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Abstract—There has recently been renewed interest in the
paradigm of artist-critic coevolution, or adversarial training, in
which an artist tries to generate images which are similar in
style to a set of real images, and a critic tries to discriminate
between the real images and those generated by the artist.
We explore a novel configuration of this paradigm, where the
artist is trained by hierarchical evolution using an evolutionary
automatic programming language called HERCL, and the critic
is a convolutional neural network. The system implicitly solves
the constrained optimization problem of generating images which
have low algorithmic complexity, but are sufficiently suggestive of
real-world images as to fool a trained critic with an architecture
loosely modeled on the human visual system. The resulting
images are not necessarily photorealistic, but often consist of
geometric shapes and patterns which remind us of everyday
objects, landscapes or designs in a manner reminiscent of abstract
art. We explore the coevolutionary dynamics between artist and
critic, and discuss possible combinations of this framework with
interactive evolution or other human-in-the-loop paradigms.

I. INTRODUCTION

There has recently been renewed interest in the paradigm
of artist-critic coevolution or adversarial training in which an
artist tries to generate images which are similar in style to a
set of “real” images, and a critic tries to discriminate between
the real images and those generated by the artist (Fig. 1).

The earliest work in this area followed an interactive evolu-
tion scenario, with a human playing the role of the critic, and
the artist trained by some form of evolutionary computation
such as biomorphs [3], Genetic Programming [21] and, latterly,
Cellular Automata [9] or Convolutional Pattern Producing
Networks [18]. In these systems, several candidate images
appear on the screen and the user is invited to select one
or more of them for inclusion in the next generation. These
approaches have produced some remarkable images, but the
process can be time-consuming for the human as several dozen
generations are often required in order to produce a pleasing
image.

In recent years, attempts have been made to replace the
human with a fully automated critic such as a Self Organizing
Map [20] or a 2-layer neural network trained on certain
statistical features extracted from the image [14, 7, 13]. The
critic is rewarded for its ability to distinguish between real
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Fig. 1: Artist-Critic Coevolution

TABLE I: Paradigms for Artist-Critic Coevolution

Artist Critic Method Reference
Biomorph Human Blind Watchmaker (Dawkins, 1986)

GP Human Interactive Evolution (Sims, 1991)
CPPN Human PicBreeder (Secretan, 2011)

CA Human EvoEco (Kowaliw, 2012)
GP SOM Artificial Creativity (Saunders, 2001)
GP NN Computational Aesthetics (Machado, 2008)

Agents NN Evolutionary Art (Greenfield, 2009)
GP NN Aesthetic Learning (Li & Hu, 2010)

DCNN DCNN Generative Adversarial Nets (Goodfellow,2014)
CPPN DCNN Convolutional Pattern Producing Nets (Nguyen, 2015)

HERCL HERCL Co-Evolving Line Drawings (Vickers, 2017)
HERCL DCNN HERCL Function / DCNN (current work)

images and those generated by the artist, while the artist is
rewarded for producing images that fool the critic.

II. METHODOLOGY

In previous work [23] artists were evolved to produce
line drawings using an evolutionary automatic programming
language called HERCL; the critic was also a HERCL pro-
gram, trained by hierarchical evolution [2]. Its inputs were
statistical features from the image, similar to those used in
[14]. Although the resulting images did have a certain naive
charm about them, it seemed that the limited statistical features
were not providing the critic with sufficient information to
make an accurate determination.

Inspired by the remarkably realistic images that have re-
cently been produced by Generative Adversarial Networks
[6, 16] we decided to try a new variant where a Deep
Convolutional Network plays the role of the critic. We adopt
an approach similar to that of [15] where the artist (in our
case, a HERCL program) acts as a function, taking as input
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Fig. 2: Hierarchical evolutionary re-combination. If the top
agent on the ladder becomes fitter than the one below it,
the top agent will move down to replace the lower agent
(which is transferred to the codebank). If the top agent exceeds
its maximum number of allowable offspring without ever
becoming fitter than the one below it, the top agent is removed
from the ladder (and transferred to the codebank).

