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tRe
ent theories suggest that language a
quisition is assisted by theevolution of languages towards forms that are easily learnable. Inthis paper, we evolve 
ombinatorial languages whi
h 
an be learnedby a re
urrent neural network qui
kly and from relatively few ex-amples. Additionally, we evolve languages for generalization indi�erent \worlds", and for generalization from spe
i�
 examples.We �nd that languages 
an be evolved to fa
ilitate di�erent formsof impressive generalization for a minimally biased, general pur-pose learner. The results provide empiri
al support for the theorythat the language itself, as well as the language environment of alearner, plays a substantial role in learning: that there is far moreto language a
quisition than the language a
quisition devi
e.1 Introdu
tion: Fa
tors in language learnabilityIn exploring issues of language learnability, the spe
ial abilities of humans to learn
omplex languages have been mu
h emphasized, with one dominant theory basedon innate, domain-spe
i�
 learning me
hanisms spe
i�
ally tuned to learning hu-man languages. It has been argued that without strong 
onstraints on the learningme
hanism, the 
omplex syntax of language 
ould not be learned from the sparsedata that a 
hild observes [1℄. More re
ent theories 
hallenge this 
laim and em-phasize the intera
tion between learner and environment [2℄. In addition to thesetwo theories is the proposal that rather than \language-savvy infants", languagesthemselves adapt to human learners, and the ones that survive are \infant-friendlylanguages" [3{5℄. To date, relatively few empiri
al studies have explored how su
hadaptation of language fa
ilitates learning. Hare and Elman [6℄ demonstrated that




lasses of past tense forms 
ould evolve over simulated generations in response to
hanges in the frequen
y of verbs, using neural networks. Kirby [7℄ showed, usinga symboli
 system, how 
ompositional languages are more likely to emerge whenlearning is 
onstrained to a limited set of examples. Batali [8℄ has evolved re
urrentnetworks that 
ommuni
ate simple stru
tured 
on
epts.Our argument is not that humans are general purpose learners. Rather, 
urrentresear
h questions require exploring the nature and extent of biases that learnersbring to language learning, and the ways in whi
h languages exploit those biases[2℄. Previous theories suggesting that many aspe
ts of language were unlearnablewithout strong biases are gradually breaking down as new aspe
ts of language areshown to be learnable with mu
h weaker biases. Studies in
lude the investigationof how languages may exploit biases as subtle as attention and memory limitationsin 
hildren [9℄. A 
omplementary study has shown that general purpose learners
an evolve biases in the form of initial starting weights that fa
ilitate the learningof a family of re
ursive languages [10℄.In this paper we present an empiri
al paradigm for 
ontinuing the exploration of fa
-tors that 
ontribute to language learnability. The paradigm we propose ne
essitatesthe evolution of languages 
omprising re
ursive senten
es over symboli
 strings |languages whose senten
es 
annot be 
onveyed without 
ombinatorial 
ompositionof symbols drawn from a �nite alphabet. The paradigm is not based on any spe
i�
natural language, but rather, it is the simplest task we 
ould �nd to illustrate thepoint that languages with 
ompositional stru
ture 
an be evolved to be learnablefrom few senten
es. The simpli
ity of the 
ommuni
ation task allows us to analyzethe language and its generalizability, and highlight the nature of the generalizationproperties.We start with the evolution of a re
ursive language that 
an be learned easily from�ve senten
es by a minimally biased learner. We then address issues of robustlearning of evolved languages, showing that di�erent languages support generaliza-tion in di�erent ways. We also address a fa
tor to whi
h s
ant regard has beenpaid, namely that languages may evolve not just to their learners, but also to beeasily generalizable from a spe
i�
 set of 
on
epts. It seems almost axiomati
 thatlearning paradigms should sample randomly from the training domain. It may bethat human languages are not learnable from random senten
es, but are easily gen-eralizable from just those examples that a 
hild is likely to be exposed to in itsenvironment. In the third series of simulations, we test whether a language 
anadapt to be learnable from a 
ore set of 
on
epts.2 A paradigm for exploring language learnabilityWe 
onsider a simple language task in whi
h two re
urrent neural networks try to
ommuni
ate a \
on
ept" represented by a point in the unit interval, [0; 1℄ over asymboli
 
