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Abstract— A new reinforcement learned neural network,
that follows the ideas of the minibrain network but includes
exploration and learns through both positive and negative
feedback, is proposed. The proposed RelL network is evaluated
against the minibrain network in the n x n grid world domain
and the taxi domain and is shown to perform significantly better
than the minibrain network.

I. INTRODUCTION

Neural networks were originally proposed to model the
biological brain. Due to their inherent parallel processing
and generalization ability, they have found their way into
many interesting applications such as driving a vehicle on a
highway [1] and face recognition [2].

However, most neural networks used today are trained
through supervised learning. Although such a network will
be able to generalize to achieve the task in the particular
manner it has been taught, it will not be able to explore
novel ways to achieve its goals.

Reinforcement learning is another training method that is
capable of learning such novel goal directed behavior. It has
been used successfully to train neural networks in a number
of domains such as controlling an inverted pendulum [3], and
landing an aircraft [4].

Previous work on reinforcement learned neural networks
can be categorized into three classes: actor only networks,
critic only networks, and actor critic networks. Actor only
networks [5][6] learn the policy directly by adjusting their
parameters in the direction of improvement as indicated by
the reinforcement signal. Critic only networks [7] learn an
approximation of the value function, which is then used to
derive the policy. Actor critic networks combine the above
networks by feeding the output of the critic network to the
actor network.

Recently an actor only network, the minibrain network,
has been proposed by Chialvo et. al. [8]. Their approach,
which can be applied to almost any network architecture, is
based on two principles: 1) a winner take all approach and
2) learning only upon punishment.

In this paper we propose a new reinforcement learned
neural network, that follows the ideas of the minibrain
network but includes exploration and learns through both
positive and negative feedback.

This paper is organized as follows. Sections II and III
review the relevant concepts in reinforcement learning, and
previous work on minibrain networks respectively. Section
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IV introduces the new reinforcement learned neural network.
Section V introduces the two domains which will be used
to test and compare the performance of the reinforcement
learned neural networks. Section VI presents and compares
the results of the reinforcement learned neural networks in
these domains. And finally, Section VII concludes the paper
and provides directions for further work in the area.

II. REINFORCEMENT LEARNING

In reinforcement learning [9], an agent learns to perform
a task through trial and error. This is characterized by the
agent sensing its environment through sensors and acting on
it through effectors. The goal of the agent is to learn a policy
for choosing actions which maximize its cumulative reward.
By giving the agent an appropriate performance measure
signal — reward in the case of success or punishment in the
case of failure — the agent should be able to learn the actions
required to perform the task. Such a performance measure
signal is often only available after the agent has performed
a sequence of actions. This introduces the credit assignment
problem: which components of that sequence are primarily
responsible for the success or failure.

As the agent learns through trial and error, it has to
explore unknown states and actions in order to learn. On
the other hand, it must also exploit the states and actions
which it has already learned will yield high reward. This
creates the second problem in reinforcement learning, the
problem of balancing exploration and exploitation. To solve
this problem, an appropriate action selection strategy has to
be used. There are three well known selection strategies:

1) The greedy selection strategy. With this strategy, the
agent will always select the action which is expected
to yield the highest cumulative reward.

2) The e-greedy selection strategy. With this strategy, the
agent will with a probability of ¢, choose the action to
take randomly with equal probability for each action.

3) The soft max selection strategy. With this strategy, the
agent will take an action a in state s with a proba-
bility which is proportional to some strictly increasing
function of a predetermined parameter.

This concludes the quick overview of reinforcement learn-

ing. The interested reader should refer to [9] for a more
comprehensive discussion.

IIT. MINIBRAIN

One approach to solving the credit assignment problem is
the minibrain network proposed by Chialvo et. al. [8]. These
networks solve the credit assignment problem through the
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use of what the authors term as extremal dynamics. This
is essentially a winner take all approach, in which firing
activity only propagates through the strongest connections.
This reduces the number of nodes active at any one time and
thus simplifies the credit assignment problem. After every
activation, the activated connections are then ‘tagged’ for
punishment or reward upon failing or succeeding in the task.

Another characteristic of the minibrain network is that it
only learns upon punishment: the weights are adjusted only
when the reward is negative. This is claimed to increase the
speed of learning in the minibrain network. Upon receiving
a negative reinforcement value, regardless of its magnitude,
the weights of the connections which were previously active
will be reduced by a constant or random amount.

