vs. non-sharing evolution, we
tried evolving on a different kind of task, whose solution is more likely to require
a combination of separately evolved modalities. The task we chose is a postfix

calculator. For this task, the input is a sequence of numbers and operators,
forming an arithmetic expression in Postfix or Reverse Polish notation. The
output is the numerical value to which the given expression evaluates.

The allowed operators are +,−, ∗ and /. Again, 1000 training and test cases
are produced by a generative process, according to the probabilistic grammar
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Table 5. Probabilistic Grammar for generating postfix data.

S → Val (0.1) Op → + (0.25)
S → Tree Tree Op (0.9) Op → − (0.25)

Tree → Val (0.6) Op → ∗ (0.25)
Tree → Tree Tree Op (0.4) Op → / (0.25)

Val → space, followed by numeric value from a Cauchy
distribution, rounded to two decimal places

Table 6. Evolution times and evolved code for the postfix task.

mins code

314 0[ ]

1[is|>39#g!:ss;|<ct>cnt!gn1:>g:r|*c{|hz-*+s3;wo]
395 0[43#>g~:!*s:wo8]

1[isss:wo.|!ss|41#>g1;0j43#>g;47#>g:yr*<xy|.7#-t!z*+s1;wo]

721 0[isss:wo8|!s46#>s|g:!r*s;2;|vvg:}-<|vg:!+s:wo8|vg4;46#>g:
3;|vvg:}-<|vg:!+s1:wo.|!*s:wo.|4;]

shown in Table 5. Expressions involving divide by zero are excluded. For this
task we again use the Generalized Levenshtein Edit Distance. The target cost is
set at 10−6 in order to avoid failure due to roundoff errors.

For the postfix task, two-cell programs rather than single-cell programs were
evolved in the first instance. Ten runs were performed with sharing of genetic
material, and ten runs without sharing. All of the non-sharing runs failed to find
a solution within the 8 hour limit. Only two of the ten sharing runs managed to
find a solution.

Ten additional runs were performed to see whether single-cell evolution, with
sharing of code between niches, could produce solutions for the postfix task.
For these runs, the time limit was extended to 24 hours per run. Only one of
these ten runs produced a solution. (In order to save computing time, single-cell
experiments without sharing of code were not performed.) The exact evolution
times and evolved solutions are shown in Table 6.

Note that the first of these solutions ultimately uses only one of the two cells.
The code is quite short, and uses a serendipitous combination of trig functions
and logs to distinguish the characters +,−, ∗ and / and perform the appropriate
operation. The other two solutions perform an explicit comparison against (the
ascii values of) these characters. Having two cells available during the evolution
seems to free up the evolutionary process, and provide greater flexibility for
targeted crossovers and mutations. But, later in the process the code from one
cell may get randomly transplanted into the other cell, allowing it to perform
the whole task on its own.
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5 Conclusion and Further Work

We have parallelized the hierarchical evolutionary re-combination algorithm,
and shown that hercl programs can successfully be evolved to emulate a
postfix calculator and perform ten different string processing tasks. In the
process, fundamental programming constructs emerge such as incrementing
and decrementing of registers, storing items into successive memory locations,
looping until certain conditions are met and distinguishing between various
arithmetic symbols to select between different computation paths.

This process can be compared to the primordial stages of biological evolution,
where promiscuous recombinations in geographically separated regions over long
periods of time eventually lead to beneficial fragments of genetic code, which can
then be recombined into successively more complex organisms.

In future work we plan to package up the solutions for these string tasks into
a “standard library” and test to what extent the inclusion of this library (and
others like it) would speed up the learning of new tasks.

Our software is freely available on GitHub (via http://hercl.org).
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