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Abstract. Recent work by Siegelmann has shown that the computational power of recurrent neural networks
matches that of Turing Machines. One important implication is that complex language classes (infinite languages
with embedded clauses) can be represented in neural networks. Proofs are based on a fractal encoding of states to
simulate the memory and operations of stacks.

In the present work, it is shown that similar stack-like dynamics can be learned in recurrent neural networks from
simple sequence prediction tasks. Two main types of network solutions are found and described qualitatively as
dynamical systems: damped oscillation and entangled spiraling around fixed points. The potential and limitations of
each solution type are established in terms of generalization on two different context-free languages. Both solution
types constitute novel stack implementations—generally in line with Siegelmann’s theoretical work—which supply
insights into how embedded structures of languages can be handled in analog hardware.
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1. Introduction

Chomsky argued that language competence includes
processing of embedded clauses [1]. Moreover,
Chomsky pointed out that finite state machines were
inadequate for processing languages with embedded
clauses. Chomsky doubted that even phrase-structure
grammars (which have limited capacity for recur-
sion) would be sufficient to process natural language—
implying that even more powerful mechanisms would
be necessary (e.g. Turing Machines). Since embedding
is an important feature of natural languages, it is natu-
ral to ask whether, and in what ways, neural networks
might learn the dynamics necessary for processing lan-
guages with embedded structure.

It has been proven theoretically that a major class
of recurrent neural networks (RNNs) are at least as

powerful computationally as Turing Machines [2, 3].
The arguments are based on the analog nature of
internal states and network weights (assuming infi-
nite precision). To accommodate recursive computa-
tion, where Turing Machines would resort to con-
ventional stacks (or an infinite tape), state spaces
are divided (recursively) into smaller state intervals
(Siegelmann suggests the use of Cantor sets). Similar
approaches have been used to process context-free and
context-sensitive languages [4, 5]. However, whether
such stack mechanisms can be learned by RNNs is a
rather different problem. This paper examines RNNs
trained on language prediction tasks, to investigate the
means by which center embedded language constructs
are handled1 and to see if RNNs exploit continuous
state spaces in ways similar to those suggested by
Siegelmann’s work.
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A simple task that requires a stack is predict-
ing the language anbn . A valid string from the lan-
guage consists of a number of as, followed by ex-
actly the same number of bs (e.g. aaabbb, ab and
aaaaaaaabbbbbbbb). An RNN can learn and gener-
alize to predict the correct number of bs when all as
have been presented [6]. Briefly put, a trained network
counts by “pushing” as and then (whilst b is presented)
“popping” the stack until it is empty, signalling the end
of the string (ready for the next a). The dynamics of
such networks is usually based on oscillation around
fixed points in state space.

Previous work on learning formal languages requir-
ing stacks (e.g. context-free languages) has primar-
ily focused on the use of Simple Recurrent Networks
(SRNs) [6–11]. For the anbn prediction task, two main
types of solution have been found [7, 9] of which only
one generalizes well [10]. This paper reports on ex-
periments along the same lines as previous research
but with a second-order recurrent neural network, the
Sequential Cascaded Network (SCN; [12]). The SCN
frequently finds an additional and novel type of dynam-
ical behavior for predicting anbn which also exhibits
good generalization, and whose dynamics we describe
in detail.

The paper also investigates how initial training on
anbn engenders the dynamical behavior necessary for
the more complicated balanced parentheses language
(BPL) which, in contrast to anbn , allows a to re-appear
after the first b (e.g. aabaaabbabbb, ab and aababb).
To illustrate the transfer between the two languages,
two sets of simulations are reported, using random ini-
tial weights and initial weights taken from successful
anbn solutions. In addition to identifying the condi-
tions for successful processing, our study is concerned
with the generalization capabilities of the counting be-
haviors as observed for the two prediction tasks. To
characterize each solution type and its potential, the
general framework of dynamical systems is used.

