Learning Position Evaluation for Go with
Internal Symmetry Networks

Alan Blair, Member, IEEE

Abstract— We develop a cellular neural network architecture  Network, because it is inspired by the phenomenon of internal
consisting of a large number of identical neural networks symmetry from particle physics.
organised in a cellular array, and introduce a novel weight

sharing scheme based on the principle of internal symmetry II. THE GAME OF GO
from particle physics. This Internal Symmetry Network is then . .
trained by self-play and temporal difference learning to perform The rules of Go are relatively simple to state but the
position evaluation for the game of Go. game is notoriously difficult to master. Two players take
turns placing white and black stones on the vertices of
I. INTRODUCTION a rectangular grid, each attempting to surround as much

There has been a growing interest in computation systerf"itory as possible without being captured. The standard
which enable global behavior to emerge from the interactiof2€ for @ Go board i89 x 19 but games are also sometimes
of local rules. Cellular automata are one example of thi®layed on boards of sizéx 9 or 13 x 13.

but they are limited in having only a finite number of states A contiguous set of stones of the same color (i.e. con-
available at each cell. nected along neighboring edges) is calledraup. Empty

A Cellular Neural Network (CNN) is a collection of vertices next to a group of stones are calldwrties of that

identical neural networks arranged in a cellular array. @NNIroup- If the number of liberties of a group is reduced to
are similar to a cellular automata except that (1) the staf€© at any point during the game (because the group has
space at each cell is continuous rather than discrete, 3nd g?n surrounded by enemy stones), that grougajisured.
the update rule is given by a neural network rather than F1iS means that all the stones of that group are removed
lookup table or other discrete mapping. from the board, leaving empty spaces where new stone_sf can
One task which seems very appropriate for this kind Olfite_r be played. You_are _not allowed to play into a position
architecture is the ancient game of Go. Standard seardftich reduces the liberties of one of your own groups to
techniques generally run into trouble in the Go domain duge™ (suicide) unless this move at the same time reduces
to the very large branching factor [1]. For this reason, G e liberties of an enemy group to zero. In the latter case
programs for a long time relied on symbolic reasoning rathdf'€ ENeMy group is captured (thus creating at least one new
than search. However, with the steady increase in desktdEY for your group). There is also a rule — called *ko” —
computing power a range of other approaches have recenW'C_h prevents the boa_rd from being returngd to a position
become feasible — most notably, a new breed of Stroﬂgvmusly er)countered in the same game. It is possibleyat an
programs based on UCT search [2]. t e to pass instead of making a move. When'both players
Human players do make use of search methods in decidilqsc'de to pass one after the other, the game is over.

their moves, but they prune the search tree very heavilyirThe There are two popular scoring systems for Go: Chinese and

pruning mechanisms seem to rely on some kind of distributelfPanese. Under Chlnese_ r.ules, yo# sgoredone p;]omt fgr eagh
computation — perhaps making use of low-level processin your own stones remaining on the board at the end, an

within the visual system. By mimicking this process with\/ne_poInt for ea((j:h dvirtex surr%gndgd byf yorL]J_r own dstbolnei.
a cellular neural network (or similar architecture) we cbul ert|cesdsurroun ed by a cofm m_ar:lon (I) w |t_(rahanJ ac
potentially develop new Go programs employing heuristid!ones do not score a point for either player. The Japanese

alpha-beta search, but using neural networks for move ev. stem is §omewhat more cqmpllcated because you do not
uation and selection. score a point for stones remaining on the board, but only for

A number of Go-playing programs have previously bee aptured s’Fones and fo_r “territqry”, where “territoryi’ che
developed which incorporate neural networks in a variet osely defined as “vertices which both players realize woul

of ways [3] including supervised learning [4] and temporai ecsr:{rroundeld by your §tor}[e§ i tlhe gar:‘ne werett(t)' conl':muea
difference learning [5]. Cellular automata have also been Inese rules are easier to impiement computationaily, an

used in this context [6]. have therefore become the standard for many “computer-

The main distinguishing feature of our approach is the us%nly Go servers like CGOS.
of a cellular neural network architecture, and a novel weigh 1. | NTERNAL SYMMETRY NETWORKS

sharing arrangement which we call anternal Symmetry One of the interesting features of Go is its high degree

