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Abstract. We explore the evolution of programs for classification tasks,
using the recently introduced Hierarchical Evolutionary Re-Combination
Language (HERCL) which has been designed as an austere and general-
purpose language, with a view toward modular evolutionary computa-
tion, combining elements from Linear GP with stack-based operations
from FORTH. We show that evolved HERCL programs can successfully
learn to perform a variety of benchmark classification tasks, and that per-
formance is enhanced by the sharing of genetic material between tasks.

Keywords: transgenic evolutionary computation, evolutionary automatic
programming, stack-based genetic programming

1 Introduction

The Hierarchical Evolutionary Re-Combination paradigm and associated HERCL
programming language were recently introduced [3] in an effort to provide a novel
framework for evolutionary automatic programming, designed to be suitable for
transfer learning between tasks [18] as well as for the future development of
modular evolving systems [4].

HERCL has been designed as an austere and general-purpose language, com-
bining elements from Linear GP [16] with stack-based operations from FORTH [5].
As such, it draws on the tradition of induced subroutines [1] and Automatically
Defined Functions [11,17,9,23] as well as stack-based GP [19,6] and related
approaches [20,22].

In previous work, we have shown how HERCL programs can be evolved to
perform dynamically unstable control tasks [4] as well as coding tasks such as
the Caesar and Vigenere cipher [3]. Although challenging, these coding tasks
dealt exclusively with synthetic data derived from very precise rules, so that as
soon as the training error reached zero, the test set error generally also went to
zero. In the present work, we take this research in a new direction and explore the
ability of HERCL programs to capture underlying patterns in real-world datasets
and generalize to unseen data, by testing them on six benchmark classification
tasks. We are particularly interested in the question of whether the evolution
of one task can be improved (in terms of speed, parsimony or accuracy) by the
sharing of transgenic material from agents evolved on other, related tasks.
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Fig. 1. HERCL simulator, showing an evolved agent executing the PROMOTERS task.
Note the output buffer, memory, registers, stack and code. All items are floating point
numbers, but the simulator prints them as a dot (zero), an AscII character, or bracketed
in decimal format, depending on their value.

2 The HERCL programming language

HERCL agents have a stack, registers and memory. The number of registers, size
of memory and (maximum) size of the stack are part of the specification of
the agent, along with the code — which is divided hierarchically into cells, bars
and instructions. Each cell contains a sequence of executable instructions, and
might alternatively be thought of as a “procedure” or “subroutine”. The pipe
symbol (| ) is used as a kind of bar line to divide each cell into smaller chunks
or bars, like the bars in a musical score. Every instruction consists of a (single-
character) command, optionally preceded by a sequence of dot/digits which form
the “argument” for that command. The various commands are listed in Table 1.
The language has been designed with the specific aim of allowing new pro-
grams to be created by combining portions or patches of code from other (het-
erogenous) programs, at multiple scales (bar, cell or multi-cell) in such a way
that the functionality of the transplanted code would be substantially preserved.
Whenever such a patch is applied, it is followed up by a series of smaller-scale
patches or mutations in the vicinity of the original patch, in an effort to make the
new code integrate felicitously with the surrounding code. These smaller patches
are, in turn, followed up by yet smaller mutations, recursively, to produce a global
random search strategy known as hierarchical evolutionary re-combination.

3 Hierarchical Evolutionary Re-Combination

HERCL does not use a population as such, but instead maintains a stack or ladder
of candidate solutions (agents), and a codebank of potential mates (Figure 2).
At each step of the algorithm, we select the agent at the top rung of the ladder
and apply either mutation or crossover with a randomly chosen agent from the
codebank, or from an external library (explained below). We distinguish differ-
ent levels of mutation/crossover (TUNE, POINT, BAR, BRANCH, CELL, JUMP or
BLOCK) which vary according to the portion of code from the primary (ladder)
parent that is either mutated or crossed over with a commensurate portion of
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Table 1. HERCL Commands