TABLE II: Modified LeNet-5 and All Convolutional Net

Modified LeNet-5 model
5×5 conv. × 6, Leaky ReLU
2×2 max pooling, stride 2
5×5 conv. ×16, Leaky ReLU, no padding
2×2 max pooling, stride 2
120 fully connected units, Leaky ReLU
84 fully connected units, Leaky ReLU
2 fully connected output units, Softmax

Modified All-Convolutional Net model
3×3 conv. × 96, Leaky ReLU, no padding
3×3 conv. × 96, Leaky ReLU, stride 2
3×3 conv. ×192, Leaky ReLU
3×3 conv. ×192, Leaky ReLU, stride 2
3×3 conv. ×192, Leaky ReLU
1×1 conv. ×192, Leaky ReLU
1×1 conv. × 10, Leaky ReLU
Global average pooling of each feature map

2 fully connected output units, Softmax

an x and y coordinate, and producing either a single value
(for black and white images) or a triplet of values (for color
images).

In each round, the critic (CNN) is trained by backpropaga-
tion to assign a value close to 0 for all “real” images, and close
to 1 for the synthetic images produced in all previous rounds.
Then, a HERCL program is evolved to produce an image for
which the current critic will assign a value close to zero. This
new image is added to the set of synthetic images, ready for
the next round to begin. In other words, the system produces
one image per round. In the first round, a blank image is used
as the (single) synthetic image.

We tried two different CNN architectures, based on the
LeNet-5 [11] and All Convolutional Net models [22] (see

TABLE III: HERCL Commands

Input and Output

i fetch INPUT to input buffer
s SCAN item from input buffer to stack
w WRITE item from stack to output buffer
o flush OUTPUT buffer

Stack Manipulation and Arithmetic

# PUSH new item to stack ...... 7→ ...... x
! POP top item from stack ...... x 7→ ......
c COPY top item on stack ...... x 7→ ...... x, x
x SWAP top two items ... y, x 7→ ... x, y
y ROTATE top three items z, y, x 7→ x, z, y
- NEGATE top item ...... x 7→ ..... (−x)
+ ADD top two items ... y, x 7→ ...(y + x)

* MULTIPLY top two items ... y, x 7→ ...(y ∗ x)

Mathematical Functions

r RECIPROCAL .. x→ .. 1/x
q SQUARE ROOT .. x→ ..

√
x

e EXPONENTIAL .. x 7→ .. ex

n (natural) LOGARITHM .. x 7→ .. loge(x)
a ARCSINE .. x 7→ .. sin−1(x)
h TANH .. x 7→ .. tanh(x)
z ROUND to nearest integer
? push RANDOM value to stack

Double-Item Functions

% DIVIDE/MODULO .. y, x 7→ .. (y/x), (ymodx)
t TRIG functions .. θ, r 7→ .. r sin θ, r cos θ

p POLAR coords .. y, x 7→ .. atan2(y, x),
√
x2+y2

Registers and Memory

< GET value from register
> PUT value into register
ˆ INCREMENT register
v DECREMENT register
{ LOAD from memory location
} STORE to memory location

Jump, Testing, Branching and Logic

j JUMP to specified cell (subroutine)
| BAR line (RETURN on .| HALT on 8|)
= check register is EQUAL to top of stack
g check register is GREATER than top of stack
: if TRUE, branch FORWARD
; if TRUE, branch BACK
& logical AND
/ logical OR
˜ logical NOT

Table II). The Adam optimizer was used [8] with softmax
output and mean cross-entropy as the cost function.

The artist is evolved by Hierarchical Evolutionary Re-
Combination [2] which maintains a small number of com-
peting agents, arranged in a ladder, and preserves diversity
through the use of a codebank (Fig. 2). Culled agents are
transferred to the codebank where they remain available, for
a period of time, as potential breeding partners. When a
new agent is created, genetic material can be taken from the
codebank, or from an external library. In the present work,
the library contains the code from the final (successful) image
of all preceding rounds, thus allowing the artist to create
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Fig. 3: Average cost for groups of 50 consecutive images in each run of the MNIST experiments (columns) assigned by final
critic in each of the 40 runs (rows). Each tiny graph plots the average cost for 10 groups of 50 consecutive images in a run
of 500 images. High cost is good for the critic; low cost is good for the artist.

new images by experimenting with variations on previously
successful images.