A modified version of the original minibrain network
which Klemm et. al. [10] used to solve the XOR problem
will now be presented. In this work [10], the authors selected
the node to activate stochastically where the probability of
firing for each node j is:

pj=a e )

where hj = w;;x; is the sum of weighted input for node
7, a = Zj ePhi is the normalization factor, and (3 is the
Boltzmann noise factor.

Note that when 5 — oo, this becomes the greedy selection
strategy, where the node with the maximum sum of weighted
inputs is always selected, and when (3 is finite it becomes a
version of the soft max selection strategy.

Another extension made in their work is the introduction
of selective punishment. This is done by giving connections
which were previously successful a number of chances
before their weights are reduced. This is defined by the
following equations:

@7 if Cij(t)—FT’ > 0
ci(t+1) =1 () +r if O >cy(t)+7>0
0, if0>Cij(t)+7'
g w5 ifey=0
wi;(t+1) = { w;;(t), otherwise

2
where ¢;;(t) is the chance value for the connection between
nodes 7 and j at time ¢, © is the maximum value for the
chance values, 7 is the reinforcement signal supplied, positive
for reward and negative for punishment, w;;(t) is the weight
of the connection between nodes ¢ and j at time ¢, and ¢ is
a constant value.

The activity propagation and weights updating procedure
used by Klemm et. al. [10] are summarized in table I.

Bak et. el. [11] also incorporated a selective punishment
approach into the original minibrain network and used it to
learn a simple sequence following task. In this work however,
rather than giving previously successful connections chances,
the weights of these connections are reduced by a smaller
amount when a punishment is received.

TABLE I
THE ACTIVITY PROPAGATION AND WEIGHTS UPDATING PROCEDURE
USED BY KLEMM ET. AL. [10].

Activate(Input = X))
1 Activate input layer according to X
2 From the first to the last layer do

3 Select the node j to activate where the probability of
selecting each node is defined in equation 1

4 Activate node j

5  Mark all activated connections

Update(Reward = r)
1 For each connection in the network do
2 If connection is activated then
3 update weight of connection according to equations 2
4 Unmark all connections

IV. REL NETWORK

In this section, the Reinforcement Learned (ReL) network
will be introduced. The ReL network model is quite similar
to the minibrain network model in that:

e activity in the network only propagates through the

strongest connections,

« all activated connections are marked and updated only

when a reinforcement signal is received, and

« each node has only two states: activated, having a value

of 1, and unactivated, having a value of 0.
However, it differs from the minibrain network model in that:

« a hybrid of e-greedy and soft-max selection strategy is

used to select the node to activate, and

« the weight modifications depend on the size of rewards

and the time the reward is received.
The differences in activity propagation and weight updating
will be detailed in the following subsections.

A. Activity Propagation

The exploration strategy used in the ReL network is a
hybrid of the e-greedy and soft-max selection strategy. The
reasons for the hybrid approach are:

1) Although the € greedy selection strategy will randomly
choose a node to activate with a probability of ¢, it
chooses such a node with equal probability for all
nodes. This is not ideal in that it will choose between
a good node and a bad one with equal probability.

2) Although the soft-max selection strategy will select a
node to activate with a probability proportional to its
sum of weighted inputs, it does so all the time. This is
not ideal in that it might cause too much exploration.

Hence to select the node k which will be activated with
a probability proportional to its sum of weighted inputs, the
following equation will be used:

k= mjax(Z(wij(t) + v5(1)) ;) 3)
where w;;(t) is the weight for the connection between nodes
i and j at time t, z; is the value of node ¢, and v;;(t) is the

noise for the connection between nodes 7 and j at time t.
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TABLE 11
THE ACTIVITY PROPAGATION PROCEDURE OF THE REL NETWORK.

Activate(Input = X)
1 t=t+1
2 Activate input layer according to X
3 From the first to the last layer do
4 For each connection connecting to the previous layer do
5 Determine the v;; value according to equation 4
6 Determine node k according to equation 3
7 Activate node k
8 For each connection connecting to the previous layer do
9 determine the a;; value according to equation 5
0 Mark all activated connections

1

The rate of exploration is then controlled by controlling
the rate of change of v;; with the following rule:

random() if node ¢ is activated and with a
vi;(t) = probability of ¢
v;;(t —1) otherwise.

