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Abstract. We use an adversarial approach inspired by biological co-
evolution to generate complex line drawings without human guidance.
Artificial artists and critics work against each other in an iterative com-
petitive framework, forcing each to become increasingly sophisticated to
outplay the other. Both the artists and critics are implemented in hercl,
a framework combining linear and stack-based Genetic Programming,
which is well suited to coevolution because the number of competing
agents is kept small while still preserving diversity. The aesthetic qual-
ity of the resulting images arises from the ability of the evolved hercl
programs, making judicious use of register adjustments and loops, to
produce repeated substructures with subtle variations, in the spirit of
low-complexity art.
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1 Introduction

Several recent papers have explored the development of aesthetically pleasing
images using an evolutionary approach [6, 8–11, 13]. In most cases, human inter-
action is required to guide evolution towards pleasing images. However, Machado
et al. [10] use an experimental approach inspired by coevolution in nature, which
allows novel imagery to be generated without human interaction (see also [11]).
The core of the coevolution process is the adversarial relationship between an
artist and a critic. The aim of the critic is to distinguish real art from artifi-
cial art (produced by the coevolving artist). The aim of the artist is to produce
images that the critic will believe to be real.

At the beginning of the process, a set of critics are trained on a predeter-
mined set of real and fake images. Then, a set of artists are evolved to produce
art which fools the previously-evolved critics. The images produced by the artists
are then added to the fake dataset that is used to train critics in the next gener-
ation, and the process is iterated indefinitely. Both the artist and the critic must
increase in sophistication at each generation in order to surpass the adversary.
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Table 1: HERCL Commands

Input and Output Stack Manipulation and Arithmetic

i fetch input to input buffer # push new item to stack ...... 7→ ...... x
s scan item from input buffer to stack ! pop top item from stack ...... x 7→ ......
w write item from stack to output buffer c copy top item on stack ...... x 7→ ...... x, x
o flush output buffer x swap top two items ... y, x 7→ ... x, y

Registers and Memory
y rotate top three items z, y, x 7→ x, z, y
- negate top item ...... x 7→ .....(−x)

< get value from register + add top two items ... y, x 7→ ...(y+x)
> put value into register * multiply top two items ... y, x 7→ ...(y ∗ x)
ˆ increment register

Mathematical Functions
v decrement register
{ load from memory location r reciprocal .. x→ .. 1/x
} store to memory location q square root .. x→ ..

√
x

Jump, Test, Branch and Logic
e exponential .. x 7→ .. ex

n (natural) logarithm .. x 7→ .. loge(x)
j jump to specified cell (subroutine) a arcsine .. x 7→ .. sin−1(x)
| bar line (return on .| halt on 8|) h tanh .. x 7→ .. tanh(x)
= register is equal to top of stack z round to nearest integer
g register is greater than top of stack ? push random value to stack
: if true, branch forward

Double-Item Functions
; if true, branch back
& logical and % divide/modulo .. y, x 7→ .. (y/x), (ymodx)
/ logical or t trig functions .. θ, r 7→ .. r sin θ, r cos θ

~ logical not p polar coords .. y, x 7→ .. atan2(y,x),
√
x2+y2

The hope is that the continual increase in sophistication will produce imagery
that is appealing, or at least interesting, from a human perspective.

In previous approaches, images were typically generated by artists using
pixel-based methods, where a shade or colour is assigned to each pixel in the im-
age [8], often based on its x and y co-ordinates, using either a tree-based Genetic
Program [9, 10] or a neural network [13]. The critic used either a tree-based gp [9]
or a neural network [10] for classification, with input based on certain statistical
features of the image.

In the present work, we adapt this coevolution approach to the framework
of hierarchical evolutionary re-combination (hercl) as introduced in [2], which
combines features from linear gp and stack-based gp. Each agent (artist or
critic) is a program written in a simple imperative language with instructions
for manipulating a stack, registers and memory. The full list of hercl commands
is given in Table 1.

hercl does not use a population as such, but instead maintains a stack or
ladder of candidate solutions (agents), and a codebank of potential mates (see
Fig. 1). At each step of the algorithm, the agent at the top rung of the ladder is
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Fig. 1: Hierarchical evolutionary re-combination. If the top agent on the ladder
becomes fitter than the one below it, the top agent will move down to replace
the lower agent (which is transferred to the codebank). If the top agent exceeds
its maximum number of allowable offspring without ever becoming fitter than
the one below it, the top agent is removed from the ladder (and transferred to
the codebank).

either mutated or crossed over with a randomly chosen agent from the codebank,
or from an external library. Crossovers and mutations are classified into different
levels according to what portion of code is modified. A large crossover at the
lowest rung of the ladder is followed up by a series of progressively smaller
crossovers and mutations at higher rungs, concentrated in the vicinity of the
large crossover (see [2] for further details).

In the present work, both the artists and the critics are hercl programs.
The artist’s output is interpreted as a sequence of commands in a simple drawing
environment. The critic takes as input a set of features computed from the image,
and returns a number between 0 and 1 representing its confidence that the image
is real.