In this adversarial context, the avoidance of over- or under-
fitting can be thought of as maintaining a balance of power
between artist and critic. If the critic is trained too long, it may
assign values very close to 0 (1) for the real (synthetic) images,
respectively; if it is not trained long enough, it may assign
values close to 0.5 for both the real and synthetic images. In
either case, the artist may fail to achieve its target threshold.
With this in mind, we trained each critic on the full set of
50 000 real images and an equal number of synthetic images

(with repetition of image presentation taken into account). The
HERCL programs were evolved until the cost function (value
assigned by the critic) becomes lower than a threshold value of
0.01 . In general, we found this provides a propitious balance
between artist and critic. However, for some of the later
runs, if the evolution exceeded a certain maximum number of
evaluations without achieving its target threshold, the evolution
was halted and the currently best-scoring image was accepted
into the next round.

The entire coevolutionary system was tested using images
from MNIST (Section III) and CIFAR-10 (Section IV).



III. MNIST AND COEVOLUTIONARY DYNAMICS

Our first set of experiments used the MNIST dataset of
handwritten digits. The artists were HERCL programs and
were required to produce a single output for each pixel,
to generate a gray-scale image. The critics used a modified
LeNet-5 CNN architecture (see Table II).

Since adversarial training is a form of coevolution between
artist and critic, the question arises as to whether there is some
risk of the system getting stuck in a mediocre stable state,
or a cycle in which the critic forgets how to classify earlier
images, or the artist forgets how to fool earlier critics [17].
The fact that each critic is trained on the images produced
by all previous artists should in theory help to prevent the
system from falling into such a mediocre state or cyclic
pattern. In earlier work with a simpler and faster critic [23] the
fitness of each artist was a weighted average of the evaluation
from all previous critics (with recent critics weighted more
heavily). However, in the present scenario, this approach
might be computationally prohibitive, because it would require
several sets of CNN weights to be stored in GPU memory
simultaneously. Therefore, we evaluate the fitness of each artist
using only the current critic.

In order to explore the coevolutionary dynamics in more
detail, we compare four different training variants:

Reset+10: The CNN weights are re-set to small random values
at the beginning of each round. The CNN is trained only on
images from the ten most recent rounds.

Continue+10: The final CNN weights from the previous round
are used as initial weight values for training in the subsequent
round. The CNN is trained only on images from the ten most
recent rounds.

Continue+All: The final CNN weights from the previous
round are used as the initial weight values for training in the
subsequent round. The CNN is trained on images from all
previous rounds.

Reset+All: The CNN weights are re-set to small random
values at the beginning of each round. The CNN is trained
on images produced in all previous rounds.

Ten runs were performed in each of the four variants, for
500 rounds, producing a total of 40 final critics and 40×500 =
20 000 images.

A. Comparison of Artists

We can evaluate each image by computing the cost assigned
to it by the final critic from each of the 40 runs. In most cases,
the final critic from its own run will likely assign it a very high
cost (since this image was included in its training set). But, for
the other 39 critics, this will appear as a genuinely “unseen”
image.

Each tiny graph in Fig. 3 plots the average cost for groups of
50 consecutive images in one run, assigned by the final critic
in another run. These values are aggregated in Fig. 4, which
plots the mean cost (expressed as a percentage) assigned by
the final critics from all 40 runs, averaged over the 10 runs
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Fig. 4: Mean cost (%) assigned by the 40 final critics, averaged
over 10 runs and 25 consecutive images in each run.

TABLE IV: Mean cost (%) for last 200 images in each run

Artist
Critic Reset+10 Continue+10 Continue+All Reset+All

Reset+10 45.3± 0.6 5.3± 0.4 3.4± 0.3 2.0± 0.3

Continue+10 97.8± 0.3 56.1± 0.6 35.1± 0.6 35.3± 0.6

Continue+All 99.9± 0.2 83.3± 0.5 63.9± 0.6 60.0± 0.6

Reset+All 99.3± 0.2 84.6± 0.4 75.1± 0.5 62.4± 0.5

in each variant (and groups of 25 consecutive images from
each run). To test the statistical significance of these results,
Table IV shows the mean and SEM, over the final 200 images
from the 10 runs in each variant, of the cost assigned by the
final critics from the runs of another variant. (For Table IV,
the cost assigned to an image by the final critic from its own
run was omitted.)