Input and Output

i fetch INPUT to input buffer
S SCAN item from input buffer to stack
W WRITE item from stack to output buffer
o flush ouTpPUT buffer
Stack Manipulation and Arithmetic
# PUSH new item to stack ...... e T
! POP top item from stack ...... T
c COPY top item on stack ...... T . z,T
X SWAP top two items LY, T LT,y
y ROTATE top three items z,y,z+— z,2,y
- NEGATE top item ... T (—=z)
+ ADD top two items vy, o (y+ )
* MULTIPLY top two items ..y,z — ...(y *x)
Mathematical Functions
T RECIPROCAL wx =L 1/z
q SQUARE ROOT T =T
e EXPONENTIAL LT e”
n (natural) LOGARITHM ..z .. log,(z)
a ARCSINE x> .sinT ()
h TANH ..x +— ..tanh(z)
z ROUND to nearest integer
»

push RANDOM value to stack
Double-Item Functions

% DIVIDE/MODULO..y,z — .. (y/z), (ymod x)
t TRIG functions ..60,r +— ..rsinf,rcos6

p POLAR coords ..y, — ..atan2(y,z),\/z2+y?

Registers and Memory

< GET value from register

> PUT value into register
INCREMENT register

v DECREMENT register

{ LOAD from memory location
} STORE to memory location

Jump, Testing, Branching and Logic

JUMP to specified cell (subroutine)

BAR line (RETURN on .| HALT on 8])
check register is EQUAL to top of stack
check register is GREATER than top of stack
if TRUE, branch FORWARD

if TRUE, branch BACK

logical AND

logical OR

logical NOT

"N — «.

+ 0@

[N
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Fig. 2. Hierarchical Evolutionary Re-Combination. If the top agent on the ladder be-
comes fitter than the one below it, the top agent will move down to replace the lower
agent (which is transferred to the codebank). If the top agent exceeds its maximum
number of allowable offspring without ever becoming fitter than the one below it, the
top agent is removed from the ladder (and transferred to the codebank).

code from the secondary (codebank or library) parent. The level of each mu-
tation/crossover is chosen randomly, with lower levels weighted more heavily
than higher ones, and with the constraint that the mutation levels must strictly
decrease as we move up the ladder. The agents in the codebank are grouped
according to mutation/crossover level, with a limited number of agents in each
level. Further details can be found in [3].

During the evolution, comparison between agents is based on five criteria:
length, time, cost, penalty and reject. The length is the total number of com-
mands, dots and digits in the program. The time is the average number of in-
structions executed for each training input. We draw a distinction between the
cost — which is a measure of the difference between actual and desired output
— and the penalty — which is a count of more serious violations of the “rules”
(for example, producing the wrong number of outputs, or failing to produce any
output at all). If an agent exceeds a certain maximum number of execution steps
(usually due to an infinite loop) it is classified as reject and culled immediately.
If two agents differ in terms of penalty, the one with lower penalty is always con-
sidered fitter, regardless of the cost. When comparing two penalty-free agents,
the fitness is calculated as the cost plus tiny multiples of the length and time
— thus favoring shorter and faster agents, and serving as an effective means of
bloat control [12,13].

When two agents with the same non-zero penalty are compared, the winner
is chosen probabilistically using a Boltzmann distribution based on the differ-
ence in length and time. This gives rise to a Metropolis search [15] in the early
stages of evolution, until a penalty-free agent is achieved. After that, the fitness
comparison strictly favors shorter and faster agents, and relies purely on the
hierarchical nature of the search in order to escape from local optima (see Fig-
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Table 2. Mutation Levels (Low to High)

TUNE: Modify one or more PUSH values

POINT:  Choose one or more points at which to insert, remove
or replace an instruction, or modify the dot/digits of
an instruction

BAR: Replace the front, back, middle, fringe or whole of a
bar in Pg with the front, back, middle, fringe or whole
of a bar in P1

BRANCH: Insert a conditional branch, to skip some existing in-
structions and/or execute newly added instructions

CELL: Replace front, back, middle or fringe of a cell in Pg
with the front, back, middle or fringe of a cell in P

JUMP: Introduce an instruction to jump to a cell in Py and
(optionally) replace that cell with a cell from P

BLOCK: Replace a block of cells in Py with a block from Py

ure 2). Depending on its level, each (penalty-free) agent is guaranteed to survive
long enough to produce a certain number of offspring, thus promoting diversity
in a manner comparable to the age-layered population structure of [10].