The advantages of using the hercl framework in this context are as follows:

(a) It enables the artist to work at the level of line drawing rather than per-pixel
manipulation, thus allowing the exploration of a different artistic modality
which is arguably closer to the way humans draw with pen and paper.

(b) The functionality of the artist is extended with programming constructs such
as loops, stack manipulation and incrementing or decrementing of registers,
as well as various basic math functions.

(c) The ladder and codebank arrangement of the hercl framework keeps the
number of competing artists and critics relatively small, thus allowing com-
putationally efficient coevolution.

The use of a stroke-based model for drawing is similar to Simon Colton’s sys-
tem The Painting Fool [4], whose output is more visually complex. Colton’s soft-
ware aims to produce a painterly rendering of a single image, whereas we are more
interested in creating a system capable of generating novel, non-representational
imagery based on a collection of images.
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Table 2: Line Drawing Commands

0 toggle lift pen on/off page
1 move x move pen forward by x pixels (0 ≤ x ≤ 15)
2 turn x turn x degrees clockwise
3 size p set pen radius to p pixels (1 ≤ p ≤ 4)

4
colour v set greyscale value [in greyscale mode]
colour l h s set colour in HSV colour space [in full-colour mode]

2 Methodology

Each artist is a hercl program, which when executed outputs a sequence of
messages that are interpreted as commands in a simple graphics environment.
This environment gives the artist control over a virtual pen, which it can rotate
and move to draw lines. The artists take no input and behave deterministically,
and therefore each artist produces only a single image.

Each message is a sequence of integers; the first integer (modulo 5) specifies
the command, and the subsequent integers specify parameters as appropriate
(see Table 2). The artist is limited to a maximum of 900 commands, but it can
also halt of its own accord before this point.

Typically the artist is allowed to use any instruction in the hercl syntax,
but in some experiments we disallowed the use of the branch-back instruction,
preventing the artist from implementing loops.

The critics are also hercl programs, which take as input a set of features
computed from an image, and are required to output a single number between
0 and 1, similar to the classification tasks of [3]. The set of features extracted
from the image is primarily based on those used by Datta et al. [5] in their work
on computationally assessing photograph quality, as well as some from [10]. We
also add some features based on corner detection as this pertains specifically to
the line-based drawing method used by our system.

The full list of features is shown in Table 3. For colour images, certain proper-
ties are calculated independently across the Hue, Saturation and Value channels,
resulting in three features. In greyscale mode, the image effectively consists only
of a Value channel, and so the features with superscript H or S are not provided
to the critic. All features except NP and NC are scaled to within [0, 1]. Corner
weight and number are computed using the Harris & Stephens corner detection
algorithm, as implemented in OpenCV 2.4. In total, there are 19 features in
greyscale mode and 33 in full-colour mode.

When evolving an artist, its fitness is determined by how well it fools the
set of critics. The image produced by an artist is first converted into a feature
vector, and the critics each give a score based on this vector. The cost function
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Table 3: Image Features

Feature Abbreviation Source

Mean MH,MS,MV [5], [10]

Standard deviation SH , SS , SV [5], [10]

Greyscale entropy H [10]

Mean edge weight ME [10]

Standard deviation of edge weight SE [10]

Number of homogenous patches NP [5]

Mean of largest patch PH
1 , PS

1 , PV
1 [5]

Mean of 2nd-largest patch PH
2 , PS

2 , PV
2 [5]

Mean of 3rd-largest patch PH
3 , PS

3 , PV
3 [5]

Mean of 4th-largest patch PH
4 , PS

4 , PV
4 [5]

Mean of 5th-largest patch PH
5 , PS

5 , PV
5 [5]

Size of largest patch A1 [5]

Size of 2nd-largest patch A2 [5]

Size of 3rd-largest patch A3 [5]

Size of 4th-largest patch A4 [5]

Size of 5th-largest patch A5 [5]

Convexity factor C [5]

Mean corner weight MC -

Number of corners NC -

for the artist is a weighted sum of critics from all previous generations, with
older critics contributing less. For an artist in generation n,

cost = 1 −
n∑

i=1

(1

2

)n−i−1

ci

where ci is the average score across all critics in generation i. Artists are con-
sidered successful when they have achieved a cost below 0.1 . The main reason
for using critics from all previous generations is that sometimes the most recent
critics will be good enough that the artist is initially unable to produce an image
which gets a non-zero score. This leaves the artist with a flat fitness landscape
and prevents it from evolving successfully. Including critics from previous gen-
erations helps the artists to improve, particularly in the early generations, and
could perhaps also help prevent suboptimal cycles of forgetting and re-learning
in the coevolutionary dynamics [1].

A library is maintained of the successful artist code from all previous gen-
erations. Code from this library is made available for crossovers and mutations
when evolving the next generation of artists. This enables the artists to evolve by
adapting and re-using code from earlier artists, and encourages them to build on
the artistic “styles” developed in previous generations (see Figs 3-5). However,
this may also limit diversity by encouraging similar code throughout the run.
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Fig. 2: One example image from each dataset: Chinese characters and Colour.