“)
where ¢ is the probability of taking a random action, and
random() is a random number generator with an expected
value of 0.

Note that if € = 1, the selection strategy becomes a pure
soft-max selection strategy, and if € = 0 the selection strategy
becomes the one used in the greedy minibrain network.

Then as in minibrain, activated connections are marked
and will be updated when a reinforcement signal is received.
But instead of marking with just a boolean mechanism,
the time of activation is also recorded. This is done by letting:

t if connection between ¢ and j is
a;;(t) = activated
a;j(t —1) otherwise. )

Thus a;;(t) is the last activation time (equal or prior to t)
for the connection between nodes ¢ and j. We explain later
how a;;(t) will be used as a factor in the updating of the
weights. Table II gives a summary of the activity propagation
procedure.

Example 1: To illustrate this procedure, we will use a
single layered feed forward network as shown in figure 1,
and present the network with the input < 1,1,0 >. Assuming
that the network had received three inputs previously and has
yet to receive any reinforcement signal; the current value of
t is 3 and the current w;;, V44, and a;; values for the network
are as shown in figure 2.

In the first step of the activation procedure, the time step
is incremented, i.e. t = t + 1 = 4. In step 2, we activate
nodes 1 and 2. Then in step 3, we enter a loop to propagate
the activity through the layers. Next in steps 4 to 5, we
determine the v;; values for the connections between the
input layer and layer one using equation 4. Since nodes 1
and 2 are the only presynaptic nodes that are activated, we
will only assign random noise to vy, V15, Va4, and vo5 with a
probability of €. Let us assume that v14 and vo5 are assigned
random noise values of —0.039 and 0.074 respectively. Then

Fig. 1. This figure shows the one layered neural network used in the
examples. It has 3 input nodes (nodes 1, 2 and 3) and 2 output nodes
(nodes 4 and 5).

t=3
w | 4 5 v | 4 5 al| 415
1 0.345 -0.124 1 | 0.004 0.188 11211
2 0.502 0.414 2] -0273 | 0 21210
3 -0.349 | 0.246 310 -0.016 3170713
t=4
w | 4 5 v | 4 5 a |45
1 0.345 -0.124 1 | -0.039 | 0.188 1214
2 0.502 0.414 2 | -0.273 | 0.074 21214
3 -0.349 | 0.246 310 -0.016 317013

Fig. 2. This figure shows the initial (¢ = 3) and resulting (t = 4) w;;, v;;,
and a;; values of the network used in the activation procedure example.

in the step 6, we use equation 3 to determine the node to
activate. According to the equation, the sum of weighted
inputs for nodes 4 and 5 are 0.508 and 0.552 respectively.
As node 5 is the node with the largest sum of weighted
inputs, it will be the node that is activated in step 7. Then in
steps 8 to 9, we will determine the a;; values for connections
from the input layer and layer one using equation 5. Since
the connections from nodes 1 to 5, and 2 to 5 are the only
ones that are activated, we set a5 = ags; = 4. Finally, we
mark the connections connecting nodes 1 to 5, and 2 to 5
activated. Since we have only one layer in the network we
exit the procedure. The resulting w;;, v;;, and a;; values for
the network are shown in table 2.

B. Weight Updating

The weights in the RelL network are updated using the
following equation:

wij (t+ 1) = wi; () + y" 9wy (t) (6)

where 7 is the learning rate, v is the decay rate, and r
is the reward received, v;; is the noise of the connection
(equation 4), and a;; is the time of activation (equation 5).

The justification for this learning rule is as follows. Modi-
fying the weights in proportion to the received reward value
increases the probability of activation for connections whose
activation leads to a high reward and conversely reduces the
probability of activation for those whose action leads to a
low reward.

The equation apportions more responsibility to the con-
nections whose last time of activation is closer to the time
the reward is received. This is achieved by the ~(/~®)
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TABLE III
THE WEIGHT UPDATING PROCEDURE OF THE REL NETWORK.