Once an agent is found which achieves a cost less than some pre-determined
threshold, the algorithm moves into a final trimming phase in which instructions
can be deleted and replaced but not inserted, thereby removing extraneous code
and reducing the agent to a minimal size.

4 Training Paradigm

We consider classification tasks where the input consists of a fixed number of
(binary, discrete or continuous) features and the target output is either 1 or —1.

The stack and memory of the agent are initially re-set, and the input features
are loaded into its registers (one register for each feature). The code of the agent
is then executed, and it is required to eventually output one single-item message
and halt; otherwise it incurs a penalty. The cost function between the target T
and output Z is defined as:

0, ifT= 1andZ>
cost = 0 , if T=-1 and Z < -1,
(Z —T)2,  otherwise.

The progress of the evolution is measured in applications, evaluations and
epochs. Each application refers to the code of a new agent being executed once, to
classify one training item. Each evaluation refers to a new agent having its cost
(fitness) evaluated and compared to that of its (primary) parent. For this, the
new agent is applied to successive training items until either (a) all items in the
training set have been exhausted, or (b) the cost accumulated by the new agent
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is already so large that it would remain inferior to the parent even if it were
to classify all subsequent items with zero cost. For convenience the evolution
is divided into epochs, with the number of evaluations in each epoch gradually
increasing as the evolution progresses (equal to 22 for epoch n, up to a maximum
of 10,000 comparisons). If more than one agent remain on the ladder when this
limit is reached, the epoch continues for a few additional evaluations until the
ladder is reduced to a single agent on the lowest rung. For the experiments
described in this paper we will only consider single-cell HERCL programs, so
CELL level crossovers are the highest ones available.

In order to put a limit on the computation time, and avoid overfitting, we
stop the evolution when either (a) the total number of applications has exceeded
900 million, or (b) the average cost per training item has reached a pre-defined
threshold. We then commence the final “trimming” phase, for an additional
10,0000 evaluations. The limit of 900 million epochs has been chosen so that,
allowing for the completion of the current epoch, plus the trimming phase, the
total number of applications in the entire process will not exceed one billion.
For these experiments a threshold value of 0.2 was chosen. (Preliminary tests
indicated that a threshold of 0.1 leads to similar results, while 0.3 leads to slightly
degraded performance.) During the trimming phase agents with lower cost are
preferred, so the average cost per training item may ultimately reach a value
lower than the pre-defined threshold.

Once the evolution and trimming are complete, the agent is tested on the
(unseen) test data. We will be investigating the number of evaluations required
to achieve the threshold cost per item, and the length of the resulting code, as
well as the final accuracy.

It is also possible to ensemble a number of evolved agents to produce a
collective prediction. The ensembling is done by voting, with the sum of the
output values used as a tie-breaker when there are equal numbers of positive
and negative votes.

This kind of ensembling method — now a standard technique in machine
learning — can perhaps be traced back to Solomonoff [21] who proposed that
the optimal predictive agent should be one which maintains a collection of Turing
machines compatible with the data so-far observed, and weighs their predictions
(inversely) exponentially by the size of the machine. Programs in a language
like HERCL (or any kind of linear, tree- or stack-based GP) arguably comprise
a better set of “base learners” than Turing machines for this purpose, because
(a) the evolutionary algorithm provides an effective search mechanism, giving
preference to shorter (and faster) agents, and (b) these programs operate natively
on floating point numbers rather than discrete symbols, reflecting the fact that
modern computers can perform floating-point operations in a single clock cycle.

5 Tasks and Experimental Method

Six benchmark classification tasks were selected from the UCI repository [2]:
IONOSPHERE, PROMOTERS, HEPATITIS, AUSTRALIAN, SONAR and PIMA. These
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tasks were chosen on the criteria that the number of training items should not
exceed 1000, the number of features should not exceed 100, and the number of
classes should be two. Each dataset was split randomly into 10 parts (stratified)
for 10-fold cross-validation. In each case, we consider the target output to be +1
for positive items and —1 for negative items.

