
Learning Position Evaluation for Go with
Internal Symmetry Networks

Alan Blair, Member, IEEE

Abstract— We develop a cellular neural network architecture
consisting of a large number of identical neural networks
organised in a cellular array, and introduce a novel weight
sharing scheme based on the principle of internal symmetry
from particle physics. This Internal Symmetry Network is then
trained by self-play and temporal difference learning to perform
position evaluation for the game of Go.

I. I NTRODUCTION

There has been a growing interest in computation systems
which enable global behavior to emerge from the interaction
of local rules. Cellular automata are one example of this,
but they are limited in having only a finite number of states
available at each cell.

A Cellular Neural Network (CNN) is a collection of
identical neural networks arranged in a cellular array. CNNs
are similar to a cellular automata except that (1) the state
space at each cell is continuous rather than discrete, and (2)
the update rule is given by a neural network rather than a
lookup table or other discrete mapping.

One task which seems very appropriate for this kind of
architecture is the ancient game of Go. Standard search
techniques generally run into trouble in the Go domain due
to the very large branching factor [1]. For this reason, Go
programs for a long time relied on symbolic reasoning rather
than search. However, with the steady increase in desktop
computing power a range of other approaches have recently
become feasible – most notably, a new breed of strong
programs based on UCT search [2].

Human players do make use of search methods in deciding
their moves, but they prune the search tree very heavily. Their
pruning mechanisms seem to rely on some kind of distributed
computation — perhaps making use of low-level processing
within the visual system. By mimicking this process with
a cellular neural network (or similar architecture) we could
potentially develop new Go programs employing heuristic
alpha-beta search, but using neural networks for move eval-
uation and selection.

A number of Go-playing programs have previously been
developed which incorporate neural networks in a variety
of ways [3] including supervised learning [4] and temporal
difference learning [5]. Cellular automata have also been
used in this context [6].

The main distinguishing feature of our approach is the use
of a cellular neural network architecture, and a novel weight
sharing arrangement which we call anInternal Symmetry

School of Computer Science and Engineering, University of New South
Wales, Sydney, 2052 Australiablair@cse.unsw.edu.au

Network, because it is inspired by the phenomenon of internal
symmetry from particle physics.

II. T HE GAME OF GO

The rules of Go are relatively simple to state but the
game is notoriously difficult to master. Two players take
turns placing white and black stones on the vertices of
a rectangular grid, each attempting to surround as much
territory as possible without being captured. The standard
size for a Go board is19×19 but games are also sometimes
played on boards of size9× 9 or 13× 13.

A contiguous set of stones of the same color (i.e. con-
nected along neighboring edges) is called agroup. Empty
vertices next to a group of stones are calledliberties of that
group. If the number of liberties of a group is reduced to
zero at any point during the game (because the group has
been surrounded by enemy stones), that group iscaptured.
This means that all the stones of that group are removed
from the board, leaving empty spaces where new stones can
later be played. You are not allowed to play into a position
which reduces the liberties of one of your own groups to
zero (suicide) unless this move at the same time reduces
the liberties of an enemy group to zero. In the latter case
the enemy group is captured (thus creating at least one new
liberty for your group). There is also a rule – called “ko” –
which prevents the board from being returned to a position
previously encountered in the same game. It is possible at any
time to pass instead of making a move. When both players
decide to pass one after the other, the game is over.

There are two popular scoring systems for Go: Chinese and
Japanese. Under Chinese rules, you score one point for each
of your own stones remaining on the board at the end, and
one point for each vertex surrounded by your own stones.
Vertices surrounded by a combination of white and black
stones do not score a point for either player. The Japanese
system is somewhat more complicated because you do not
score a point for stones remaining on the board, but only for
captured stones and for “territory”, where “territory” canbe
loosely defined as “vertices which both players realize would
be surrounded by your stones if the game were to continue”.

Chinese rules are easier to implement computationally, and
have therefore become the standard for many “computer-
only” Go servers like CGOS.

III. I NTERNAL SYMMETRY NETWORKS

One of the interesting features of Go is its high degree
of symmetry. Go has an approximate shift invariance, in
the sense that the same arrangement of stones occurring in

different places on the board is likely to lead to the next stone
being played in the same position within this formation. (The
invariance is only approximate because the strategy may be
affected by the edges and corners of the board.)