2. Background

Recurrent neural networks have been portrayed as of-
fering novel computational features compared with au-
tomata and Turing Machines [3, 13]. Their representa-
tional power does not stem from an infinite tape (as for
Turing Machines) but instead from infinite numerical
precision of machine states. Siegelmann and Sontag
[2] outline a specific neural network setup for a 2-stack
machine equivalent to a 1-tape Turing Machine. Each

stack can be manipulated by popping the top element,
or by pushing a new element on the stack’s top (either
0 or 1). The elements are encoded as a binary stream,
s = s1, s2, . . . , sn , into a value

z =
n∑

i=1

2si + 1

4i
. (1)

This function generates values in the range between 0
and 1 (as is common for sigmoidal outputs) but with
a discontinuous and fractal distribution (a Cantor set).
The main feature of the function is that for each ad-
ditional element pushed on the stack, finer precision
(larger denominator when expressed as rational val-
ues) is required. For example, in a stack which only
accepts the element 0 (sufficient to handle both anbn

and BPL) the string ‘00’ would generate 1
4 + 1

16 , while
‘000’ would generate 1

4 + 1
16 + 1

32 . Even in the limit,
with a continuous flow of zeros, z never reaches 1

3 .
The current stack value is encoded by a sigmoidal pro-
cessing unit and the numerical operations necessary
to perform reading, popping and pushing on the stack
are easily incorporated as additional units, forming an
appropriately weighted neural network [2].

Siegelmann and Sontag [2] show that the encod-
ing strategy extends to n-stacks and can be used to
build a Universal Turing Machine. Siegelmann’s result,
that Turing equivalence can be achieved with rational
weights and that “super-Turing computation” can be
achieved with real weights, is not limited to the above
encoding function. Other functions with similar fractal
properties can replace it.

3. Dynamical systems

A discrete time recurrent neural network can usefully
be characterized as a discrete time dynamical system
[9, 14, 15] with inputs, outputs and state variables.

For both anbn and BPL there are two possible inputs,
which define two (non-linear) automorphisms Fa and
Fb on the hidden unit activation space. Since these au-
tomorphisms can be applied in any order (determined
by the input string) it is useful to think of them as com-
prising an Iterated Function System [16].2 For a linear
autonomous dynamical system on an n-dimensional
state space X → FX where X ∈ �n , an eigenvalue of
F is a scalar λ and an eigenvector (belonging to λ) of
F is a vector �v �= 0 such that F �v = λ�v. The absolute
value of the eigenvalue gives the rate of contraction or
expansion of F along the principal axis defined by the
corresponding eigenvector [9].
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In our case the maps Fa and Fb are nonlinear. How-
ever, they can be approximated by a linear function
in the neighborhood of a fixed point—i.e. a point X
in state space for which X = FX (such points can be
found by solving the roots of the system of equations
for each system). When studied in the vicinity of a fixed
point of the system, the Jacobian of the state units has
eigenvalues and eigenvectors that express how the non-
linear system changes over time in a neighborhood of
that point [9, 17].

When an eigenvalue is positive, 1-periodic (mono-
tonic) behavior occurs along the axis described by the
associated eigenvector; when an eigenvalue is negative,
2-periodic (oscillating) behavior occurs. When the (ab-
solute) eigenvalue is below 1 the fixed point is an attrac-
tor along the axis given by the eigenvector; when the
absolute eigenvalue is above 1 it is a repeller. If a fixed
point is attracting along one axis and repelling along
another it is also called a saddle point. In some cases
eigenvalues take on complex values, thereby indicating
a rotation around the fixed point [17]. In the following,
the state spaces are 2-dimensional, which means that
each fixed point is associated with two eigenvalues and
their corresponding eigenvectors.

