
In S.A. Solla, T.K. Leen and K.-R. M�uller (Eds.), Advanes in Neural Information ProessingSystems 12, 66-72, MIT Press (2000).Evolving Learnable LanguagesBradley TonkesDept of Comp. Si. and Ele. EngineeringUniversity of QueenslandQueensland, 4072Australiabtonkes�see.uq.edu.au Alan BlairDepartment of Computer SieneUniversity of MelbourneParkville, Vitoria, 3052Australiablair�s.mu.oz.auJanet WilesDept of Comp. Si. and Ele. EngineeringShool of PsyhologyUniversity of QueenslandQueensland, 4072Australiajanetw�see.uq.edu.auAbstratReent theories suggest that language aquisition is assisted by theevolution of languages towards forms that are easily learnable. Inthis paper, we evolve ombinatorial languages whih an be learnedby a reurrent neural network quikly and from relatively few ex-amples. Additionally, we evolve languages for generalization indi�erent \worlds", and for generalization from spei� examples.We �nd that languages an be evolved to failitate di�erent formsof impressive generalization for a minimally biased, general pur-pose learner. The results provide empirial support for the theorythat the language itself, as well as the language environment of alearner, plays a substantial role in learning: that there is far moreto language aquisition than the language aquisition devie.1 Introdution: Fators in language learnabilityIn exploring issues of language learnability, the speial abilities of humans to learnomplex languages have been muh emphasized, with one dominant theory basedon innate, domain-spei� learning mehanisms spei�ally tuned to learning hu-man languages. It has been argued that without strong onstraints on the learningmehanism, the omplex syntax of language ould not be learned from the sparsedata that a hild observes [1℄. More reent theories hallenge this laim and em-phasize the interation between learner and environment [2℄. In addition to thesetwo theories is the proposal that rather than \language-savvy infants", languagesthemselves adapt to human learners, and the ones that survive are \infant-friendlylanguages" [3{5℄. To date, relatively few empirial studies have explored how suhadaptation of language failitates learning. Hare and Elman [6℄ demonstrated that



lasses of past tense forms ould evolve over simulated generations in response tohanges in the frequeny of verbs, using neural networks. Kirby [7℄ showed, usinga symboli system, how ompositional languages are more likely to emerge whenlearning is onstrained to a limited set of examples. Batali [8℄ has evolved reurrentnetworks that ommuniate simple strutured onepts.Our argument is not that humans are general purpose learners. Rather, urrentresearh questions require exploring the nature and extent of biases that learnersbring to language learning, and the ways in whih languages exploit those biases[2℄. Previous theories suggesting that many aspets of language were unlearnablewithout strong biases are gradually breaking down as new aspets of language areshown to be learnable with muh weaker biases. Studies inlude the investigationof how languages may exploit biases as subtle as attention and memory limitationsin hildren [9℄. A omplementary study has shown that general purpose learnersan evolve biases in the form of initial starting weights that failitate the learningof a family of reursive languages [10℄.In this paper we present an empirial paradigm for ontinuing the exploration of fa-tors that ontribute to language learnability. The paradigm we propose neessitatesthe evolution of languages omprising reursive sentenes over symboli strings |languages whose sentenes annot be onveyed without ombinatorial ompositionof symbols drawn from a �nite alphabet. The paradigm is not based on any spei�natural language, but rather, it is the simplest task we ould �nd to illustrate thepoint that languages with ompositional struture an be evolved to be learnablefrom few sentenes. The simpliity of the ommuniation task allows us to analyzethe language and its generalizability, and highlight the nature of the generalizationproperties.We start with the evolution of a reursive language that an be learned easily from�ve sentenes by a minimally biased learner. We then address issues of robustlearning of evolved languages, showing that di�erent languages support generaliza-tion in di�erent ways. We also address a fator to whih sant regard has beenpaid, namely that languages may evolve not just to their learners, but also to beeasily generalizable from a spei� set of onepts. It seems almost axiomati thatlearning paradigms should sample randomly from the training domain. It may bethat human languages are not learnable from random sentenes, but are easily gen-eralizable from just those examples that a hild is likely to be exposed to in itsenvironment. In the third series of simulations, we test whether a language anadapt to be learnable from a ore set of onepts.2 A paradigm for exploring language learnabilityWe onsider a simple language task in whih two reurrent neural networks try toommuniate a \onept" represented by a point in the unit interval, [0; 1℄ over asymboli hannel. An enoder network sends a sequene of symbols (thresholdedoutputs) for eah onept, whih a deoder network reeives and proesses bak intoa onept (the framework is desribed in greater detail in [11℄). For ommuniationto be suessful, the deoder's output should approximate the enoder's input forall onepts.The arhiteture for the enoder is a reurrent network with one input unit and�ve output units, and with reurrent onnetions from both the output and hiddenunits bak to the hidden units. The enoder produes a sequene of up to �vesymbols (states of the output units) taken from � = fA; :::; Jg, followed by the $symbol, for eah onept taken from [0; 1℄. To enode a value x 2 [0; 1℄, the network