School of Computer Science and Engineering, University ofgeuth  Of Symmetry. Go has an approximate shift invariance, In.
Wales, Sydney, 2052 Australld ai r @se. unsw. edu. au the sense that the same arrangement of stones occurring in



different places on the board is likely to lead to the nexhsto For an individual cellA € A, the neural network update
being played in the same position within this formation.€Th equations are given by:
invariance is only approximate because the strategy may b
affected by the edges and corners of the board.) i H(Z)* = tanh (By + Z Vi)

To capitalise on this property, we use an architecture veN
consisting of a large number of identical neural network®” — O(Z,H)* = ¢ (Bo+ Y _ V&I + VguHM ™)
organised on a cellular array. Each cell in the array corre- vEN
sponds to a vertex on the Go board at which a stone may Gere ¢ is the sigmoid functions(z) = 1/(1 + e~).

played. If the size of the board isby-n, with n = 2k +1, | other words, each cell is connected to its nine neighlgorin
then the board can be considered as a latticef vertices g|is (including diagonal neighbors) by input-to-hiddeme
A = [a,b] with —k < a,b < +k. It will be convenient pectionsVyy, hidden-to-output connectiongor and input-
to denote byA the “extended” lattice which includes anqg- -output “shortcut” connection¥o;. By andBg represent
additional row of vertices around the edges of the boarghe “pias” at the hidden and output units. We assume that
e A= {[a, b} (rs1)<ab<(btn)- for the edge cellsX € A \ A), the hidden unitd1* remain

In addition to shift invariance, the Go board can be rotate@ientically zero, while the inputs* take on special values
or turned upside down in 8 different ways without affectingo indicate that they are off the edge of the board.

the rules. We therefore design our system in such a way Any elementg € G acts on the input§ and output units
that the network updates are invariant under this group @) by simply permuting the cells:

symmetries. As noted in [5], this can be accomplished by

appropriate use of weight sharing [7]. Here, we employ a 9(I) = {Ig( b )} [a,b]€A
novel weight sharing arrangement, which we call an Internal g(0) = {09l ([a,b]) Hablea
Symmetry Network. '

The groupg of symmetries of the Go board is the dihedrain addition to permuting the cells, itis possible fato act on
groupDs of order 8. This group is generated by two element§ome or all of the hidden unit activations within each cell, i
r and s — wherer represents a rotation ®0° ands is a @ manner analogous to the phenomenoimtef nal symmetry
reflection in the vertical axis. The action B on A (or A) in quantum physics. The groupg has five irreducible rep-

is given by resentations, which we will label &ivial (T), Symmetrical
(S), Diagonal (D), Chiral (C) andFaithful (F). All of them
rla,b] = [-b,d] are 1-dimensional except the Faithful representation fvisic
sla,b] = [—a,b] (1) 2-dimensional. We consider, then, five types of hidden node,

each with its own group action determined by the following
We will use M and A to denote neighborhood structures inequations:
the form of offset values:

r(T)=T, s(T)=T

M= {00,01,[1,0}0.1).[1,0[0. 1]}, e

N = MU{[lal]v[717”7[71771]a[1371]}' T(C) = C, s(C) =-C
When viewed as offsets from a particular vertex{ rep- :Eg;? zg;;g

resents the vertex itself plus the neighboring verticed4o i
east, north, west and south includes these but adds also
the diagonal vertices to the north-east, north-west, soatht In general, the hidden unit activations for a single cell wil
and south-east. Assuming the actiongdn N (or M) is  consist of some number of each type of hidden node:
5Is€oj\glven by Eqn(1), it is clear that fgre G, A € A and H = Tit x §% x DIP x CI¢ x (Fy x Fy)*

g +v) =g\ +g(v). with the action ofG on H given by

_ a,b _
Each cell\ = [a, b] € A has its own set of input, hidden and g(H) = {g (1 ]))}[a bjen

output units denoted by**l, HI**l and Ol**]. Each edge \we want the network to be invariant to the action®fin
cell X\ = [a,b] € A\ A also has input and hidden units, butihe sense that for alf € G,

no output. The entire collection of input, hidden and output

units Z, H and © for the whole network can thus be written g(H(T)) = H(y9(2))
as Q(O(IaH)) - O(Q(I),Q(H))
I = {I[Gvb]}[a bek This invariance imposes certain constraints on the weights
"y fla.b] of the network, which are outlined in the Appendix. For the
= {H } [a.b]eA experiments reported here,