To capitalise on this property, we use an architecture
consisting of a large number of identical neural networks
organised on a cellular array. Each cell in the array corre-
sponds to a vertex on the Go board at which a stone may be
played. If the size of the board isn-by-n, with n = 2k + 1,
then the board can be considered as a latticeΛ of vertices
λ = [a, b] with −k ≤ a, b ≤ +k. It will be convenient
to denote byΛ the “extended” lattice which includes an
additional row of vertices around the edges of the board,
i.e. Λ = {[a, b]}−(k+1)≤a,b≤(k+1).

In addition to shift invariance, the Go board can be rotated
or turned upside down in 8 different ways without affecting
the rules. We therefore design our system in such a way
that the network updates are invariant under this group of
symmetries. As noted in [5], this can be accomplished by
appropriate use of weight sharing [7]. Here, we employ a
novel weight sharing arrangement, which we call an Internal
Symmetry Network.

The groupG of symmetries of the Go board is the dihedral
groupD8 of order 8. This group is generated by two elements
r and s — wherer represents a rotation of90◦ and s is a
reflection in the vertical axis. The action ofD8 on Λ (or Λ)
is given by

r[a, b] = [−b, a]

s[a, b] = [−a, b] (1)

We will useM andN to denote neighborhood structures in
the form of offset values:

M = {[0, 0], [1, 0], [0, 1], [−1, 0], [0,−1]},

N = M∪ {[1, 1], [−1, 1], [−1,−1], [1,−1]}.

When viewed as offsets from a particular vertex,M rep-
resents the vertex itself plus the neighboring vertices to its
east, north, west and south;N includes these but adds also
the diagonal vertices to the north-east, north-west, south-west
and south-east. Assuming the action ofG on N (or M) is
also given by Eqn(1), it is clear that forg ∈ G, λ ∈ Λ and
ν ∈ N ,

g(λ + ν) = g(λ) + g(ν).

Each cellλ = [a, b] ∈ Λ has its own set of input, hidden and
output units denoted byI[a,b], H[a,b] and O[a,b]. Each edge
cell λ = [a, b] ∈ Λ \ Λ also has input and hidden units, but
no output. The entire collection of input, hidden and output
unitsI, H andO for the whole network can thus be written
as

I = {I[a,b]}[a,b]∈Λ

H = {H[a,b]}[a,b]∈Λ

O = {O[a,b]}[a,b]∈Λ

For an individual cellλ ∈ Λ, the neural network update
equations are given by:

Hλ ← H(I)λ = tanh
(

BH +
∑

ν∈N

Vν
HII

λ+ν
)

Oλ ← O(I,H)λ = φ
(

BO+
∑

ν∈N

Vν
OII

λ+ν + Vν
OHHλ+ν

)

whereφ is the sigmoid functionφ(z) = 1/(1 + e−z).
In other words, each cell is connected to its nine neighboring
cells (including diagonal neighbors) by input-to-hidden con-
nectionsVHI, hidden-to-output connectionsVOH and input-
to-output “shortcut” connectionsVOI. BH andBO represent
the “bias” at the hidden and output units. We assume that
for the edge cells (λ ∈ Λ \ Λ), the hidden unitsHλ remain
identically zero, while the inputsIλ take on special values
to indicate that they are off the edge of the board.

Any elementg ∈ G acts on the inputsI and output units
O by simply permuting the cells:

g(I) = { I g([a,b])}[a,b]∈Λ

g(O) = {Og([a,b])}[a,b]∈Λ

In addition to permuting the cells, it is possible forG to act on
some or all of the hidden unit activations within each cell, in
a manner analogous to the phenomenon ofinternal symmetry
in quantum physics. The groupD8 has five irreducible rep-
resentations, which we will label asTrivial (T), Symmetrical
(S), Diagonal (D), Chiral (C) andFaithful (F). All of them
are 1-dimensional except the Faithful representation which is
2-dimensional. We consider, then, five types of hidden node,
each with its own group action determined by the following
equations:

r(T) = T, s(T) = T
r(S) = -S, s(S) = S
r(D) = -D, s(D) = -D
r(C) = C, s(C) = -C
r(F)1= -F

2
, s(F)1= -F

1

r(F)2= F
1
, s(F)2= F

2

In general, the hidden unit activations for a single cell will
consist of some number of each type of hidden node:

H = TiT × SiS ×DiD × CiC × (F1 × F2)
iF

with the action ofG onH given by

g(H) = { g (H g([a,b]))}[a,b]∈Λ

We want the network to be invariant to the action ofG in
the sense that for allg ∈ G,

g
(

H(I)
)

= H(g(I))

g
(

O (I,H)
)

= O (g(I), g(H))

This invariance imposes certain constraints on the weights
of the network, which are outlined in the Appendix. For the
experiments reported here,
iT = 4, iS = 2, iD = 2, iC = 0, and iF = 2, making a total

of 12 hidden nodes, 2310 connections per cell and 714 free
parameters in the overall system.