4. Experiments

4.1. Network Architecture

The architecture we employ is a Sequential Cascaded
Network (SCN) with 2 inputs, 2 outputs and 2 state
units. The network is equipped with biases in accor-
dance with Pollack’s [12] simulations. The output and
state activations, at time t , are defined by

Ot
i = f

(
NZ ,NI∑

j,k

Wi jk Z t−1
j I t

k +
NZ∑
j

Wi jθ Zt−1
j

+
NI∑
k

Wiθk I t
k + Wiθθ

)
(2)

Zt
i = f

(
NZ ,NI∑

j,k

Vi jk Z t−1
j I t

k +
NZ∑
j

Vi jθ Zt−1
j

+
NI∑
k

Viθk I t
k + Viθθ

)
(3)

where I is the externally set input vector and Z is a
vector of internal state units (see Fig. 1). W is the set
of weights connecting the products between the input

Figure 1. The SCN architecture. Unfilled circles correspond to
units in the network. The output, Ot , is determined by first perform-
ing a modified outer product between the current input I t and the
state from the previous timestep, Zt−1, multiplied as indicated by the
dashed lines. The resulting elements are illustrated using crossed cir-
cles. The outer product is then fed through a fully connected weight
layer denoted by V and W (illustrated by the arrows). Biases of the
weight layer are included in the weight matrices.

and the previous state with the output units. V similarly
governs the activation from the input and the previous
state to the state layer. NZ is the number of state units
and NI is the number of input units. Biases are intro-
duced as additional elements in the weight matrices
(indexed by θ ). Thus, as an example of notation, Wi jk

is a second order weight (used for connecting the prod-
uct between the j th state unit and the kth input, with
the the i th output unit), Wi jθ and Wiθk are first order
weights (feeding the i th output with either the j th state
unit or the kth input), and Wiθθ is a first order bias (as-
sociated with the i th output unit). The logistic transfer
function, f (x) = 1/(1 + e−x ), is used.

The SRN (which is used as a comparison) is defined
by

Ot
i = f

(
NZ∑
j

Wi j Z t
j + Wiθ

)
(4)

Zt
j = f

(
NI∑
k

Vjk I t
k +

NZ∑
i

Z t−1
i U ji + Vjθ

)
(5)

where V is the set of weight connecting the input with
the state units, W is the set of weights from the state
units to the output weights, and U is the set of recurrent
weights connecting the state units with themselves (see
Fig. 2).

4.2. The anbn Prediction Task

The network is trained, using backpropagation through
time (BPTT; [18]) to predict the next letter in
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Figure 2. The SRN architecture. Circles correspond to units in
the network. The output, Ot , is determined from the current state,
Zt , and the output weights denoted by W . The state is calculated
from the previous state, Zt−1, and the current input, I t . U denotes
the recurrent, temporally delayed weights and V denotes the in-
put weights. Biases of the weight layers are included in the weight
matrices.

consecutively presented strings of the form anbn for
1 ≤ n ≤ 10 (in random order). The legal strings can
be described by simple recursive rules:

R1: S → aXb

R2: X → nil

R3: X → aXb

Strings from this language were generated ran-
domly by first applying R1, then applying R2 and
R3 randomly according to a probability distribution,
P(R2) + P(R3) = 1. A variable called level is used
to keep track of the number of levels that the current
string has, i.e. how many times R3 has been applied
(plus 1). When level = 1, P(R2) is low and P(R3) is
high. P(R2) increases monotonically until level = 10
when P(R2) = 1. In order to increase the proportion
of shorter strings (which is known to enhance learning
in some cases [10, 19]) the probability distribution of
the presented tokens is skewed so that P(R2) > P(R3)
when level > 3.

Interestingly, the limited resources of the network
encourage it to develop dynamics as if the language
were unbounded (any n), and it is often able to cor-
rectly predict strings anbn for values of n larger than
those in the training set. Note that the prediction task
is basically only deterministic during the presentation
of b since n varies randomly. Having processed all as
the network is required to correctly predict b until the
final letter of the current string is presented and then
predict a (the first letter of the next string). The learning
task is considered difficult and requires the network to

undergo several fundamental changes in its dynamical
behavior (bifurcations) [10].

The symbol a is represented as (1, 0) and b as (0, 1)
at the input and output layers of the network. To qualify
as a correct output it needs to be on the right side of the
output decision boundaries (defined by the output vec-
tor (0.5, 0.5)). The criterion for a successful network (a
solution) is that it is able to process all strings anbn for
1 ≤ n ≤ 10. As can be seen from Eq. (2), the output Ot

depends not only on Zt−1 but also on the input I t . In
our case there are two possible inputs, so two decision
boundaries in Zt−1 can be determined and plotted of
which only one is effective at a time.