Update(Reward = r)
1 t=t+1
2 For each connection in the network do
3 If connection is activated then
4 update weight of connection according to equation 6
5  Unmark all connections
6  Setall a;; and v;; values to O

t=>5
w | 4 5 v |45 a | 415
1 0.34149 | -0.10708 1 010 110]0
2 0.47743 | 0.42066 21010 21070
3 -0.349 0.24456 317010 317010

Fig. 3. This figure shows the resulting (¢t = 5) w;;, V45, and a;; values
of the network used in the weight updating procedure example.

term which causes greater adjustment of weights to those
connections.

The noise of the connection used in equation 3 serves as
a point of convergence. The idea is that each weight should
be changed such that it is moving towards the value of the
noise that was added which led to its activation. Since the
expected value of the noise is 0, the weight of the connection
will eventually fluctuate around some point when there is
constant activation and reward.

Finally, as in any neural network learning algorithm, the
changes are made in small steps, controlled by the learning
rate, so as to converge.

After updating the weights, all connections will be un-
marked, and all a;; and v;; values will be reset to 0. Table III
gives a summary of the weight updating procedure.

Example 2: To demonstrate the weight updating proce-
dure, let us use the resulting w;;,v;;, and a;; values of
the example from the previous section. In this example,
the values of the parameters used in the weight updating
procedure will be n = 0.1,y =0.9 and r = 1.

In the first step of the procedure, the time step is incre-
mented, i.e. t = ¢+ 1 = 5. In steps 2 to 4, we update the
weights of the connections that were previously activated.
Hence all weights in the network except ws4 are candidates
for update. As an example,

wss = 0.246 + 0.1-1-0.973) . —0.016 = 0.24456

Then in step 5, all connections are unmarked. Finally in step
6, all a;; and v;; values will be set to 0. The post update
Wi, Vij, and a;; values of the network are shown in figure 3.

V. EXPERIMENTS

This section will describe two domains, the n x n grid
world domain and the taxi domain, which will be used to test
and compare the performance of the reinforcement learned
neural networks

B

S

1 2 3 4 5

Fig. 4. This figure shows a 5 x 5 grid world. The Starting position is at
the lower left corner of the grid world, the Goal is at the upper right corner,
and the player is at position < 1,3 >.

A. The n x n Grid World Domain

The simple grid world game has often been used in the
area of reinforcement learning ([9], [12], and [13]) to test
and illustrate various algorithms.

In the n x n grid world game, the objective of the game is
to start in the lower left corner of the grid world and navigate
to the goal in the upper right corner of the grid world using
the minimal number of steps. Figure 4 shows an example of
a b x5 grid world.

At each position, the player can either move Left, Right,
Up, or Down which will take it to the respective adjacent
square. A move into the wall leaves the player’s position
unchanged. As an example: in figure 4, a Left action will
leave the player position unchanged at < 1,3 >, a Right
action will take the player to position < 2,3 >, an Up action
will take the player to position < 1,4 >, and a Down action
will take the player to position < 1,2 >.

When the player reaches the goal it will be rewarded with
a reinforcement value of 1 and the game will be restarted.
As the player might wander around in the grid world forever
without reaching the goal position, a cap will be placed on
the number of steps which can be taken before the game is
terminated. If the player fails to reach the goal within 1000
steps, it will be punished with a reinforcement value of -1
and the game will be restarted.

To represent the state of the game, 2 groups of n input
nodes will be used. Each group will be mapped one to one
to each axis of the grid world and each node of each group
will be mapped one to one to a position in that axis. If the
player is in the position the input node represents, the input
node will be activated by giving it a value of 1, otherwise it
will be given a value of 0.

To represent the actions of the game, 4 output nodes will
be used. Each node will be mapped one to one to each of the
4 actions. If an output node is activated, i.e. having an output
value of 1, then the player will take the action represented
by the output node.

As an example, figure 5 shows the representation of the
state shown in figure 4 and taking a Left action in that state.

B. The Taxi Domain

The taxi game is used in [14] and [15] to demonstrate and
evaluate hierarchical reinforcement learning algorithms.

The objective of this game is to navigate a taxi around
a 5 x b grid world to pick up a passenger at the pickup
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Fig. 5. This figure shows the network representation of taking a Left action
in the state shown in figure 4. Activated nodes are highlighted.