O = {0}, ea ir =4,ig = 2,ip = 2,ic = 0, andip = 2, making a total



TABLE |
REWARD TO BE GAINED FOR EACH VERTEX BASED ON THE
VALUE OF A CAPTURED STONE(c) AND A FINAL STONE (s)

of 12 hidden nodes, 2310 connections per cell and 714 free
parameters in the overall system.
Internal Symmetry Networks can also be made recurrent,

by additionally connecting each cell to itself and its four Ownership ~ State RS RS RS

immediate neighbors (i.e. excluding diagonals) with resotr

hidden-to-hidden connections. Group representationrgheo white  + (empty) | 1 - e

can be used to derive the appropriate constraints for these white o (filled) | s s ste

recurrent connections. Although we have made some prelim-

inary experiments with recurrent networks, the currentepap atari  +(empty)| 0 - c

will focus only on feed-forward networks. black o (filled) | -s -(s+c¢) -s
IV. NETWORK INPUT AND OUTPUT black +empty)| -1 -(14c)

The architecture we have described so far is of a general
nature and could be applied to other tasks such as image
processing as well as board games like Go. The input and
output encoding will depend on the task. For example,
networks trained for image processing tasks would nagurall

TABLE I
REWARD TO BE GAINED FOR EACH VERTEX
FOR THE CASESs = 0AND s = 1

use one real-valued input per cell for black-and-white iesag R. R RO [R. RS RY
and three real-valued inputs per cell for color images. .

In the case of Go, we assign 14 inputs at each cell with | “™® | 1 e 1 e
a discrete encoding to indicate the color of the stone occu- | white o | 1 1 I+c¢| O 0 c
pying that cell, and to provide some aggregate information atari + | 0 c c 0 i c
about the liberties of the group to which that stone belongs
(described in Section 4.2). black e | -1 (1+e) -1 ) 0 ¢ 0

black + | -1 -(1+4¢) 1 -(1+¢)

A. Output Encoding

Our initial experiments involved one output unit per cell,
trained to predict an appropriately scaled estimate of the
expected reward associated with that cell. However, wEhe future status of a (currently) empty location is gergral
eventua”y settled on a network with 7 Outputs per Ce”getermined by the influence of the Surrounding StoneS, while
which together try to predict the expected reward under tv\klj]at of a filled location is determined by the likelihood of
different scoring systems. effecting or avoiding caputure.

Different scoring systems for Go can generally be charac- Itis convenient to linearly re-scale the network outputs Z
terized by two parametersand s, wherec is the reward for Zo and Z from [0,1] to the new ranges [-1,1],([t+c),1] and
each enemy stone captured ani$ the reward for each live [-1,1+c], respectively — since these are the natural ranges for
stone remaining on the board at the end of the game. (Wee values of R, R} and R (top left of Table Iil). During
assume a score of 1 for each vertex of territory that is owndbrining, the target values can be recovered by the inverse
but empty at the end of the game). In this framework, th&caling (lower left of Table III).

Chinese scoring system corresponds:te: 0, s = 1 while In order to predict R, R and R, we add four additional
the Japanese system roughly corresponds t01,s = 0, outputs A, A%, A, and A, and employ the transformations
but with special rules for ending the game early (discusseshown in the right column of Table III.

below).