hannel. An en
oder network sends a sequen
e of symbols (thresholdedoutputs) for ea
h 
on
ept, whi
h a de
oder network re
eives and pro
esses ba
k intoa 
on
ept (the framework is des
ribed in greater detail in [11℄). For 
ommuni
ationto be su

essful, the de
oder's output should approximate the en
oder's input forall 
on
epts.The ar
hite
ture for the en
oder is a re
urrent network with one input unit and�ve output units, and with re
urrent 
onne
tions from both the output and hiddenunits ba
k to the hidden units. The en
oder produ
es a sequen
e of up to �vesymbols (states of the output units) taken from � = fA; :::; Jg, followed by the $symbol, for ea
h 
on
ept taken from [0; 1℄. To en
ode a value x 2 [0; 1℄, the network
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Figure 1: Hierar
hi
al de
omposition of the language produ
ed by an en
oder, withthe �rst symbols produ
ed appearing near the root of the tree. The ordering ofleaves in the tree represent the input spa
e, smaller inputs being en
oded by thosesenten
es on the left. The examples used to train the best de
oder found duringevolution are highlighted. The de
oder must generalize to all other bran
hes. Inorder to learn the task, the de
oder must generalize systemati
ally to novel statesin the tree, in
luding generalizing to symbols in di�erent positions in the sequen
e.(Figure 2 shows the sequen
e of states of a su

essful de
oder.)is presented with a sequen
e of inputs (x; 0; 0; ::). At ea
h step, the output unitsof the network assume one of eleven states: all zero if no output is greater than0.5 (denoted by $); or the saturation of the two highest a
tivations at 1.0 and theremainder at 0.0 (denoted by A = [1; 1; 0; 0; 0℄ through J = [0; 0; 0; 1; 1℄). If the zerooutput is produ
ed, propagation is halted. Otherwise propagation 
ontinues for upto �ve steps, after whi
h the output units assume the zero ($) state.The de
oder is a re
urrent network with 5 input units and a single output, and are
urrent hidden layer. Former work [11℄ has shown that due to 
on
i
ting 
on-straints of the en
oder and de
oder, it is easier for the de
oder to pro
ess stringswhi
h are in the reverse order to those produ
ed by the en
oder. Consequently,the input to the de
oder is taken to be the reverse of the output from the de
oder,ex
ept for $, whi
h remains the last symbol. (For 
larity, strings are written inthe order produ
ed by the en
oder.) Ea
h input pattern presented to the de
odermat
hes the output of the en
oder | either two units are a
tive, or none are. Thenetwork is trained with ba
kpropagation through time to produ
e the desired value,x, on presentation of the �nal symbol in the sequen
e ($).A simple hill-
limbing evolutionary strategy with a two-stage evaluation fun
tionis used to evolve an initially random en
oder into one whi
h produ
es a languagewhi
h a random de
oder 
an learn easily from few examples. The evaluation of anen
oder, mutated from the 
urrent \
hampion" by the addition of Gaussian noiseto the weights, is performed against two 
riteria. (1) The mutated network mustprodu
e a greater variety of sequen
es over the range of inputs; and (2) a de
oderwith initially small random weights, trained on the mutated en
oder's output, mustyield lower sum-squared error a
ross the entire range of inputs than the 
hampion.Ea
h mutant en
oder is paired with a single de
oder with initially random weight-s. If the mutant en
oder-de
oder pair is more su

essful than the 
hampion, themutant be
omes 
hampion and the pro
ess is repeated. Sin
e the en
oder's inputspa
e is 
ontinuous and impossible to examine in its entirety, the input range isapproximated with 100 uniformly distributed examples from 0.00 to 0.99. The �naloutput from the hill-
limber is the language generated by the best en
oder found.