A population of networks, with various initial
weights, learning rates, momentum terms and levels
of unfolding for BPTT, were trained on a maximum of
10000 strings from anbn . This is typically (validated
through numerous simulations) sufficient for conver-
gence. If a network was successful at any time during
the 10000 strings, its weights were saved for further
analysis. Around 150 of 1200 networks were deemed
successful. The best configuration used a learning
rate of 0.5, momentum 0.0 and unfolded the network
10 time steps, and generated 40/200 solutions. The
fixed points were determined for each successful net-
work, and associated eigenvalues and eigenvectors
were calculated.

There are two basic ways SRNs implement the
counting necessary for anbn [9]: oscillatory and mono-
tonic. The monotonic solution employs gradual state
changes in one general direction for each presented a
relative to an attractive fixed point and then correspond-
ing state changes in the opposite direction for each pre-
sented b relative to a different fixed point. With the SCN
the monotonic solution was found in about 5% of the
runs, and only when the level of unfolding was kept
low (3 timesteps). The monotonic solution type gener-
alizes poorly and is excluded from the analysis below.
According to the simulations, SCNs employ both the
oscillatory and the monotonic solution type, but also
an additional type, entangled spiraling. We treat each
of the remaining two solution types in turn.

4.3. Counting by Oscillation

Rodriguez et al. [9] analysed two different SRN weight-
sets, which were oscillating, generated by BPTT on
training data from anbn , and identified conditions for
the SRN to represent and predict anbn correctly to a
level beyond the training data. The particular solution
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type that Rodriguez et al. [9] focused on has one main
fixed point for each system. The fixed point for Fa at-
tracts along both axes but with a double periodicity
in (at least) one of them. The fixed point of Fb is a
saddle point, attracting along one axis and repelling
(2-periodically) along the other. The solution type was
previously discovered by Wiles and Elman [6] and the
experiments herein show that the same basic behavior
occurs in the SCN.

The process can be described in terms of the activa-
tion of the state units. The state first oscillates, for each
a presented to the network, toward the fixed point of
Fa . When the first b is presented to the network, the
state shifts to another part of the state space close to
the Fb saddle point and starts oscillating away from the
saddle point until it crosses the output decision bound-
ary, signalling that the next letter is an a (see Fig. 3 for
an SCN solution).

The first condition of [9] is that the largest abso-
lute eigenvalues of the two systems should be inversely
proportional to one another (in practice one of them
is usually around −0.7, the other around −1.4). The
inverse proportionality ensures that the rate of contrac-
tion around the fixed point of Fa matches the rate of
expansion around the saddle point of Fb ([9], p. 23).

The second condition is that the fixed point of Fa

should lie on the axis given by the eigenvector corre-
sponding to the smallest absolute eigenvalue of Fb (the
direction in which the saddle point attracts) when pro-
jected through the Fb fixed point ([9], p. 23). This con-
figuration basically entails the first thing that happens
in Fb is a long-distance state shift along its eigenvector
to a part in state space close to the fixed point of Fb.
The positioning of the eigenvector ensures that the final
state of Fa (which identifies the a-count) correctly sets
the starting point for the expansion in Fb. The small
eigenvalue ensures a direct transition.

About 80% of the successful networks employed
counting by oscillation. A sample of 60 networks was
used to verify the above criteria. The average largest ab-
solute eigenvalue of Fa is λa = −0.68 (SD = 0.07). The
average largest absolute eigenvalue of Fb is λb = −1.42
(SD = 0.10). The average product of these two is
λaλb = 0.96 (SD = 0.07), clearly conforming to the
first condition.

The average distance between the eigenvector of
the smallest (absolute) eigenvalue of Fb, when pro-
jected through the Fb fixed point, and the fixed point of
Fa is 0.00 (SD = 0.00). Thus, the second condition is
confirmed.

There is also an informal criterion which states that
the ending point for Fb is a good starting point for Fa

([9], p. 23). However, it does not make sense to measure
this on networks which are already deemed successful.