The reward to be gained at each board location is shown TABLE IlI
in TABLE |. The location’s current state is indicated by the
subscripts at the top of each column, while the rows indicate

RELATIONSHIP BETWEEN REWARDS AND NETWORK OUTPUTS

its ownership and final state at the end of the game. Two of Rl = 27,1 RI= A3-AS
the table entries are blank, because we do not consider the
Rl= (24¢)Zo—(14+¢) RI= c(Zo-1)-Ao

possibility of a white stone becoming a white liberty, or a
black stone becoming a black liberty. RI=  (24¢)Ze —1 RO=  cZ¢+ A
We want our network to predict the reward for the two special
casess=1 ands=0, which are shown in Table II.
We first consider the task of predicting!RR} and R.

In theory, these three values could all be predicted with A
one network output (since only one of them is applicable
in any given situation). However, we choose instead to use
three separate outputs,ZZ, and 7%, in order to allow the Ze= (14+RL)/(24¢) Ae= -cZe+RY
network more flexibility in computing these disparate value

Zy

(1+RL)/2 AL = max(R],0)

= max(-R.,0)

(14+c+RY)/(24¢)  Ao= ¢(Zo-1)—R9

o



TABLE IV C,, |if YA < 0.75, ¥Z < 0.75,

TARGET VALUES FOR THE SEVEN NETWORK OUTPUTS 02’ |f YA < 075, 0.75 S Nz < 15’
Zy  Zo Zo AL AT | A A, Cs, |if YA <0.75, 1.5 <XZ,
White  + | 1 1 1 0 . il Cy4, if 0.75 < XA < 1.5, $Z < 1.5,
White o | 1 1 10 00 0 Cs, if 075<ZA<15 15 <XZ,
M@+ | 5 g g | 00 05 5 Cs, if 15 <A
Black e | O 0 0 0o o0 0 0
Black + | 0 0 0 1 1 : Roughly speakingXA estimates the number of eyes that

are likely to be made from current liberties of the group,
while (XA—XZ) estimates the number of “openings”, i.e.
ggtential avenues for expansion, or connection to other

The target values for these seven outputs will then be Soups. In this context. the six categories can roughly be
shown in Table IV. The current state of the vertex is indidateghargcferized as: ' 9 gnly

by the subscripts at the top of each column, while the rows
indicate its ownership and final state at the end of the game. C;: no eyes and no openings
C,:  no eyes, and only one opening

Each of the seven outputs can informally be interpreted as ?
P y P Cs:  no eyes, but at least two openings

a likelihood: .
C4:  one eye, but no opening
output | interpreted as likelihood of ... Cs:  one eye, plus at least one opening
Z, | white gaining territory Ce: at least two eyes

Z, white avoiding capture
Ze white effecting capture
A% | white making an eye
A% black making an eye
A, white stone captured, leading to black eye
A, black stone captured, leading to white eye

Although the network itself is feed-forward, this use
of outputs from the previous time step for categorization
effectively adds a kind of “implicit recurrence” to the sgst.
Thus, even though each output celtlisectly dependent only
on the stones in a local neighborhood, the categorie$oC
Cs (above) implicitly give it access to non-local information
about the number (and type) of liberties for the groups to
which these stones belong.

We allocate 14 input units to each board location. Exactly
one of these inputs will be “active” for any given locatiordan
time step. The active unit will be set th while the other

B. Input Encoding

The ending of a Go game has traditionally been by mutual

agreement between the two players. In the case of Japanese

13 units will be set to0. This kind of “1-in-n” encoding rules., this “early” ending .Of the game has an |mpaf:t on
the final score — because it allows each player to claim the

facilitates rapid computation. o . . e
. . . . reward for capturing “dead” stones, without sacrificing the
If a white stone is present, one of the inputs in the range

. . . . “territory that would theoretically be lost in the process of
1-6 will be active. If a black stone is present, an input in ; : .
capturing them. In the case of Chinese rules, ending the

the range 7-12 will be active. Input 13 indicates that this , ) .
e e o ame early has no effect on the final score, but still makes it
location is empty (no stone), while input 14 indicates that.... . . ; . :
) T ifficult to predict whether a given location will be filled
this location is off the edge of the board. .
When a white or black stone is present, the choice (ﬁr empty at the end of the game. In order to train our
P ' etworks, we need to have a well-defined outcome so that

input within the range 1-6 or 7-12 is intended to provide thﬁqe final status of each location can be sensibly predicted —

network with some aggregate information about the Ilbsrnenot only in terms of territory, but also in terms of whether
of the group to which that stone belogs.

