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Abstract

Loanword formation seems to provide a good test bed for the grow-
ing field of computational phonology, since it occurs in a more tightly
controlled environment than other language processing tasks. We show
how feedforward neural networks and decision trees can be trained to
predict the phonological structure of English loanwords in Japanese,
and compare the performance of the two paradigms. In each case the
system produces a phonemic representation of the Japanese form, after
receiving as input the phonological feature matrix of the current and
surrounding phonemes. The performance is improved with the inclu-
sion of information about the stress pattern, orthography of reduced

vowels and location of word boundaries.



1 Introduction

When words are borrowed from one language into another, they typically
undergo systematic changes to make them conform to the phonology of the
borrowing language. These changes are rather complex and involve many
interacting factors. Phonologists have traditionally sought to construct sym-
bolic algorithms for these kinds of tasks, either with or without reference
to a framework of learnability theory. This symbolic approach came under
strong challenge from empirical connectionist models of language processing
in the late 1980’s and early 1990’s (Gupta & Touretzky, 1994). The debate
between these competing paradigms, or the search for some suitable hybrid,
continues.

In an earlier study (Blair & Ingram, 1998) we showed how a feedforward
neural network can be trained to predict the phonology of loanwords bor-
rowed from English into Japanese. The issue of loanword formation and the
architecture of this network are reviewed in sections 2 and 3, respectively.
In section 4 an analysis of these results is presented, which brings to light
some shortcomings of our original network. In section 5 we explore a number
of possible improvements arising from this analysis, and examine how the
network performance is affected by each of these modifications. The per-
formance of the neural network is also compared with that of a benchmark
decision tree algorithm called C4.5 (Quinlan, 1992). The paper concludes

with a discussion of the results and an outline of plans for future work.



2 Loanword formation

Loanword formation provides a good environment for studying phonological
structure and mechanisms, because it is more restrictive, and hence better
controlled, than other language processing tasks (which involve a host of
lexical, morphological, syntactic or pragmatic influences). Silverman (1992)
has described loanword formation as fundamentally a two-stage process: the
first stage yields a parsing of the phonetic input into segmentally organised
phonetic feature bundles, interpretable as segmental targets in the borrow-
ing language; in the second stage, these segmental targets are parsed into
phonological structures (syllables, mora, feet, etc.) compatible with the
word-prosody of the borrowing language.

Loanwords from English into Japanese are particularly interesting from
both a theoretical and a practical point of view. On the theoretical side,
while the segmental mapping from English to Japanese is relatively straight-
forward, their respective word-level prosodies are strikingly different, pro-
viding ample opportunity to observe prosodic re-structuring in loanword
formation. On the practical side, the Japanese language has borrowed thou-
sands of words from English, providing an abundant source of data, and
there is a perennial need for converting the names of people, places, compa-
nies, products and creative works from English into Japanese in a consistent
and natural manner.

While the segments and phonetic features of English words tend to be re-
markably well preserved by the process of loanword formation, the resulting
Japanese word forms are so completely transformed in their prosodic struc-
ture that English listeners almost invariably fail to recognise their English

sources, when loanwords are presented to them as isolated words carefully



spoken by a native speaker of Japanese (Ingram, 1998). The main factor
underlying poor recognition of the English source words appears to lie in
the extensive resyllabification, involving vowel epenthesis, which is required

to parse the segmental input into Japanese prosodic frames. Some examples

are given below:

orthographic | phonemic | Japanese
Olympic olimpik oriNpikku
truck trak torakku
cut kat katto

cud kad kado

cart kart kaato

cat ket kyatto

Many English phonemes do not occur in Japanese, and many combi-
nations of phonemes occurring in English are forbidden in Japanese (even
though the individual phonemes may occur separately). Japanese syllables
almost invariably consist of a vowel by itself or a single consonant followed
by a vowel, thus lacking complex onsets and codas. To maintain a faithful
representation of the segmental structure of the English source word, exten-
sive use is made of epenthetic vowels — chiefly /u/,/o/ or /i/, depending
on the context. The temporal structure of the source word is converted
to Japanese moraic timing. English voiceless obstruents sometimes become
geminate (two mora) stops in Japanese — for example, /t/ becomes /tto/

at the end of /kyatto/. Such gemination is most likely to occur after a short,

stressed vowel but there are many exceptions to this rule. In general, it is



a difficult problem to predict when gemination will occur and when it will
not.