2.1 Evolving an easily learnable languageHumans learn from sparse data. In the �rst series of simulations we test whethera 
ompositional language 
an be evolved that learners 
an reliably and e�e
tivelylearn from only �ve examples. From just �ve training examples, it seems unrea-sonable to expe
t that any de
oder would learn the task. The task is intentionallyhard in that a language is restri
ted to sequen
es of dis
rete symbols with whi
hit must des
ribe a 
ontinuous spa
e. Note that simple linear interpolation is notpossible due to the symboli
 alphabet of the languages. Re
ursive solutions arepossible but are unable to be learned by an unbiased learner. The de
oder is aminimally-biased learner and as the simulations showed, performed mu
h betterthan arguments based on learnability theory would predi
t.Ten languages were evolved with the hill-
limbing algorithm (outlined above) for10000 generations.1 For ea
h language, 100 new random de
oders were trainedunder the same 
onditions as during evolution (�ve examples, 400 epo
hs). All tenruns used en
oders and de
oders with �ve hidden units.All of the evolved languages were learnable by some de
oders (minimum 20, max-imum 72, mean 48). A learner is said to have e�e
tively learned the language ifits sum-squared-error a
ross the 100 points in the spa
e is less than 1.0.2 En
odersemployed on average 36 senten
es (minimum 21, maximum 60) to 
ommuni
atethe 100 points. The 5 training examples for ea
h de
oder were sampled randomlyfrom [0; 1℄ and hen
e some de
oders fa
ed very diÆ
ult generalization tasks. ThediÆ
ulty of the task is demonstrated by the language analyzed in Figures 1 and 2.The evolved languages all 
ontained similar 
ompositional stru
ture to that of thelanguage des
ribed in Figures 1 and 2. The inherent biases of the de
oder, althoughminimal, are 
learly suÆ
ient for learning the 
ompositional stru
ture.3 Evolving languages for parti
ular generalizationThe �rst series of simulations demonstrate that we 
an �nd languages for whi
h aminimally biased learner 
an generalize from few examples. In the next simulationswe 
onsider whether languages 
an be evolved to fa
ilitate spe
i�
 forms of general-ization in their users. Se
tion 2.1 
onsidered the 
ase where the de
oder's requiredoutput was the same as the en
oder's input. This setup yields the approximationto the line y = x in Figure 2. The 
ompositional stru
ture of the evolved languagesallows the de
oder to generalize to unseen regions of the spa
e. In the followingseries of simulations we 
onsider the relationship between the stru
ture of a lan-guage and the way in whi
h the de
oder is required to generalize. This asso
iationis studied by altering the desired relationship between the en
oder's input (x) andthe de
oder's output (y).Two sets of ten languages were evolved, one set requiring y = x (identity, as inse
tion 2.1), the other using a fun
tion resembling a series of �ve steps at randomheights: y = r(b5x
); r = (0:3746; 0:5753; 0:8102; 0:7272; 0:4527) (random step)3.All 
onditions were as for se
tion 2, with the ex
eption that 10 training exampleswere used and the hill-
limber ran for 1000 generations. On 
ompletion of evolution,100 de
oders were trained on the 20 �nal languages under both 
onditions above as1One generation represents the 
reation of a more variable, mutated en
oder and thesubsequent training of a de
oder.2A language is said to be reliably learnable when at least 50% of random de
oders areable to e�e
tively learn it within 400 epo
hs.3b5x
 provides an index into the array r, based on the magnitude of x.
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oder output after seeing the �rst n symbols in the message, for n = 1(a) to n = 6 (f) (from the language in Figure 1). The X-axis is the en
oder's input,the Y-axis is the de
oder's output at that point in the sequen
e. The �ve pointsthat the de
oder was trained on are shown as 
rosses in ea
h graph. After the �rstsymbol (A, B, C, E or $), the de
oder outputs one of �ve values (a); after these
ond symbol, more outputs are possible (b). Subsequent symbols in ea
h stringspe
ify �ner gradations in the output. Note that the output is not 
onstru
tedmonotoni
ally, with ea
h symbol providing a 
loser approximation to the targetfun
tion, but rather re
ursively, only approximating the linear target at the �nalposition in ea
h sequen
e. Stru
ture inherent in the sequen
es allows the system togeneralize to parts of the spa
e it has never seen. Note that the generalization is notbased on interpolation between symbol values, but rather on their 
ompositionalstru
ture.well as two others, a sine fun
tion and a 
ubi
 fun
tion.The results show that languages 
an be evolved to enhan
e generalization prefer-entially for one \world" over another. On average, the languages performed farbetter when tested in the world in whi
h they were evolved than in other worlds.Languages evolved for the identity mapping were on average learned by 64% ofde
oders trained on the identity task 
ompared with just 5% in the random step
ase. Languages evolved for the random step task were learned by 60% of de
oderstrained on the random step task but only 24% when trained on the identity task.De
oders generally performed poorly on the 
ubi
 fun
tion, and no de
oder learnedthe sine task from either set of evolved languages. The se
ond series of simulation-s show that the manner in whi
h the de
oder generalizes is not restri
ted to thetask of se
tion 2.1. Rather, the languages evolve to fa
ilitate generalization by thede
oder in di�erent ways, aided by its minimal biases.