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Figure 1: Hierarhial deomposition of the language produed by an enoder, withthe �rst symbols produed appearing near the root of the tree. The ordering ofleaves in the tree represent the input spae, smaller inputs being enoded by thosesentenes on the left. The examples used to train the best deoder found duringevolution are highlighted. The deoder must generalize to all other branhes. Inorder to learn the task, the deoder must generalize systematially to novel statesin the tree, inluding generalizing to symbols in di�erent positions in the sequene.(Figure 2 shows the sequene of states of a suessful deoder.)is presented with a sequene of inputs (x; 0; 0; ::). At eah step, the output unitsof the network assume one of eleven states: all zero if no output is greater than0.5 (denoted by $); or the saturation of the two highest ativations at 1.0 and theremainder at 0.0 (denoted by A = [1; 1; 0; 0; 0℄ through J = [0; 0; 0; 1; 1℄). If the zerooutput is produed, propagation is halted. Otherwise propagation ontinues for upto �ve steps, after whih the output units assume the zero ($) state.The deoder is a reurrent network with 5 input units and a single output, and areurrent hidden layer. Former work [11℄ has shown that due to oniting on-straints of the enoder and deoder, it is easier for the deoder to proess stringswhih are in the reverse order to those produed by the enoder. Consequently,the input to the deoder is taken to be the reverse of the output from the deoder,exept for $, whih remains the last symbol. (For larity, strings are written inthe order produed by the enoder.) Eah input pattern presented to the deodermathes the output of the enoder | either two units are ative, or none are. Thenetwork is trained with bakpropagation through time to produe the desired value,x, on presentation of the �nal symbol in the sequene ($).A simple hill-limbing evolutionary strategy with a two-stage evaluation funtionis used to evolve an initially random enoder into one whih produes a languagewhih a random deoder an learn easily from few examples. The evaluation of anenoder, mutated from the urrent \hampion" by the addition of Gaussian noiseto the weights, is performed against two riteria. (1) The mutated network mustprodue a greater variety of sequenes over the range of inputs; and (2) a deoderwith initially small random weights, trained on the mutated enoder's output, mustyield lower sum-squared error aross the entire range of inputs than the hampion.Eah mutant enoder is paired with a single deoder with initially random weight-s. If the mutant enoder-deoder pair is more suessful than the hampion, themutant beomes hampion and the proess is repeated. Sine the enoder's inputspae is ontinuous and impossible to examine in its entirety, the input range isapproximated with 100 uniformly distributed examples from 0.00 to 0.99. The �naloutput from the hill-limber is the language generated by the best enoder found.



2.1 Evolving an easily learnable languageHumans learn from sparse data. In the �rst series of simulations we test whethera ompositional language an be evolved that learners an reliably and e�etivelylearn from only �ve examples. From just �ve training examples, it seems unrea-sonable to expet that any deoder would learn the task. The task is intentionallyhard in that a language is restrited to sequenes of disrete symbols with whihit must desribe a ontinuous spae. Note that simple linear interpolation is notpossible due to the symboli alphabet of the languages. Reursive solutions arepossible but are unable to be learned by an unbiased learner. The deoder is aminimally-biased learner and as the simulations showed, performed muh betterthan arguments based on learnability theory would predit.Ten languages were evolved with the hill-limbing algorithm (outlined above) for10000 generations.1 For eah language, 100 new random deoders were trainedunder the same onditions as during evolution (�ve examples, 400 epohs). All tenruns used enoders and deoders with �ve hidden units.All of the evolved languages were learnable by some deoders (minimum 20, max-imum 72, mean 48). A learner is said to have e�etively learned the language ifits sum-squared-error aross the 100 points in the spae is less than 1.0.2 Enodersemployed on average 36 sentenes (minimum 21, maximum 60) to ommuniatethe 100 points. The 5 training examples for eah deoder were sampled randomlyfrom [0; 1℄ and hene some deoders faed very diÆult generalization tasks. ThediÆulty of the task is demonstrated by the language analyzed in Figures 1 and 2.The evolved languages all ontained similar ompositional struture to that of thelanguage desribed in Figures 1 and 2. The inherent biases of the deoder, althoughminimal, are learly suÆient for learning the ompositional struture.3 Evolving languages for partiular generalizationThe �rst series of simulations demonstrate that we an �nd languages for whih aminimally biased learner an generalize from few examples. In the next simulationswe onsider whether languages an be evolved to failitate spei� forms of general-ization in their users. Setion 2.1 onsidered the ase where the deoder's requiredoutput was the same as the enoder's input. This setup yields the approximationto the line y = x in Figure 2. The ompositional struture of the evolved languagesallows the deoder to generalize to unseen regions of the spae. In the followingseries of simulations we onsider the relationship between the struture of a lan-guage and the way in whih the deoder is required to generalize. This assoiationis studied by altering the desired relationship between the enoder's input (x) andthe deoder's output (y).Two sets of ten languages were evolved, one set requiring y = x (identity, as insetion 2.1), the other using a funtion resembling a series of �ve steps at randomheights: y = r(b5x); r = (0:3746; 0:5753; 0:8102; 0:7272; 0:4527) (random step)3.All onditions were as for setion 2, with the exeption that 10 training exampleswere used and the hill-limber ran for 1000 generations. On ompletion of evolution,100 deoders were trained on the 20 �nal languages under both onditions above as1One generation represents the reation of a more variable, mutated enoder and thesubsequent training of a deoder.2A language is said to be reliably learnable when at least 50% of random deoders areable to e�etively learn it within 400 epohs.3b5x provides an index into the array r, based on the magnitude of x.