) . it is filled or empty. We achieve this by adopting a novel

In our eaf'Y expenmen?s, each stone was classified _|nto ‘_)@Eoring system, for training purposes, which is somewhere
of _6 categones., depending on the total number of I'b(:"rt'e&etween the Chinese and Japanese systems, by awarding 0.4
of its group. This led to poor network performance, becausg,ins for each captured stone, and 0.4 points for each stone
all liberties were trea_ted equally._We_reallsed |_t W_ould b emaining on the board at the end of the game (i.e. setting
z_advantageous_ to modify the glas_5|f|cat|on _by vv_e|ght|ng_ eaclﬂe above scoring parametersde- s — 0.4). This scoring
liberty .accordlng to (a) t_he _Ilkellhood_ of it pe!ng ret.aunedSystem encourages each player to chip away at the opponent's
as .terrltory, and (b) the likelihood of ',t remaining a libert liberties during the endgame, without filling in any of their
until the end of the game, thus becoming an eye. Since thesg, jinerties unnecessarily. Thus, all remaining blankaare

likelihoods have already been estimated by the network gfy e carved up into isolated eyes, with each player trying
the previous timestep, we can use this information to d1)a53|to maximise their own eyes while minimizing those of the
groups at the current timestep. Specifically, for each whitgpponent

(resp. black) group, IeEZ be the sum of Z (resp. (1-2.))

and letXA be the sum of A (resp. &) for all liberties V. TRAINING, RESULTS AND DISCUSSION

of that group (as computed at the previous time step). The Our network was trained by self-play and temporal differ-
group can then be classified into one of 6 classes, as followance learning [8], [9], [5] in the form of TD() with A = 0.9.



Each output was trained using cross entropy minimizatiomonsidering that the network was basing its moves only on
with a learning rate of 0.000005. Weight decay of 0.99998nmediate evaluation, with no lookahead.

was applied when the weights were updated at the end ofWe have recently parallelized our neural network code on
each game. Although this learning rate may appear small, the NVIDIA GeForce 8800 graphics card, thus increasing the
massive weight sharing in the Internal Symmetry Networkpeed of evaluation to 7000 positions per second foi $he
causes differentials to accumulate at every single vertex9 board size. Based on this speedup, we hope to implement
therefore adding up to a non-trivial weight adjustment by heuristic alpha-beta search to depth 5, using the network
the end of the game. itself — or a similar auxiliary network — for heuristic prungj.

The overall board evaluatioR is the sum of the expected The fluctuation in network performance (Figure 1) is rem-
rewards for all the individual board locations. Moves wergnicsent of what has previously been observed for recurrent
chosen according to a Boltzman distribution — meaning thateural networks trained to predict context-free or context
the probability of each (legal) move is proportionald®®, sensitive languages [10]. In those studies, it was found tha
where R is the evaluation of the board resulting from thathe learning could be made more stable by the use of
move. The Boltzman constarnt was set to 4 during the Evolutionary Computation. The application of such methods
training. in the current context, as well as the training of recurrent

The shortcut connections (i.e. direct from input to outputhetworks, is the subject of ongoing work.
were trained in a preliminary phase, to provide a linearglay
with a basic level of functionality (and to ensure that the
games would eventually terminate). All the weights of the

network were then opened up for 860,000 games of trainin ) . )
on a9 x 9 board. The training time was approximately half! "€ constraints on the various network connections are out-

a second for each game, or five days in total, on a 2.66 GHiped below — with neighborhood relationships abbreviated
Mac Pro. E (East), N (North), W (West), S (South), NE (North East),

For evaluation, networks at intervals of 20K were extracteD'W (North West), SW (South West), SE (South East) and

and played 10 games against each other pairwise in a rourfd-(Original).
robin tournament. For the tournament, moves were again

APPENDIX: WEIGHT SHARING

selected from a Boltzman distribution but witth = 20. Viy = { Vir Vs Vép Vée Vir Vie }
Standard Chinese rules were used, with a komi of 3.5. The ! -
results are shown in Figure 1 where we see a noisy butyy —— { Vi V& Vi VE Vi Vi }

1 2

generally upward trend in performance.