The Japanese language has only five distinct vowels (/a/,/i/,/u/,/e/,/0/)
while English has at least eight (excluding diphthongs). On the other hand,
vowel length is a more salient feature in Japanese than it is in English. In the
process of loanword formation, each vowel in the original word will tend to be
replaced by a similar vowel among those available in the borrowing language.
However, the length and quality of this vowel is not simply determined by
the original vowel, but is also dependent on the surrounding phonemes and
a combination of other factors, including the temporal structure and stress
pattern of the source word.

The processes involved in loanword formation depend on a number of
factors interacting in complex ways. It is generally true that the sound
structure of loanwords may be seen as the result of filtering the phonetic
form of a foreign word through the phonological system of the borrowing
language. However, it is also the case that loanwords typically posses char-
acteristics that mark them off from the native vocabulary, by their excep-
tional behaviour with respect certain otherwise general restrictions or rules
of sound structure (e.g. in Japanese, word forms from the Native (Yamato)
or Sino-Japanese strata of the lexicon do not permit single /p/ consonants
to occur between vowels, but only as geminates:

nippoN [Japan] *nipoN

kappa  [river-imp] *kapa
But this restriction does not apply to the large portion of the vocabulary
of more recent foreign origin, including English loanwords (Ito & Mester,

1996):



peepaa  [paper]
Moreover, loanwords (recent borrowings in particular) are subject to ad-
ditional sources of variation in pronunciation and written form, depending
on the linguistic sophistication of users and the context of usage. Compet-
ing phonological constraints in the borrowing language may result in native
speaker indecision as to how to construe or parse the phonetic input of a
foreign word form. While the process of loanword formation is systematic,
it is also subject to a degree of indeterminacy. There are various ways to
estimate the extent of this indeterminacy — for example by asking native
listeners to transcribe into their native orthography a list of foreign spoken
words or word-like stimuli (Takagin & Mann, 1994). The form provided in
a dictionary or database is not necessarily the only acceptable option — a
fact which must be taken into account in the evaluation of any automated

system for predicting loanword phonology.

3 Representation and timing issues

3.1 Representation

Before determining an architecture for our system, it is necessary to choose
an appropriate representation for the inputs and outputs. For the outputs,
we employ a phonemic representation, with each individual output directly
corresponding to one of the 20 phonemes in the Japanese language. Al-
though a similar phonemic representation could in principle be used for the
(English) input of the system, we choose instead to employ a featural repre-
sentation for the input, in which each phoneme is encoded as a combination

of thirteen (binary) linguistic features: syllabic, continuant, sonorant, sibi-



line, nasal, voiced, labial, coronal, high, back, low, affective and lateral (see
Appendix). This featural representation provides a number of advantages
over its phonemic counterpart: (1) it reduces the total number of inputs —
thereby simplifying the structure of the resulting architecture, (2) features
often influence the form of loanwords in a systematic way, thus facilitating
generalization, and (3) the same word is often rendered differently in dif-
ferent dialects of the source language (for example, British vs. American
English) and the featural representation is less sensitive to these differences
than a direct phonemic encoding.

An analogy can be drawn here with the NETtalk system of (Sejnowski &
Rosenberg, 1987) which learned to predict the phonology of English words
(expressed in terms of phonetic features) from their orthographic represen-
tation. We may ask whether a system could learn to perform the opposite
task — that of predicting the orthography of a word from its phonologi-
cal features. This question has not aroused much interest as it stands, for
two reasons: first, many of the world’s languages employ a strictly phonetic
writing system, for which it is trivial to convert phonology to orthography;
second, most of the other languages use writing systems for which the task
is messy and ill-defined, due to a lack of systematicity and a very large num-
ber of homophones. Predicting the phonology of loanwords in a language
like Japanese, however, is in some sense analogous to the task of transform-
ing phonology to orthography, since the orthography of the loanwords (in
katakana) can easily be derived from their phonemic transcription. In other
words, the task we are studying can be loosely thought of as the reverse
of the NETtalk task, adapted to a new setting in which it becomes both

challenging and of practical importance.
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Figure 1: Neural network architecture.