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (f)Figure 2: Deoder output after seeing the �rst n symbols in the message, for n = 1(a) to n = 6 (f) (from the language in Figure 1). The X-axis is the enoder's input,the Y-axis is the deoder's output at that point in the sequene. The �ve pointsthat the deoder was trained on are shown as rosses in eah graph. After the �rstsymbol (A, B, C, E or $), the deoder outputs one of �ve values (a); after theseond symbol, more outputs are possible (b). Subsequent symbols in eah stringspeify �ner gradations in the output. Note that the output is not onstrutedmonotonially, with eah symbol providing a loser approximation to the targetfuntion, but rather reursively, only approximating the linear target at the �nalposition in eah sequene. Struture inherent in the sequenes allows the system togeneralize to parts of the spae it has never seen. Note that the generalization is notbased on interpolation between symbol values, but rather on their ompositionalstruture.well as two others, a sine funtion and a ubi funtion.The results show that languages an be evolved to enhane generalization prefer-entially for one \world" over another. On average, the languages performed farbetter when tested in the world in whih they were evolved than in other worlds.Languages evolved for the identity mapping were on average learned by 64% ofdeoders trained on the identity task ompared with just 5% in the random stepase. Languages evolved for the random step task were learned by 60% of deoderstrained on the random step task but only 24% when trained on the identity task.Deoders generally performed poorly on the ubi funtion, and no deoder learnedthe sine task from either set of evolved languages. The seond series of simulation-s show that the manner in whih the deoder generalizes is not restrited to thetask of setion 2.1. Rather, the languages evolve to failitate generalization by thedeoder in di�erent ways, aided by its minimal biases.



4 Generalization from ore oneptsIn the former simulations, randomly seleted onepts were used to train deoders.In some ases a pathologial distribution of points made learning extremely diÆult.In ontrast, it seems likely that human hildren learn language based on a ommonset of semantially-onstrained ore onepts (\Mom", \I want milk", \no", et).For the third series of simulations, we tested whether seleting a fortuitous set oftraining onepts ould have a positive a�et on the suess of an evolved language.The simulations with alternative generalization funtions (setion 3) indiated thatdeoders had diÆulty generalizing to the sine funtion. Even when enoders wereevolved spei�ally on the sine task, in the best of 10 systems only 13 of 100 randomdeoders suessfully learned.We evolved a new language on a spei�ally hosen set of 10 points for generalizationto the sine funtion. One hundred deoders were then trained on the resultinglanguage using either the same set of 10 points, or a random set. Of the networkstrained on the �xed set, 92 learned the tasked, ompared with 5 networks trainedon the random sets. That a language evolves to ommuniate a restrited set ofonepts is not partiularly unusual. But what this simulation shows is the moresurprising result that a language an evolve to generalize from spei� ore oneptsto a whole reursive language in a partiular way (in this ase, a sine funtion).5 DisussionThe �rst series of simulations show that a ompositional language an be learnedfrom �ve strings by an reurrent network. Generalization performane inludedorret deoding of novel branhes and symbols in novel positions (Figure 1). Theseond series of simulations highlight how a language an be evolved to failitatedi�erent forms of generalization in the deoder. The �nal simulation demonstratesthat languages an also be tailored to generalize from a spei� set of examples.The three series of simulations modify the language environment of the deoder inthree di�erent ways: (1) the relationship between utteranes and meaning; (2) thetype of generalization required from the deoder; and (3) the partiular utteranesand meanings to whih a learner is exposed. In eah ase, the language environmentof the learner was sulpted to exploit the minimal biases present in the learner.While taking an approah similar to [10℄ of giving the learner an additional biasin the form of initial weights was also likely to have been e�etive, the purposeof the simulations was to investigate how strongly external fators ould assist insimplifying learning.6 Conlusions\The key to understanding language learnability does not lie inthe rihly soial ontext of language training, nor in the inredi-bly presient guesses of young language learners; rather, it lies ina proess that seems otherwise far remote from the miroosm oftoddlers and aretakers | language hange. Although the rate ofsoial evolutionary hange in learning struture appears unhang-ing ompared to the time it takes a hild to develop language a-bilities, this proess is ruial to understanding how the hild anlearn a language that on the surfae appears impossibly omplexand poorly taught." [3, p115℄.
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