The input features for these six tasks are quite diverse. The IONOSPHERE
task takes 34 continuous inputs in the range —1 to 1. The E. Coli Promoter
Gene Sequences (PROMOTERS) task uses 57 nucleotides, which we represent as
ASCII characters a, ¢, g or t. The inputs for the HEPATITIS task are the age and
sex of the patient, together with 17 medical indicators (12 binary, 5 continuous).
The Australian Credit Card Approval (AUSTRALIAN) dataset has 14 inputs of
which 6 are continuous, 4 are binary (0,1) and 5 are categorical (which we treat
as integers 1, 2, etc.). The SONAR task (Mines vs. Rocks) uses 60 continuous
values between 0 and 1, representing the energy in different frequency bands.
The Pima Indians Diabetes (PiMA) Dataset has 6 medical indicators together
with the age of the patient and the number of times they have been pregnant.

In order to investigate the effect of sharing genetic material between different
tasks, we will compare two different training regimes — referred to as Single and
Transgenic. In the Single regime, evolution for the six tasks are run completely
independently and do not share any genetic material. In the Transgenic regime,
the six evolutions are run concurrently, and a common [library is maintained,
consisting of the current best agent (champ) for each of the six tasks. The code
in the library is updated at the conclusion of each epoch. At each step of the
algorithm, the secondary parent can be chosen either from the codebank or
from the library. In other words, the current best agent from each task is made
available as a potential mate for the evolution of the other five tasks. Each regime
was run 25 times from different random seeds.

6 Results

In order to compare training times between the two regimes, we count the total
number of evaluations required for the threshold cost per item to be achieved.
The median number of evaluations (rounded to the nearest thousand) are shown
in Column 2 of Table 3, while Column 3 shows the Z-score and p-value ob-
tained from a (two-tailed) Mann-Whitney U-test [14] (the AUSTRALIAN and
PIMA datasets are excluded, because the majority of runs failed to attain the
threshold cost per item before exceeding the maximum number of allowed appli-
cations). For the IONOSPHERE dataset, the number of evaluations for the Trans-
genic regime is significantly smaller than for the Single regime. For the other
datasets, the difference is not statistically significant.

The median Code Length (total number of commands, dots and digits) in
the final evolved agent is shown in Table 3, Column 4. For the PROMOTERS,
AUSTRALIAN, SONAR and PIMA datasets, the Transgenic regime produces signif-
icantly shorter code than the Single regime, as measured by a Mann-Whitney
U-test (Column 5).
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Table 3. Evaluations and Code Length

Evaluations |Mann-Whitney |Code Length| Mann-Whitney
Single Trans | z-score p-value|Single Trans| Z-score p-value
IONOSPHERE 67,000 55,000| 2.01 0.044 62 63 1.27  0.20
PROMOTERS | 484,000 439,000 1.28 0.20 95 87 3.25 0.0012
HEPATITIS 689,000 575,000 1.35 0.18 118 114 171 0.087

AUSTRALIAN - - 249 216 5.32  0.0001
SONAR 1436,000 1612,000| -0.97 0.33 215 206 2.34 0.019
PIMA - - 266 244 2.58 0.010

Table 4. Accuracy

Items|Features| Single Trans t-score p-value| Ensemble
IONOSPHERE | 351 34 89.8+0.3|89.8+0.2| 0.12 0.91 93.2
PROMOTERS | 106 57 65.2+0.6 | 684+1.0| 2.54 0.014 83.0
HEPATITIS | 155 19 73.6£06| 73.3+0.5| -0.42 0.67 80.6
AUSTRALIAN | 690 14 79.1£03| 79.0£0.3 | -0.30 0.76 85.2
SONAR 208 60 64.4+0.7| 66.3+0.7| 1.76 0.084 82.2
PIMA 768 8 62.6+0.5| 629+0.6| 047 0.51 72.3

= = = IONOSPHERE

——— PROMOTERS
' HEPATITIS

L L L L L L L L
1 5 9 13 17 21 25 1 5 9 13 17 21 25

Fig. 3. Accuracy achieved by different sized ensembles of evolved HERCL programs,
with classification by voting, using summed output to break ties when votes are equal.

Columns 4 and 5 of Table 4 show the mean accuracy (on the test set) for
the Single and Transgenic regimes, averaged over the 25 runs, together with the
standard error of the mean. Column 6 shows the result of a (two-tailed) Welch’s
t-test. We see that, for the PROMOTERS dataset, the Transgenic regime provides
a statistically significant improvement in mean accuracy, compared to the Single
regime. For the other datasets, the difference is not statistically significant.