C D

A B

Fig. 6. This figure shows the pickup and drop off locations (marked A, B,
C, and D) in the taxi game.

location and drop the passenger off at the drop off location.
There are 4 possible pickup and drop off locations, which
are the corners of the grid world as shown in figure 6.

At the start of every game, the taxi, pickup and drop off
locations will be selected randomly. Then as in the grid world
game, the taxi can either move Left, Right, Up, or Down,
each with the same consequence as in the grid world game.
However, unlike the grid world game, 2 more actions will
be available for each position in the game:

e Pick Up - Picks the passenger up if the taxi is at the
pickup location and the passenger is not picked up yet.
Otherwise the current state is left unchanged.

e Drop Off - Drops the passenger off if the taxi is at
the destination location and the passenger is in the taxi.
Otherwise the current state is left unchanged.

As an example, executing the Pick Up action in the left of
figure 7 will pick the passenger up, but executing the Drop
Off action will not affect the state. However, executing the
Pick Up action in the right figure will not affect the state,
but executing the Drop Off action will drop the passenger
off, and thus complete the task.

When the passenger is dropped off at the drop off location
the taxi will be rewarded with a reinforcement value of 1 and

Pl =

i

Fig. 7. In the left figure, the passenger has not yet been picked up and is
waiting at the lower left corner of the grid world. Since the taxi is also in
that position, executing the Pick Up action will pick the passenger up. In
the right figure, the passenger had been picked up and the taxi is in the drop
off location (at the upper right corner of the grid world), hence executing
the Drop Off action will drop the passenger off, and thus complete the task.

Fig. 8.
up action in the state shown in the left of figure 7. The right figure shows
the network representation of taking a Drop off action in the state shown
in the right of figure 7

The left figure shows the network representation of taking a Pick

the game will be restarted. As with in the grid world, the taxi
might wander around and never complete the task, therefore
a cap will be placed on the number of steps which can be
taken before the game is terminated. If the taxi fails to drop
the passenger off at the drop off location within 1000 steps,
it will be punished with a reinforcement value of -1 and the
game will be restarted.

To represent the state of the game, 25+4+4 input nodes
will be used. 25 of the input nodes will represent the taxi
location. Each of these 25 will be mapped one to one to a
position in the 5 x 5 grid world. Then only the input neuron
that represents the position the taxi is in will be activated (by
giving it a value of 1), and the other 24 will be inactivated
(by giving them a value of 0).

The remaining input nodes will then be divided into
2 groups of 4, with one group representing the pickup
locations, and the other representing the drop off locations.
Each neuron in each group will be mapped one to one to
a pickup or drop off location in the game (i.e. a corner
of the grid world). If the passenger is awaiting pickup at
one of the pickup locations, then only the input neuron
representing that pickup location will be activated, and the
remaining 7 (the other 3 representing the pickup locations,
together with all of the input nodes representing drop off
locations) will be inactivated. Similarly, if the passenger has
been picked up, then only the input neuron representing the
drop off location will be activated, and the remaining 7 (the
other 3 representing the drop off locations, together with all
of the input nodes representing pick up locations) will be
inactivated.

To represent the actions of the game, 6 output nodes will
be used. Each node will again be mapped one to one to
each of the 6 actions. If an output neuron is activated, i.e.
having an output value of 1, then the taxi will take the action
represented by that output neuron.

As an example, the left of figure 8 shows the representation
of the state shown in the left of figure 7 and taking a Pick
up action in that state. The right of figure 8 shows the
representation of the state shown in the right of figure 7
and taking a Drop off action in that state.

C. Experimental Setup

The experiments will employ two versions of the minibrain
network used by Klemm et. al [10] (table I): 1) an exploratory
version by setting § = 10, and 2) a greedy version by setting
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Fig. 9. These figures show the number of successful games, i.e. those in
which the goal is reached, achieved by the various reinforcement learned
neural networks in the n X n grid world as n increases. Left: ReL versus
exploratory minibrain (EMB). Right: EMB versus greedy minibrain (GMB).

B = oo. In both versions, the other parameters used will be
the same as the ones used by Klemm et. al. [10], that is,
6=1,and © = 2.

For the parameters in the ReL. network, we use the values
e = 0.1,y = 0999, and n = 0.2. The random number
generator used will have a range of [—0.5, 0.5] with uniform
distribution.