We see that Continue+All and Reset+All (whose critics
were trained on all preceding images) achieve significantly
better cost than Reset+10 and Continue+10 (whose critics
were trained only on images from the previous 10 rounds).
Interestingly, Continue+10 performs considerably better than
Reset+10. The Continue+10 critics can be thought of as
undergoing one continuous training process, but with each
image being dropped from the training set after 10 subsequent
rounds. These preserved weights apparently provide a signif-
icant “residual” effect, with the network retaining its ability
to reject earlier images (and others of the same style) for a
considerable period of time after they have been removed from
the training set.

Note also that Reset+All (where the weights were reset in
each round) performed somewhat better than Continue+All
(where the weights were preserved from one round to the
next). The likely reason is that, although successive critics are



Fig. 5: HERCL image rendered at 28×28 resolution and at
256×256 resolution.

trained on very similar training sets (with only one additional
image), the resetting of the weights provides extra diversity to
the critics, in the same way that bagging or boosting methods
are used to provide additional diversity in machine learning.
Another possible explanation is that preserving the weights
from one round to the next causes the network to give undue
emphasis to the earlier (low quality) images, on which it has
been trained the longest.

Fig. 6: Selected images generated on the MNIST dataset
from all runs. Images were selected to show the diversity of
recognizable images.

B. Subjective Analysis of Images

Using the artist as a function allows us to render the images
at any desired resolution. For example, in Fig. 5, the 28× 28
image on the left is the one that is fed to the critic; but, we
are free to view the 256× 256 image on the right if we find
it more appealing.

We found that many of the images produced by our system
do indeed look like digits, and that the images whose average
cost from the final critics was lowest tended to be the most
realistic (see Fig. 6). This is somewhat in contrast to [15]
where it was reported that a CPPN artist tended to produce
very un-digit-like images which nevertheless fooled the critic.
The difference might be due to the fact that our hierarchical
evolution paradigm includes selective pressure towards shorter
programs. Images from the early rounds tend to be very regular

Fig. 7: Images from the MNIST runs which do not resemble
digits, but might nevertheless have some artistic merit.

geometric shapes (circles and lines) which resemble simple
digits like 0 and 1. In later images, the shapes tend to be
slightly irregular and therefore more natural looking. This is
presumably because the critic has figured out how to reject
the regular images so the artist must add extra complexity to
its program in order to fool the new critic.

There were also images which do not resemble digits but
may have some intrinsic artistic merit (see Fig. 7).

Fig. 8: Real images from each of the CIFAR-10 categories
(airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
truck) which were found to be most recognizable by DEEP-
CNET, winner of the 2015 Kaggle CIFAR-10 Competiton.

IV. CIFAR-10 EXPERIMENTS

Our second set of experiments used color images from the
CIFAR-10 dataset [10] (see Fig. 8). The HERCL artist is
required to output three values for each pixel, in order to
generate a color image, and the architecture of the LeNet-5
critic is slightly modified to handle three inputs for each pixel.

A. Single-Cell Artists trained against All CIFAR-10 images

Three runs each were initially performed for Continue+All
and Reset+All, using the full set of CIFAR-10 images. On
average, one new image was produced every 2 minutes on
a standard desktop machine. But, occasionally, the evolution
took up to an hour because no artist was able to fool the
critic into assigning a cost below the specified threshold.



Fig. 9: Every 50th image from a sequence of 500 images generated using LeNet-5 CNN and CIFAR-10 (all categories) with
Continue+All (upper) and Reset+All with limited evolution (lower).

Fig. 10: Selected images with CIFAR-10 and LeNet-5, from two runs using Continue+All (top row) and five runs using
Reset+All (lower three rows).

Fig. 11: Selected images using 4-cell HERCL programs, Reset+All, CIFAR-10 (all categories) and Lenet-5.

Fig. 12: Selected images using 4-cell HERCL programs, Reset+All and only the Ship images from CIFAR-10, with LeNet-5
(first 3 images in top row) and All Convolutional Net (remaining 17 images).



Fig. 13: Partial ancestry of three images from the 4-cell, Reset+All, Ships only, All Convolutional evolutionary run.

Therefore, we tried two additional runs of Reset+All in which
the evolution was cut off if it ran for too many evaluations
(200 000) without achieving the target cost.