Internal Symmetry Networks can also be made recurrent,
by additionally connecting each cell to itself and its four
immediate neighbors (i.e. excluding diagonals) with recurrent
hidden-to-hidden connections. Group representation theory
can be used to derive the appropriate constraints for these
recurrent connections. Although we have made some prelim-
inary experiments with recurrent networks, the current paper
will focus only on feed-forward networks.

IV. N ETWORK INPUT AND OUTPUT

The architecture we have described so far is of a general
nature and could be applied to other tasks such as image
processing as well as board games like Go. The input and
output encoding will depend on the task. For example,
networks trained for image processing tasks would naturally
use one real-valued input per cell for black-and-white images
and three real-valued inputs per cell for color images.

In the case of Go, we assign 14 inputs at each cell with
a discrete encoding to indicate the color of the stone occu-
pying that cell, and to provide some aggregate information
about the liberties of the group to which that stone belongs
(described in Section 4.2).

A. Output Encoding

Our initial experiments involved one output unit per cell,
trained to predict an appropriately scaled estimate of the
expected reward associated with that cell. However, we
eventually settled on a network with 7 outputs per cell,
which together try to predict the expected reward under two
different scoring systems.

Different scoring systems for Go can generally be charac-
terized by two parametersc ands, wherec is the reward for
each enemy stone captured ands is the reward for each live
stone remaining on the board at the end of the game. (We
assume a score of 1 for each vertex of territory that is owned
but empty at the end of the game). In this framework, the
Chinese scoring system corresponds toc = 0, s = 1 while
the Japanese system roughly corresponds toc = 1, s = 0,
but with special rules for ending the game early (discussed
below).

The reward to be gained at each board location is shown
in TABLE I. The location’s current state is indicated by the
subscripts at the top of each column, while the rows indicate
its ownership and final state at the end of the game. Two of
the table entries are blank, because we do not consider the
possibility of a white stone becoming a white liberty, or a
black stone becoming a black liberty.
We want our network to predict the reward for the two special
casess=1 ands=0, which are shown in Table II.

We first consider the task of predicting R1
+, R1

◦ and R1
•.

In theory, these three values could all be predicted with
one network output (since only one of them is applicable
in any given situation). However, we choose instead to use
three separate outputs Z+, Z◦ and Z•, in order to allow the
network more flexibility in computing these disparate values.

TABLE I

REWARD TO BE GAINED FOR EACH VERTEX, BASED ON THE

VALUE OF A CAPTURED STONE(c) AND A FINAL STONE (s)

Ownership State Rs

+
Rs

◦
Rs

•

white + (empty) 1 . 1+c

white ◦ (filled) s s s+c

atari + (empty) 0 -c c

black • (filled) -s -(s+c) -s

black + (empty) -1 -(1+c) .

TABLE II

REWARD TO BE GAINED FOR EACH VERTEX,

FOR THE CASESs = 0 AND s = 1

R1
+

R1
◦

R1
•

R0
+

R0
◦

R0
•

white + 1 . 1+c 1 . 1+c

white ◦ 1 1 1+c 0 0 c

atari + 0 -c c 0 -c c

black • -1 -(1+c) -1 0 -c 0

black + -1 -(1+c) . -1 -(1+c) .

The future status of a (currently) empty location is generally
determined by the influence of the surrounding stones, while
that of a filled location is determined by the likelihood of
effecting or avoiding caputure.

It is convenient to linearly re-scale the network outputs Z+,
Z◦ and Z• from [0,1] to the new ranges [-1,1], [-(1+c),1] and
[-1,1+c], respectively – since these are the natural ranges for
the values of R1+, R1

◦ and R1
• (top left of Table III). During

training, the target values can be recovered by the inverse
scaling (lower left of Table III).