The networks used in the experiments will be two layer
feed forward networks each with 300 hidden nodes. The
results presented, unless otherwise stated, will be the average
of 3 runs with each run consisting of 30 000 games.

VI. RESULTS

This section will describe and discuss the results of
the experiments conducted with the Rel. network and the
minibrain network.

A. Results in n x n Grid World

Now the results from the n x n grid world game will be
presented. We will start with the the number of successful
games — those in which the goal is achieved by the network
— as n increases (figure 9). This is a good indicator of the
learning speed of the network, since the faster a network
learns, the greater number of successful games it will achieve
(within the total of 30 000 games).

The exploratory minibrain seems to learn the task quite
quickly, regardless of the size of the grid world. But as the
size of the grid world increases, the number of successful
games achieved by the greedy minibrain decreases, thus
indicating a decrease in the learning speed.

The reason for the slow learning is lack of exploration.
Without exploration, the greedy minibrain will always take
the same action in the same state until it is punished when
the 1000 step limit is reached. This is because the minibrain
will learn, in other words change its policy, only when it is
punished. Thus, in order for the network to reach the goal, it
will pursue a more or less random search in policy space in
the hope of stumbling upon a successful policy. The chance
of finding a successful policy with such an unstructured
search decreases dramatically as the size of the grid world
increases.

The ReL performs better than both versions of the mini-
brain network in this aspect. As with the case of exploratory
versus greedy minibrain, the inclusion of exploration in the

ReL network allows it to maintain its performance as the
size of the grid world increases. Moreover with learning on
both reward and punishment, and being able to distinguish
good solutions from poor ones, the ReL network is able to
learn and benefit from the experience it has gained from
exploration, and achieve a much better performance than the
exploratory minibrain.

Next we will look at the number of steps taken by the
networks during an average game (figure 10). For the ex-
ploratory minibrain, the number of steps taken is random but
largely under 600. The reason for this is that the minibrain
network only learns when it is punished. This has two
consequences which explain the random result:

1) As the network is only punished when the number
of steps taken exceeds 1000, the network is seldom
punished and thus rarely learns.

2) The experiences gained from a successful exploration
are not learned; a solution which takes the optimal
number of steps (10, for the 6 x 6 world) and one that
takes 900 steps are the same to the minibrain network.
It is unable to differentiate between a poor solution and
a good one.

For the greedy minibrain, the number of steps taken to
reach the goal decreases in a stepwise manner as a result
of averaging over the three runs. The reason behind this is
the lack of exploration. Once the greedy minibrain starts to
find a solution, it will start exploiting it without looking for
any alternate solution. In this case, two of the three runs have
found an optimal solution while the third run has gotten stuck
in a suboptimal solution. Thus the (cumulative) percentage
of optimal runs averages out to around 60%, as shown in the
bottom of figure 10.

Again, the ReL network, unlike the exploratory minibrain,
is able to learn a reliable way to reach the goal. Also
as a result of exploration the Rel. network starts to learn
much faster than the greedy minibrain network. However,
due to continued exploration, the number of steps taken
is variable unlike the greedy minibrain. Despite this, the
percentage of games in which it reaches the goal in an
optimal way is higher for the ReL network than for either the
exploratory minibrain or the greedy minibrain. This is once
again attributed to the exploration, learning on both reward
and punishment, and being able to distinguish good solutions
from poor ones.

B. Results in the Taxi Domain

We will now turn to the results of the networks in the Taxi
domain. Figure 11 shows the number of successful games,
games in which the passenger is delivered successfully,
achieved by each network. The networks with exploration
(the exploratory minibrain network and the ReL network)
manage to deliver the passenger successfully for a large
portion of the games. However, the greedy minibrain network
fails to learn this task. This comes as no surprise since the
action state space of the taxi game (25 x 4 x 2 x 6) is much
larger that that of a 10 x 10 grid world game (10% x 4).
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Fig. 10. These figures show a comparison on the number of steps taken

by the networks to reach the goal in a 6 x 6 grid world, averaged over
three runs. The first three figures show the number of steps taken to reach
the goal by the exploratory minibrain (EMB) network (top), the greedy
minibrain (GMB) network (middle), and the ReL network (lower) for the
first S5k episodes. In episodes 5k to 30k, the distribution of results remains
similar to that between 4k and 5k; however the (cumulative) percentage of
games in which the networks reached the goal in an optimal way continues
to grow, as shown in the bottom figure.
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Fig. 11. Comparison of results in the taxi domain. This figure shows the
number of successful games, games in which the the passenger is delivered
correctly, achieved by the exploratory minibrain network(EMB), the greedy
minibrain network (GMB), and the ReL network.