The accuracy achieved by ensembling different numbers of agents is graphed
in Figure 3, and the accuracy obtained from an ensemble of all 25 evolved agents
is listed in the final column of Table 4.
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By ensembling a number of moderately accurate agents, we ultimately achieve
a level of accuracy which is broadly competitive with what has previously been
reported for other evolutionary approaches such as GP with clustering, or GP
refined using a gain criterion [7]. For the SONAR dataset, our methods seem to
achieve an accuracy comparable to that of a neural network with two or three
hidden units [8] (although a more thorough analysis based on multiple splits of
the data would be needed in order to make a comprehensive comparison).

The evolved HERCL agents which happen to classify the largest number of
items correctly for each dataset are shown in Table 5. We see that the agents
evolved for the IONOSPHERE and PROMOTERS task make extensive use of testing
and branching instructions, while those evolved for the SONAR and PIMA tasks
rely more heavily on stack manipulation and arithmetic.

Table 5. Evolved Agents

IONOSPHERE:
[13{<qldg: .06#11g| .v":<17={:28=v:15<p6=.{:4=.v:4<|<wo]

HEPATITIS:

[10<13g:<1.#12g"y:ztql|13ge2}:>7} | 5. #t%1vh<8<y14gl15{:7=|+px
'xgx:y|y}>14g{p6°{:3{1p13g:8{16g™ :2g: e |px>=":.647059#- | -wo]

PROMOTERS:
[15<14<49g=:x|33=x:35=:1:|15g}:38=:21<38g:q| cn’y3.906#p3.#thwo]

AUSTRALIAN:

[e2g=:1.83242496#10<ach.3#6gy: {g{: *yccb>p+|txy.>e<12va7<21#9g9:3 . #
5="1:{|'n8<cllg:e|*4=":15#-|3<n12vrn13<cpl2ge™*:+}4" c2<htxxnd#-
c1}>g2: [t. }><+8{+5{+c9=1{++c13<11="1 :n3vy<h++12{5>7}{2{11<1g:5:
|a10<x6g.=aaa/~aqt: ! !zcg:a*xaaaaaaa#e>aaaaaaah<|5<t7vnzt }xg2:+
11{+caaal.#->aag”:0>|13<3="*z:8} | 0g:2>4<|9#="! : +11#g}:+a8{2=y:h|wo]

SONAR:

[10<21<14g™ ! :aaaaaaaaa|hl5g: . 1#p<|+<xqcpya>h+gd6<x.99#-: *a
tt**>44<gh|tx>+zcc>+g+46<<1:19<+27<6g+:51<*4<+{}13gq}p:<lc
T+O#-t50<q. 13#>g~ : 142<{+.8#-+a|z35{++aaaxr-q<-+hz+al4{q+wo]

PIMA:

[7.#27.8#5g2q6<10.88#0<p>ct>pz><q: %pp<8#-.>ppch7 tebge | q>g<: Buk*y+]|
1gzh<ppppp! : %ht6vxy%h|n<pblat.1565#->g{4:x x2g:9: | 9g+>aa+tr.1521#-g:>g
1:x|}a.58#4gac: %*9<x|x6gx:+*tp>pyl|%!<acOg™!:all.#>g:palknzc6>pclv}pp
<p>|<4g!!p!.55393#:ae+1:|7.#.>0g*:n-|.g" :x=x1:zg:++|htx6g~ax:tt|wo]
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7 Conclusion and Further Work

We have shown that HERCL programs can successfully be evolved to perform six
benchmark classification tasks.

Although the tasks are quite disparate, the evolution for each task can make
productive use of transgenic crossovers which adapt portions of code from the
evolution of other, related tasks. For all except the HEPATITIS task, the avail-
ability of transgenic crossovers provides a statistically significant improvement
in either the training time, code length or final accuracy. Overall accuracy can
be improved by ensembling a number of evolved agents.

The genetic diversity of the codebank and the hierarchical nature of the
evolutionary search allow it to escape from local optima even though the number
of agents competing at any point in time is very small. The selective pressure for
shorter and faster code enables the evolved programs to capture the underlying
patterns in the data and avoid overfitting.

In future work, we plan to investigate sequence prediction and further refine
the HERCL framework with a view to exploring multi-agent systems and modular
evolution.
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