Critics are evolved against a labeled dataset consisting of feature vectors
computed from the real and fake image datasets. The target value is 1 for real
images and 0 for fake images. The cost for the critic is the cross-entropy function:

cost = −t log(z) − (1 − t) log(1 − z)

where t is the target label (0 or 1) and z is the value produced by the critic. Any
critic producing a value ≤ 0 for a real image or ≥ 1 for a fake image receives a
penalty and is excluded from both the ladder and the codebank. This, combined
with the logarithmic divergence in the cost function, strongly encourages critics
to produce values inside the interval (0, 1) rather than at the extremes. This
makes it easier for the artists to evolve because the fitness landscape has a
continuous gradient.

As in [10], the real and fake datasets are given equal weight, so that the
relative sizes of the two sets do not affect the critic’s evolution. Critics are
accepted when they achieve a cost below 0.1 .

3 Experiments

We focus primarily on the results of two runs of the coevolution process, using
a starting set of images of Chinese characters. We call the two runs Loops and
No Loops. The difference between them is that for the latter, we disabled the
branch-back instruction, preventing loop structures from appearing in the artist
code. Both these runs operate in greyscale mode.

The starting dataset consists of 290 greyscale images of Chinese characters
from Wiktionary, each 80×80. There is no particular reason for using this dataset
other than that it contains images that could be feasibly generated within our
drawing framework.

We also conducted one additional run, Colour, to demonstrate the colour-
mode capability. This run used a dataset of 67 colour images taken from a Google
Images search for “circle”, with search settings restricting size to 128 × 128 and
specifying ‘Full colour’. The resulting images all contain circles or round objects,
but generally in combination with other elements or symbols.

For each run, there were three critics and ten artists evolved independently
in each generation (each with its own ladder and codebank).
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4 Results and Discussion

A selection of generated images from each run is shown in Figures 3 to 5. Aes-
thetic qualities of the images are difficult to quantitatively assess, but it is clear
that the system is capable of generating quite a diverse range of complex imagery
with no human guidance.

It is clear from the results, and Figure 3 in particular, that the complexity of
the images is increasing across phases. This demonstrates that the adversarial
artist-critic relationship is successful in driving the development of complexity.

The difference between the images in Figure 4 and Figure 3 is notable. We see
that allowing loops results in highly structured patterns in the images, whereas
disallowing loops results in images with a more freehand appearance.

The code for the No Loops run tends to be longer, because each stroke has to
be coded individually. In the Loops run, there are many cases where the evolved
code is quite short but manages to generate surprisingly elaborate images. For
example, the left image in the 2nd bottom row of Figure 4 was generated by this
code:

[<wx<*23.#-!cw8v{.v<wwcv<wwow.v<*vwo;:]

The possibility of creating complex images from short programs draws par-
allels with Schmidhuber’s theory of low-complexity art [12]. What makes these
images particularly interesting (and perhaps aesthetically pleasing) is that they
often contain repeated structures which are similar but not quite identical. The
evolved hercl programs make use of loops and register adjustments to introduce
subtle differences in these substructures, thus mimicking certain developmental
processes in the natural world. This phenomenon can be compared with the
pixel-based approach of [8], where local agents following evolved rules were used
to create an overall “natural-looking” image.

Greyscale entropy is the feature most commonly used by the critics (see Fig-
ures 6 to 8). Other important features include the mean and standard deviation
of the overall image (MV, SV ) and the edge weight (ME , SE), the convexity (C)
and the size and mean value of the 2nd largest patch (A2, PV

2 ). For the Colour
task, which was trained on “circle” images, the mean corner weight and mean
of the largest and 3rd largest patch in the H and S channels are also used.

5 Conclusion and Future Work

We have successfully adapted the coevolutionary art paradigm to a natural line-
drawing environment. The fact that hercl programs can act as both artist and
critic is testament to the versatility of the hercl framework. Discrimination
based on statistical features of the image, combined with the inherent preference
for shorter programs, are enough to drive complexity and produce aesthetically
pleasing images.

However, there are clearly certain local and global properties of the images
which are not being captured by these statistical features. In future work, we
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Fig. 3: Three images each from
generations 1 to 8 of No Loops run.

Fig. 4: Three images each from
generations 1 to 8 of the Loops run.
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Fig. 5: Six images each from generations 3,5,7,8,9,11,13,15,17,18 of Colour run.
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Fig. 6: Image features most used by critics for the No Loops run.
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Fig. 7: Image features most used by critics for the Loops run.
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Fig. 8: Image features most used by critics for the Colour run.

plan to explore the use of deep convolutional neural networks in the role of
the critic, similar to the generative adversarial networks recently introduced for
image generation [7]. Another avenue of investigation would be the use of multi-
cell hercl programs (which allow jumping to subroutines), or additional line
drawing commands for moving to a specified (or previously stored) location on
the canvas, to see whether the paradigm can be scaled up to larger and more
sophisticated images.
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