Our Internal Symmetry Network architecture has the adv B =V =V¥ =V, , VRE= yNW= yEWV= y3E
vantage that, even when trained only on $he9 boarq size, VE,. =V, =V}, = V(S)T , VRE=VIW= V%VTV: V(S-)ET
the network can then be made to play on any sized boayds _ yN _ yw _ ys VNE _ yNW_ y/SW_ ySE
without changing the actual weights. T I TI e T R

V8F:V8F:V(F)1 :Vgl =0
1 2 1 2
. o VgFl = Vngz 'V%VFI =Vp = Vi = Vi = V= 'VISJ‘QI
® 1 Vng = VgFl = V\C})VFz = V(S)F1 = VF21 = VFII = VF21 = V%I =0
45 | VEE = VEN= VB = VEE = Vi = VEI=VEI= vE;
4 1 1 1 1 2 2 2 2
VI = VY= VEY = VBT = VT = VIS v v

1 1 1 1 2 2 2 2
Vgs = 'Vgs = V\c])vs = 'V%S ) Vg% = 'Vg\f)vz V%VI\)/: 'V(S)%
V& =V§ =Vy =V§ , VB =Vh'= VRI'=Vi}
Fig. 1. Percentage of wins in round robin t, for etw Vop=Vpr =0, n€{O.ENW.5}

1g. 1. ercentage or wins In round robin tournament, Tor rom
0 to 860K Vs =V =0, ve{ONENWSWSE}
VEo=V% =0, ve{OENW,SNE NWSWSE}

300 400 500 600

We extracted the best network (at epoch 580K) and played
several games against it on boards of $ize9 and19 x 19.
Generally, the network’s evaluation and choice of moves
seem quite reasonable, and it can be observed to perform
captures, threats, blocking moves, etc. We also let it pday f
two days on CGOS, where it achieved a rating of 500 on the
9x 9 server and 1000 on thié) x 19 server. This performance
is not strong in absolute terms, but is quite respectable



(1]

(2]

(3]

(4]

(3]

REFERENCES

J.Burmeister & J.Wiles, 1995. The challenge of Go as a dorfai
Al research, Proceedings of the Third Australian and New Zealand
Conference on Intelligent Information Systems.

S.Gelly & Y.Wang, 2006. Exploration exploitation in GQICT for
Monte-Carlo Go, Proceedings of Neural Information ProcesSys-
tems Conference.

M.Enzenberger, 1996. The integration of a priori knadge into a Go
playing neural network, ww. cgl . ucsf . edu/ go/ Progr ans/
neur ogo- ht m / Neur 0Go. ht m

F.A.Dahl, 2001. Honte, a Go-playing program using neastworks,
in J.Furnkranz & M.Kubat (Eds.Machines that learn to Play Games,
Chapter 10, pp. 205-223. Huntington.

N.Schraudolph, P.Dayan & T.Sejnowski, 1994. Tempor#fledence
learning of position evaluation in the game of Go, Advances in
Neural Information Processing 6, Morgan Kaufmann, 817-824.

[10

(6]

(7]

(8]
9]
]

S.Welsh & T.Bossomaier, 1999. Evolving cellular automiatals for
the game of Go, Proceedings of the Third Australia-Japan Joint
Workshop on Intelligent and Evolutionary Systems, 159-166.

Y.LeCun, B.Boser, J.Denker, D.Henderson, R.Howard{ibard &
L.Jackel, 1989. Backpropagation applied to handwrittearatter
recognition, Neural Computation 5, 541-551.

R.Sutton, 1988. Learning to Predict by the Methods of Terap
Differences,Machine Learning 3, 9-44.

G.Tesauro, 1992. Practical Issues in Temporal Diffeeehearning,
Machine Learnin 8, 257-277.

B.Tonkes, A.Blair & J.Wiles, 1998. Inductive bias in ntext-free
language learning\inth Australian Conference on Neural Networks