Therefore, the greedy minibrain will have greater difficulty
finding a policy enabling it to complete the task during its
punishments.

Moving on to the number of steps taken by the networks
during the games (figure 12), as the greedy minibrain fails to
learn in the game, the number of steps it takes stays largely
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Fig. 12.  Comparison on the number of steps taken by the networks
to complete the task in the taxi domain. The first three figures show the
number of steps taken to complete the task, by the exploratory minibrain
(EMB) network (top), the greedy minibrain (GMB) network (middle), and
the ReL network (lower) for the first 5k episodes. The bottom figure shows
the (cumulative) percentage of games in which the networks completed the
task in an optimal way, for the entire run (games 0 to 30k).

at the 1000 step mark (although it occasionally drops to a
lower level indicating successful delivery of the passanger in
certain rare circumstances). For the same reasons identified
in section VI-A, the number of steps taken by the exploratory
minibrain is random but largely under 700 steps. Finally for
the ReL network, the number of steps declines steadily at
the start before stabilizing below the 100 step mark. The
sporadic spikes in the number of steps taken is again a result
of constant exploration.

Next, we will look at the percentage of games in which
the networks complete the task in an optimal way (bottom
of figure 12). Both versions of the minibrain fail to complete
the task in an optimal way, since the greedy minibrain fails
to learn and the exploratory minibrain produces unreliable
results. But for the ReL network, it manages to complete
the task optimally around 42% of the time. This relatively
low figure is a result of over exploration - as can be seen in
the left of figure 13, where the percentage of optimal task
completion increases as the ¢ value, the value which controls
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Fig. 13. The left figure shows the (cumulative) percentage of games in
which the ReL network delivers the passenger in an optimal way for different
€ values. The right figure shows the range of the number of steps taken by
the ReL network during the last hundred games when € = 0.05 and when
e = 0.1. A lower ¢ value results in relatively infrequent but longer spikes,
while a higher value results in more frequent short spikes.

the rate of exploration in the ReL network, is reduced from
0.1 to 0.05. However if ¢ is reduced further to 0.01, the
percentage of optimal completions decreases again, this time
due to under exploration.

Decreasing the € value however is a double edged sword;
although it does increase the percentage of optimal task
completion, it also increases the number of steps taken when
the ReL network does complete the task sub-optimally (see
right of figure 13). This is a result of the persistence of the
noise value used in the activity propagation procedure (table
II). To better illustrate this, let us consider an example of
selecting between 2 nodes, A and B, where node A has
a higher weight value and is the node which will lead to
optimal task completion. Suppose during one execution of
activity propagation procedure, the noise values assigned to
the nodes by equation 4 are such that the sum of weighted
inputs (defined by equation 3) of node B is greater than
that of A. This results in node B being activated, and thus
the suboptimal action being taken. This will persist until
a subsequent execution of the procedure, where the noise
values assigned by equation 4 are such that the sum of
weighted inputs of node A is greater than that of node B.
Therefore as we decrease the value of ¢, the value which
controls the rate of exploration, not only do we decrease
the probability of selecting a suboptimal node, we also
decrease the chance of restoring the optimal node, resulting
in the relatively infrequent but longer spikes when € = 0.05
compared to when € = 0.1.

VII. CONCLUSION

In this paper, we proposed a new reinforcement learned
neural network algorithm, that follows the ideas of the mini-
brain network but includes exploration and learns through
both positive and negative feedback. The proposed ReL
network is evaluated against the minibrain network in the
n x n grid world domain and the taxi domain and is shown
to perform significantly better than the minibrain network.
Specifically:

o The greedy minibrain network fails to learn the tasks.

o The exploratory minibrain network learns to complete

the tasks, but suboptimally and unreliably.

o The ReL network learns to complete the tasks reliably

and, most of the time, optimally.

In future work, we plan to apply the ReL network to a
greater variety of tasks, and to explore possible connections
with synfire chains [16] and other learning algorithms.
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