We have extracted every 50th image from two of these runs
in order to show the typical distribution of images (Fig. 9) and
also selected a number of other images from all the runs, to
give an idea of the variety of images generated (Fig. 10). In
each case, images are arranged left-to-right according to where
in the run they were generated. In a typical run, the first 20 or
so images are just a single solid color, while the next 30 or so
images consist of colors and shades broken up by horizontal
and/or vertical lines – which somewhat resemble national
flags, or colored patterns in the style of Mondrian or Paul Klee.
Subsequent images get progressively more complex, often
relying on fractal self-symmetry [1]. Some images remind
us of everyday objects like a wine glass, wheel, spoon, disk,
Christmas ornament or a row of popsicles. Others appear as
idealized landscapes or seascapes, or art deco style buildings or
patterns. In cases where the maximum number of generations
has been exceeded without achieving the target cost, the image
is sometimes simply a diagonal striped pattern.

B. 4-Cell Artists trained against All CIFAR-10 images

Our next experiment employed the same framework, but
with the size of the HERCL programs increased to 4 “cells”,
which effectively allows subroutine calls to be included in the
code. Selected images from this run are shown in Fig. 11.
Compared to the single-cell images, we see that the 4-cell
images are generally of greater complexity, and more likely
to be built up as a composite of different sub-images.

C. 4-Cell Artists trained against Ship images

It is possible that the modified LeNet architecture for the
critic may be inadequate, since similar architectures have been
known to fail on the task of classifying the CIFAR-10 images.
Also, the CIFAR-10 database includes a mix of animals and
vehicles, which might make the job harder for the critic.

For our final set of experiments, in order to see whether
the system could produce more realistic images, we restricted

the set of real images to just the “Ship” category within the
CIFAR-10 dataset. For one of these runs, we also used a
modified All-Convolutional network for the critic (Table II),
which takes longer to run but is more powerful. For this run,
we additionally extended the running time to 1000 images
(compared to 500 images for all the previous experiments).

Selected images from the two runs using only Ship images
are shown in Fig. 12. In many cases, they do indeed resemble
ships, nautical objects or seascapes – often with a small ship-
like object in the middle or on the horizon.

D. Geneology of Images

Each image is the result of a mini-evolution, in which
the code for all previously generated images is available
as raw genetic material in the library. We can define the
primary parent of an image as the previous image in the
sequence whose code is most similar to that of the current
image, according to the Levenshtein Edit Distance [12]. This
definition of primary parent allows the images to be arranged
in a family tree. The partial ancestry of three images from the
All Convolutional, Ship-only experiment are shown in Fig. 13.
We see that the complexity generally increases from parent
to child, and that genetically related images do exhibit some
similarity in style and content (although they may not be close
in terms of raw Euclidean distance).

V. DISCUSSION, CONCLUSION AND FUTURE WORK

We have shown that a fully autonomous system with no
human intervention can generate realistic digits, as well as
geometric shapes and patterns which stimulate our visual
system and remind us, in a way, of real objects, landscapes
and designs.

Some may criticize our approach on the grounds that the
images are on a small scale and lack the gravitas, contextual
grounding or social and political commentary of “serious”
art. However, our system is effectively solving a constrained
optimization problem: namely, to generate images which have
low algorithmic complexity, but are sufficiently suggestive
of real-world images as to fool a trained critic with an



architecture loosely modeled on the human visual system. It
could be argued that this same characterization also applies
(at least in part) to abstract art of the early 20th century.

Recent trends in networking and social media have seen
a shift – in text, video and photography – away from long-
form works and in favor of ephemeral pieces, broken into
bite-sized chunks. Our system, and others of similar design,
could perhaps represent a step in the same direction for visual
art, by producing micro-artworks or “snack art” which can be
enjoyed in the moment and then saved or discarded.

Another promising approach is the combination of auto-
mated and human-induced fitness evaluation [4, 19]. Our
current (fully autonomous) system produces images of varying
quality. While some are compelling, others may be unattractive
or fail to meet the aesthetic desires of a particular human
observer. In future work, we aim to bring some element
of interactive evolution into this framework – by creating
a system where images are generated autonomously in the
background, but the human is invited to intervene from time
to time to select their preferred images, and thus guide the
evolution in a more aesthetically pleasing direction. This kind
of hybrid approach may help to bring evolutionary art to a
higher level, by saving human effort but at the same time
giving the human enough control over the system to produce
images which are in a desired style but still with the capacity
to surprise.
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