In order to predict R0+, R0
◦ and R0

•, we add four additional
outputs A◦+, A•

+, A◦ and A•, and employ the transformations
shown in the right column of Table III.

TABLE III

RELATIONSHIP BETWEEN REWARDS AND NETWORK OUTPUTS

R1
+

= 2 Z+− 1 R0
+

= A◦

+
− A•

+

R1
◦

= (2+c)Z◦−(1+c) R0
◦

= c (Z◦-1)−A◦

R1
•

= (2+c)Z• − 1 R0
•

= c Z• + A•

Z+ = (1 + R1
+

)/ 2 A◦

+
= max(R0

+
, 0)

A•

+
= max(-R0

+
, 0)

Z◦ = (1+c + R1
◦
)/(2+c) A◦ = c (Z◦-1)−R0

◦

Z• = (1 + R1
•
)/(2+c) A• = -c Z• + R0

•

TABLE IV

TARGET VALUES FOR THE SEVEN NETWORK OUTPUTS

Z+ Z◦ Z• A◦

+
A•

+
A◦ A•

White + 1 . 1 1 0 . 1
White ◦ 1 1 1 0 0 0 0

Atari + 1

2

1

2+c

1+c

2+c
0 0 c

2+c

c

2+c

Black • 0 0 0 0 0 0 0
Black + 0 0 . 0 1 1 .

The target values for these seven outputs will then be as
shown in Table IV. The current state of the vertex is indicated
by the subscripts at the top of each column, while the rows
indicate its ownership and final state at the end of the game.

Each of the seven outputs can informally be interpreted as
a likelihood:

output interpreted as likelihood of ...
Z+ white gaining territory
Z◦ white avoiding capture
Z• white effecting capture
A◦

+ white making an eye
A•

+ black making an eye
A◦ white stone captured, leading to black eye
A• black stone captured, leading to white eye

B. Input Encoding

We allocate 14 input units to each board location. Exactly
one of these inputs will be “active” for any given location and
time step. The active unit will be set to1, while the other
13 units will be set to0. This kind of “1-in-n” encoding
facilitates rapid computation.

If a white stone is present, one of the inputs in the range
1-6 will be active. If a black stone is present, an input in
the range 7-12 will be active. Input 13 indicates that this
location is empty (no stone), while input 14 indicates that
this location is off the edge of the board.

When a white or black stone is present, the choice of
input within the range 1-6 or 7-12 is intended to provide the
network with some aggregate information about the liberties
of the group to which that stone belogs.

In our early experiments, each stone was classified into one
of 6 categories, depending on the total number of liberties
of its group. This led to poor network performance, because
all liberties were treated equally. We realised it would be
advantageous to modify the classification by weighting each
liberty according to (a) the likelihood of it being retained
as territory, and (b) the likelihood of it remaining a liberty
until the end of the game, thus becoming an eye. Since these
likelihoods have already been estimated by the network at
the previous timestep, we can use this information to classify
groups at the current timestep. Specifically, for each white
(resp. black) group, letΣZ be the sum of Z+ (resp. (1-Z+))
and let ΣA be the sum of A◦+ (resp. A•+) for all liberties
of that group (as computed at the previous time step). The
group can then be classified into one of 6 classes, as follows:

C1, if ΣA < 0.75, ΣZ < 0.75,
C2, if ΣA < 0.75, 0.75 ≤ ΣZ < 1.5,
C3, if ΣA < 0.75, 1.5 ≤ ΣZ,
C4, if 0.75 ≤ ΣA < 1.5, ΣZ < 1.5,
C5, if 0.75 ≤ ΣA < 1.5, 1.5 ≤ ΣZ,
C6, if 1.5 ≤ ΣA.

Roughly speaking,ΣA estimates the number of eyes that
are likely to be made from current liberties of the group,
while (ΣA−ΣZ) estimates the number of “openings”, i.e.
potential avenues for expansion, or connection to other
groups. In this context, the six categories can roughly be
characterized as:

C1: no eyes and no openings
C2: no eyes, and only one opening
C3: no eyes, but at least two openings
C4: one eye, but no opening
C5: one eye, plus at least one opening
C6: at least two eyes

Although the network itself is feed-forward, this use
of outputs from the previous time step for categorization
effectively adds a kind of “implicit recurrence” to the system.
Thus, even though each output cell isdirectly dependent only
on the stones in a local neighborhood, the categories C1 to
C6 (above) implicitly give it access to non-local information
about the number (and type) of liberties for the groups to
which these stones belong.