3.2 Context and timing

The neural network used for our preliminary studies had 65 inputs, 20 hidden
units and 53 outputs (see Figure 1). The 65 inputs are divided into 5
groups of 13 inputs, which are used to encode the phonological features of
the current phoneme, the two preceding phonemes and the two following
phonemes.

Input and output phonemes do not always correspond on a 1-to-1 basis.
In some cases a phoneme may be deleted, or it may have a consonant and/or
a vowel appended to it. In order to allow for these possibilities, we divided
the outputs of our network into three groups. The first group has one output
for each possible Japanese phoneme (consonant or vowel); the second group
has one output for each possible consonant; the third group has one output
for each possible vowel. Each group has one additional output representing
the “empty” phoneme /_ /. Since there are 20 consonants and 5 vowels in
Japanese, the total number of outputs is 264+214+6=>53. For example, con-
sider again the English word “cat” which has the phonemic representation

/keet/ and becomes /kyatto/ in Japanese. The network views this example



as three separate training items:

__kxet — ky_
ket . — a__

ket — tto

This means that the network, when presented with the features encoding
the input /__keet/, should be trained to produce an activation of 1.0 for the
/k/ output of the first group, the /y/ output of the second group and the /_/
(empty) output of the third group (and an activation of 0.0 for the other
50 outputs). When it comes to the testing phase, within each group the
output with the largest activation is selected, and this determines the three-
phoneme sequence chosen by the network to correspond with the current

input phoneme.

3.3 Data

In order to minimise the effect of dialectal differences, we compiled a database
of 1100 loanwords from a dictionary of neologisms (Bailey, 1962) which
contains mostly loanwords that were borrowed into Japanese from Amer-
ican usage during a comparatively short period of time in the post-war
era. To ensure consistency, the English phonemic transcriptions of these
words were obtained from the Carnegie Mellon Pronouncing Dictionary
(ftp://ftp.cs.cmu.edu/project /fgdata/dict /) which generally reflects Amer-

ican rather than British pronunciation.



4 Network training and preliminary analysis

4.1 Training

Networks were trained by back-propagation (Rumelhart et al., 1986) with a
learning rate of 0.01 and a momentum of 0.9. The cross-entropy minimiza-
tion criterion was used. Each of 11 networks was trained on 1000 words
from the database, and tested on the other 100 words. Each word occurred
in the test set of exactly one network. The 1100 words in the database
had an average of 8.8 phonemes per word, making a total of 9660 input
phonemes. Each of these input phonemes can produce output consisting of
a head phoneme (group 1 outputs) plus an optional added consonant (group
2) and/or added vowel (group 3).

After 30 epochs of training, the networks achieved a combined error rate
on the training and test set, respectively, of 7.4% (resp. 9.9%) for the head
phoneme, 1.1% (resp. 2.0%) for the added consonant, and 1.1% (resp. 1.6%)
for the added vowel, making a total error rate of 9.6% (resp. 13.5%). Note
that in our data set, the head phoneme was nonempty 97% of the time, while
the added consonant and added vowel were nonempty only 4% and 17% of
the time, respectively, so we should not be surprised that the network error

is much smaller for the latter two groups.

4.2 Analysis

An analysis was made of the errors produced by this initial network. The
four most common error categories are summarised in Table 1; a more thor-

ough linguistic analysis may be found in (Blair & Ingram, 1998).

Table 1. Summary of Error Categories
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schwa vowel colouring 27%

vowel length 19%
obstruent gemination 11%
vowel epenthesis 7%
other 36%

By examining the errors in these common categories we deduced that
the phonological features alone were not providing the network with all the
information necessary for predicting the correct output. We identified three

additional sources of information that might be useful to the network:

1. orthography of reduced vowels
2. location of word boundaries

3. stress pattern

The following section describes our attempts to reduce the number of
errors by providing this kind of information to the system through additional
inputs. The performance of the neural networks is also compared with that

of decision tree learners.

5 Modifications and comparison of architectures

Based on the analysis of the previous section, a number of neural networks
were trained using additional inputs, as outlined in the following subsections.
These networks were generally trained for 30 epochs, although a few were
trained for 50 or 100 epochs. For consistency, we always compare different
networks by reporting the error rate, on the test set, after 30 epochs. The

results of these experiments are outlined in Table 2. (Unfortunately, due
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to the large amount of data and long training times, it was not possible to

perform each experiment multiple times with different initial weights.)