4 Generalization from 
ore 
on
eptsIn the former simulations, randomly sele
ted 
on
epts were used to train de
oders.In some 
ases a pathologi
al distribution of points made learning extremely diÆ
ult.In 
ontrast, it seems likely that human 
hildren learn language based on a 
ommonset of semanti
ally-
onstrained 
ore 
on
epts (\Mom", \I want milk", \no", et
).For the third series of simulations, we tested whether sele
ting a fortuitous set oftraining 
on
epts 
ould have a positive a�e
t on the su

ess of an evolved language.The simulations with alternative generalization fun
tions (se
tion 3) indi
ated thatde
oders had diÆ
ulty generalizing to the sine fun
tion. Even when en
oders wereevolved spe
i�
ally on the sine task, in the best of 10 systems only 13 of 100 randomde
oders su

essfully learned.We evolved a new language on a spe
i�
ally 
hosen set of 10 points for generalizationto the sine fun
tion. One hundred de
oders were then trained on the resultinglanguage using either the same set of 10 points, or a random set. Of the networkstrained on the �xed set, 92 learned the tasked, 
ompared with 5 networks trainedon the random sets. That a language evolves to 
ommuni
ate a restri
ted set of
on
epts is not parti
ularly unusual. But what this simulation shows is the moresurprising result that a language 
an evolve to generalize from spe
i�
 
ore 
on
eptsto a whole re
ursive language in a parti
ular way (in this 
ase, a sine fun
tion).5 Dis
ussionThe �rst series of simulations show that a 
ompositional language 
an be learnedfrom �ve strings by an re
urrent network. Generalization performan
e in
luded
orre
t de
oding of novel bran
hes and symbols in novel positions (Figure 1). These
ond series of simulations highlight how a language 
an be evolved to fa
ilitatedi�erent forms of generalization in the de
oder. The �nal simulation demonstratesthat languages 
an also be tailored to generalize from a spe
i�
 set of examples.The three series of simulations modify the language environment of the de
oder inthree di�erent ways: (1) the relationship between utteran
es and meaning; (2) thetype of generalization required from the de
oder; and (3) the parti
ular utteran
esand meanings to whi
h a learner is exposed. In ea
h 
ase, the language environmentof the learner was s
ulpted to exploit the minimal biases present in the learner.While taking an approa
h similar to [10℄ of giving the learner an additional biasin the form of initial weights was also likely to have been e�e
tive, the purposeof the simulations was to investigate how strongly external fa
tors 
ould assist insimplifying learning.6 Con
lusions\The key to understanding language learnability does not lie inthe ri
hly so
ial 
ontext of language training, nor in the in
redi-bly pres
ient guesses of young language learners; rather, it lies ina pro
ess that seems otherwise far remote from the mi
ro
osm oftoddlers and 
aretakers | language 
hange. Although the rate ofso
ial evolutionary 
hange in learning stru
ture appears un
hang-ing 
ompared to the time it takes a 
hild to develop language a-bilities, this pro
ess is 
ru
ial to understanding how the 
hild 
anlearn a language that on the surfa
e appears impossibly 
omplexand poorly taught." [3, p115℄.



In this paper we studied ways in whi
h languages 
an adapt to their learners. Byrunning simulations of a language evolution pro
ess, we 
ontribute additional 
om-ponents to the list of aspe
ts of language that 
an be learned by minimally-biased,general-purpose learners, namely that re
ursive stru
ture 
an be learned from fewexamples, that languages 
an evolve to fa
ilitate generalization in a parti
ular way,and that they 
an evolve to be easily learnable from 
ommon senten
es. In al-l the simulations in this paper, enhan
ement of language learnability is a
hievedthrough 
hanges to the learner's environment without resorting to adding biases inthe language a
quisition devi
e.A
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