The ending of a Go game has traditionally been by mutual
agreement between the two players. In the case of Japanese
rules, this “early” ending of the game has an impact on
the final score – because it allows each player to claim the
reward for capturing “dead” stones, without sacrificing the
territory that would theoretically be lost in the process of
capturing them. In the case of Chinese rules, ending the
game early has no effect on the final score, but still makes it
difficult to predict whether a given location will be filled
or empty at the end of the game. In order to train our
networks, we need to have a well-defined outcome so that
the final status of each location can be sensibly predicted –
not only in terms of territory, but also in terms of whether
it is filled or empty. We achieve this by adopting a novel
scoring system, for training purposes, which is somewhere
between the Chinese and Japanese systems, by awarding 0.4
points for each captured stone, and 0.4 points for each stone
remaining on the board at the end of the game (i.e. setting
the above scoring parameters toc = s = 0.4). This scoring
system encourages each player to chip away at the opponent’s
liberties during the endgame, without filling in any of their
own liberties unnecessarily. Thus, all remaining blank areas
will be carved up into isolated eyes, with each player trying
to maximise their own eyes while minimizing those of the
opponent.

V. TRAINING , RESULTS AND DISCUSSION

Our network was trained by self-play and temporal differ-
ence learning [8], [9], [5] in the form of TD(λ) with λ = 0.9.

Each output was trained using cross entropy minimization,
with a learning rate of 0.000005. Weight decay of 0.99999
was applied when the weights were updated at the end of
each game. Although this learning rate may appear small, the
massive weight sharing in the Internal Symmetry Network
causes differentials to accumulate at every single vertex,
therefore adding up to a non-trivial weight adjustment by
the end of the game.

The overall board evaluationR is the sum of the expected
rewards for all the individual board locations. Moves were
chosen according to a Boltzman distribution – meaning that
the probability of each (legal) move is proportional toeβR,
whereR is the evaluation of the board resulting from that
move. The Boltzman constantβ was set to 4 during the
training.

The shortcut connections (i.e. direct from input to output)
were trained in a preliminary phase, to provide a linear player
with a basic level of functionality (and to ensure that the
games would eventually terminate). All the weights of the
network were then opened up for 860,000 games of training
on a9× 9 board. The training time was approximately half
a second for each game, or five days in total, on a 2.66 GHz
Mac Pro.

For evaluation, networks at intervals of 20K were extracted
and played 10 games against each other pairwise in a round-
robin tournament. For the tournament, moves were again
selected from a Boltzman distribution but withβ = 20.
Standard Chinese rules were used, with a komi of 3.5. The
results are shown in Figure 1 where we see a noisy but
generally upward trend in performance.

Our Internal Symmetry Network architecture has the ad-
vantage that, even when trained only on the9×9 board size,
the network can then be made to play on any sized board
without changing the actual weights.

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 100 200 300 400 500 600 700 800 900

line 1

Fig. 1. Percentage of wins in round robin tournament, for networks from
0 to 860K

We extracted the best network (at epoch 580K) and played
several games against it on boards of size9×9 and19×19.
Generally, the network’s evaluation and choice of moves
seem quite reasonable, and it can be observed to perform
captures, threats, blocking moves, etc. We also let it play for
two days on CGOS, where it achieved a rating of 500 on the
9×9 server and 1000 on the19×19 server. This performance
is not strong in absolute terms, but is quite respectable

considering that the network was basing its moves only on
immediate evaluation, with no lookahead.

We have recently parallelized our neural network code on
an NVIDIA GeForce 8800 graphics card, thus increasing the
speed of evaluation to 7000 positions per second for the19×
19 board size. Based on this speedup, we hope to implement
a heuristic alpha-beta search to depth 5, using the network
itself – or a similar auxiliary network – for heuristic pruning.

The fluctuation in network performance (Figure 1) is rem-
inicsent of what has previously been observed for recurrent
neural networks trained to predict context-free or context-
sensitive languages [10]. In those studies, it was found that
the learning could be made more stable by the use of
Evolutionary Computation. The application of such methods
in the current context, as well as the training of recurrent
networks, is the subject of ongoing work.