5.1 Comparing symbolic and connectionist models

Learning systems for linguistic tasks can be broadly divided into two main
categories: connectionist models, such as the neural networks described in
section 4, and symbolic models, such as decision trees or rule-based sys-
tems. Broadly speaking, connectionist systems tend to perform well on
tasks requiring a classification which combines a large number of factors in
an approximately linear fashion, while symbolic models tend to be more ap-
propriate for tasks which rely on a smaller number of variables but combine
them in a more nonlinear way.

In order to make a comparison between symbolic and connectionist mod-
els for the task of predicting loanword phonology, a benchmark decision tree
algorithm called C4.5 (Quinlan, 1992) was used as a point of comparison for
the neural network models. In each case, three separate decision trees were
generated to predict the head phoneme, added consonant and added vowel,
using the same inputs as the corresponding neural network.

As can be seen from the top row of Table 2, C4.5 achieves a combined
error rate of only 11.5% compared with 13.5% for our original neural net-
work. Moreover, with the inclusion of additional inputs (described in the
following subsections) C4.5 continues to outperform the neural networks by
2 to 3 percentage points, suggesting that a symbolic approach may be better

suited to this task than the connectionist alternative.

Table 2. Summary of Results
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inputs head consonant vowel total

net tree | net tree | net ftree net tree

F 99 81 20 18 1.6 1.5 |13.5 11.5
FS 115 81 17 15 1.6 15 |148 11.1
FB 103 72 14 14 12 11 129 9.6
FBS 101 73 13 14 11 10 (125 9.7
FO, 88 57 17 18 1.7 15 122 9.1

FO;S 88 57 19 15 1.8 1.5 |125 87
FO:B 83 52 14 14 13 11 |11.0 76
FOBS| 85 52 15 14 13 1.0 |11.3 7.6

FOq 88 60 16 16 1.7 15 121 9.1
FO39S 8§80 6.1 17 15 1.7 14 |115 9.0
FO2B 78 55 14 12 11 10 103 7.6
FO,BS| 75 55 15 13 11 1.0 |101 7.6

F : feature matrix of current and surrounding phonemes
O; : extra inputs for vowel orthography

O2 : schwa replaced by orthographic vowel

B : word boundaries indicated by /_/

S : stress of current or immediately preceding vowel

5.2 Reduced vowels and orthography

The biggest problem for our original network (accounting for 27% of all
errors) had to do with the colouring of reduced vowels. English has a reduced
vowel (called the schwa) for which there is no Japanese equivalent. It seems
that, when confronted with a schwa, Japanese speakers often look to the
orthography of the English word to help them choose an appropriate vowel
with which to replace it. This makes the task extremely difficult for the
system to learn, since it has no direct access to the English orthography,
but can only try to guess at it — based on the statistics of the input data.

We devised two different methods for presenting the orthography of the

13



English vowels to the system. The first method (labeled O;) involved adding
five additional inputs, to represent the five vowels {a,e,i,0,u}. Whenever the
current phoneme is a vowel, one of these inputs is set to 1.0. With the
second method (O2), whenever a schwa was encountered in the input, its
feature matrix was replaced with that of the corresponding orthographic
vowel. Additionally, a new feature was added to the input feature matrix,
to indicate whether or not the phoneme is a reduced vowel. As can be seen
from Table 2, both the O; and Og representations of vowel orthography
provide an improvement in performance of at least 1.2 percentage points
for the neural network, and at least 2.0 percentage points for the decision
tree learner. In the case of the neural network, although the O and O,
representations achieve about the same level of performance when used in
isolation, the O representation provides an additional improvement of about
one percentage point over its O; counterpart, when used in combination with
either of the other modifications described below (B & S). The reasons for
this difference are not clear, except that the O; network may get confused

by the orthographic information in cases where the vowel is not reduced.!