APPENDIX: WEIGHT SHARING

The constraints on the various network connections are out-
lined below – with neighborhood relationships abbreviatedto
E (East), N (North), W (West), S (South), NE (North East),
NW (North West), SW (South West), SE (South East) and
O (Original).

Vν
OH =

[

Vν
OT Vν

OS Vν
OD Vν

OC Vν
OF

1

Vν
OF

2

]

Vν
HI =

[

Vν
TI Vν

SI Vν
DI Vν

CI Vν
F
1
I Vν

F
2
I

]T

VE
OI = VN

OI = VW
OI = VS

OI , VNE
OI = VNW

OI = VSW
OI = VSE

OI

VE
OT = VN

OT = VW
OT = VS

OT , VNE
OT = VNW

OT= VSW
OT= VSE

OT

VE
TI = VN

TI = VW
TI = VS

TI , VNE
TI = VNW

TI = VSW
TI = VSE

TI

VO
OF

1

= VO
OF

2

= VO
F
1
I = VO

F
2
I = 0

VE
OF

1

= VN
OF

2

= -VW
OF

1

= -VS
OF

2

= VE
F
1
I = VN

F
2
I = -VW

F
1
I= -VS

F
2
I

VE
OF

2

= VN
OF

1

= VW
OF

2

= VS
OF

1

= VE
F
2
I = VN

F
1
I = VW

F
2
I= VS

F
1
I = 0

VNE
OF

1

= -VNW
OF

1

= -VSW
OF

1

= VSE
OF

1

= VNE
OF

2

= VNW
OF

2

= -VSW
OF

2

= -VSE
OF

2

VNE
F
1
I = -VNW

F
1
I = -VSW

F
1
I = VSE

F
1
I = VNE

F
2
I = VNW

F
2
I = -VSW

F
2
I= -VSE

F
2
I

VE
OS = -VN

OS = VW
OS = -VS

OS , VNE
OD = -VNW

OD= VSW
OD= -VSE

OD

VE
SI = -VN

SI = VW
SI = -VS

SI , VNE
DI = -VNW

DI = VSW
DI = -VSE

DI

V µ
OD = Vµ

DI = 0, µ ∈ {O,E,N,W,S}

V ν
OS = Vν

SI = 0, ν ∈ {O,NE,NW,SW,SE}

V ν
OC = Vν

CI = 0, ν ∈ {O,E,N,W,S,NE,NW,SW,SE}

REFERENCES

[1] J.Burmeister & J.Wiles, 1995. The challenge of Go as a domain for
AI research, Proceedings of the Third Australian and New Zealand
Conference on Intelligent Information Systems.

[2] S.Gelly & Y.Wang, 2006. Exploration exploitation in Go:UCT for
Monte-Carlo Go, Proceedings of Neural Information Processing Sys-
tems Conference.

[3] M.Enzenberger, 1996. The integration of a priori knowledge into a Go
playing neural network, www.cgl.ucsf.edu/go/Programs/
neurogo-html/NeuroGo.html

[4] F.A.Dahl, 2001. Honte, a Go-playing program using neural networks,
in J.F̈urnkranz & M.Kubat (Eds.)Machines that learn to Play Games,
Chapter 10, pp. 205–223. Huntington.

[5] N.Schraudolph, P.Dayan & T.Sejnowski, 1994. Temporal difference
learning of position evaluation in the game of Go, InAdvances in
Neural Information Processing 6, Morgan Kaufmann, 817–824.

[6] S.Welsh & T.Bossomaier, 1999. Evolving cellular automatatools for
the game of Go, Proceedings of the Third Australia-Japan Joint
Workshop on Intelligent and Evolutionary Systems, 159–166.

[7] Y.LeCun, B.Boser, J.Denker, D.Henderson, R.Howard, W.Hubbard &
L.Jackel, 1989. Backpropagation applied to handwritten character
recognition,Neural Computation 5, 541–551.

[8] R.Sutton, 1988. Learning to Predict by the Methods of Temporal
Differences,Machine Learning 3, 9–44.

[9] G.Tesauro, 1992. Practical Issues in Temporal Difference Learning,
Machine Learnin 8, 257–277.

[10] B.Tonkes, A.Blair & J.Wiles, 1998. Inductive bias in context-free
language learning,Ninth Australian Conference on Neural Networks