5.3 Word boundaries

Word boundaries seem to have an influence on loanword formation — espe-
cially in cases where many speakers of the borrowing language have at least
some familiarity with the source language, in both its written and spoken
forms (see section 2). This can most dramatically be seen in cases where an

epenthetic vowel gets added to the end of the first word even though the sec-

! Another experiment was conducted in which the orthographic information was pro-
vided only for reduced vowels, but this network had an error rate of 12.8% (compared to

12.2% for the O; network).
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ond word already began with a vowel — for example, graphic-art becomes
/gurafikkuaato/ rather than /gurafikkaato/. We therefore made the simple
modification of inserting an empty phoneme /_/ between words. As can be
seen from Table 2, this leads to a reduction in error rate of anything from
0.6 to 1.8 percentage points for the neural networks, 1.1 to 1.9 percentage

points for the decision trees.

5.4 Stress

Since stress has been reported to influence loanword formation in other set-
tings (Silverman, 1992) it is natural to ask whether it might also play a role
in the present context — for example, in determining gemination or vowel
length. In order to test this, we added an extra input which indicates the
stress of the current (or immediately preceding) vowel. A value of 1.0 was
used to indicate primary stress, 0.5 for secondary stress and 0.0 for tertiary
stress. We see that the performance of the decision trees is improved by
0.1 to 0.4 percentage points in the absence of word boundary information,
but makes no noticeable improvement when word boundary information is
present. The effect of making stress information available to the neural net-
work is rather intriguing. From the limited data available in Table 2, it seems
that the inclusion of stress information actually degrades the performance
of the neural network when used on its own (from 13.5% to 14.8% in the
case of the original (F') network) but improves the performance when used
in combination with other modifications (from 12.1% to 11.5% in the case
of the FO5 network). We can only hypothesise that, in determining the final
form of loanwords, stress interacts with other factors in subtle ways which

are difficult for the neural network to capture reliably (especially in the ab-
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sence of orthographic information), but are accessible to the more flexible
structure of the decision trees. In future work, we hope to investigate this

issue further, with a more thorough linguistic analysis.

5.5 Additional training

Networks FO2B and FO42BS were run for 100 epochs in order to compare
them more closely, and to check for evidence of overtraining. Figure 2 shows
the percentage of errors made by network FO2BS for each of the three output
groups. After 40 epochs the training and test errors, respectively, reach a
level of 4.7% (resp. 7.2%) for the head phoneme, 0.7% (resp. 1.3%) for
the added consonant, and 0.8% (resp. 1.1%) for the added vowel, making a
combined error of 6.2% (resp. 9.6%). After this, the training error continues
to fall while the test error levels off.? In contrast, the (test set) error rate
for network FO4B was found to level off at 10.3%, indicating that FO9BS is

the superior architecture.

6 Conclusion

We have shown that both feedforward neural networks (using backpropaga-
tion) and decision trees (using C4.5) may be trained to predict the phonolog-
ical structure of English loanwords in Japanese using a featural input and a
phonemic output. The error rate for the decision trees is lower than that of
the neural networks by approximately two percentage points. Furthermore,

providing information about the stress pattern, orthography of reduced vow-

“Note: the test error was computed at the end of each epoch, while the training error
was computed during the epoch. Therefore the training error may exceed the test error

in the first few epochs.
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els and location of word boundaries can reduce these error rates by a further
four percentage points (from 13.5% to 9.6% for the neural networks, 11.5%
to 7.6% for the decision trees).

These results are quite encouraging considering that, for the reasons dis-
cussed in section 2, the process of loanword formation has a certain element
of indeterminacy in the sense that native speakers or dictionary compilers
will often disagree on the correct rendition of a loanword in the orthography
of the borrowing language. Many of the “errors” produced in our experi-
ments were actually cases where a Japanese rendering has been produced
which is different from that given in the database, but still an acceptable
variant — for example, glass can be rendered either as /gurassu/ or /garassu/.

It seems that the decision tree learner can be relied upon to make pro-
ductive use of additional information — whereas the neural networks appear
on occasion to be confused by additional information, presumably due to
the complexity of the interactions between different inputs. In particular,
stress information seems to have a negative effect on the network’s perfor-
mance when provided on its own, but a positive effect when provided in
combination with other factors.

In future work, we plan to make a more detailed examination of the two
paradigms, taking into account the underlying strengths and weaknesses of
each model and the types of errors produced, with the aim of introducing
further modifications to reduce the error rate still further.

In addition, we aim to make a more detailed linguistic analysis of the
network behaviour and the structure of the decision trees generated, in the
hope that it may provide new insights into the underlying mechanisms of

loanword formation.
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Appendix - Feature Matrix
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