4.4. Counting by Spiraling

In the case of the (second order) SCN networks, a new
type of solution frequently arose, which had not been
observed for the (first order) SRN networks. This type
of solution involves a rotation towards the Fa attracting
fixed point while a is presented, and rotation away from
the Fb fixed point (close to the Fa fixed point) in the
opposite direction while b is presented, until the deci-
sion boundary is reached signalling that a is predicted
(see Fig. 4).

All entangled spirals have complex eigenvalues for
the Jacobians which indicate that the behavior along the
eigenvectors is rotational. A complex number, x + yi ,
can be written on polar form, r (cos θ + i sin θ ), where
θ is the angle (in radians) of the complex number per-
ceived as a vector of length r . The rotation is coun-
terclockwise (if y > 0) through θ radians followed by
an expansion or contraction along the eigenvector by
a factor of r [20]. Every complex eigenvalue must be
accompanied by its complex conjugate. Apart from the
eigenvalues being complex, we can identify a number
of informal conditions which contribute to a successful
solution.

The first condition is that the fixed points of Fa and
Fb should be close to each other, to ensure that the wind-
ing up of Fa is correctly balanced by the unwinding of
Fb.

The second condition is that the Fa fixed point be
attractive, indicated by an absolute eigenvalue (ra)
below 1, or possibly slightly above 1. When the abso-
lute value is exactly 1 the system undergoes a so-called
Hopf-bifurcation whereby an invariant circle around
the fixed point is born [17]. When the absolute eigen-
value is above 1 the invariant circle forms a boundary
(hereafter referred to as the H-boundary) between those
states which converge to it from the inside and those
that converge to it from the outside. The fixed point is
repelling whenever the absolute eigenvalue is above 1
but for those states that are outside the circle boundary
the fixed point can be perceived as being attractive. If
the absolute value is just above 1 the H-boundary is po-
sitioned close to the fixed point enabling Fa to utilize
the fixed point in a similar fashion as for a genuinely
attractive fixed point.
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Figure 3. Top: A state trajectory when a8b8 is presented to the network. A decision boundary for b inputs is visible and distinguishes between
those states that predict b and those that predict a. The decision boundary is based on the weights utilized as a result of the outer product
involving (0, 1) (the b input). Note that the a decision boundary is not visible and that, in contrast with the SRN, the output in state space is
delayed with one time step (see Eqs. (2) and (4)). Hence, the visible output boundary separates the 6th from the 7th b. Bottom: The fixed points
and the associated eigenvectors (projected through the corresponding fixed points) and eigenvalues.
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Figure 4. A state trajectory for a8b8 and the fixed points for Fa and Fb . Note that the a decision boundary is not visible and that, in contrast
with the SRN, the output in state space is delayed with one time step (see Eq. (2)). Hence, the visible output boundary separates the 6th from
the 7th b.

The third condition is that rb, the absolute eigen-
value for Fb, should be large enough to accommodate
the full size of the spiral. The Fb fixed point has a
larger absolute eigenvalue than the Fa fixed point, po-
sitioning the H-boundary further outwards relative to
itself. The starting point for Fb is close to the fixed
point (see the first condition) and the states diverge un-
til they approach the H-boundary (if it is within the state
space). rb effectively imposes a strict limit on the num-
ber of pop-operations before the spiral merges with the
H-boundary.

The fourth condition is that θa ≈ θb (the angles for
the eigenvalues of Fa and Fb, respectively)—to ensure
that the rotations of Fa and Fb are synchronized.

The spiraling solution was employed by about 15%
of the successful networks but only when the level of
unfolding was kept high. When the network was un-
folded 10 timesteps, approximately 30% of the suc-
cessful weightsets employed the entangled spiral. 20
networks were subject to further analysis. The aver-
age distance between fixed points of Fa and Fb is 0.05
(SD = 0.03), ensuring that the end state for Fa is close
to the ideal starting point of Fb.

The average eigenvalues of the Fa fixed point
are λa = 0.48 ± 0.83i (SD = 0.18), and for the Fb

fixed point the averages are λb = 0.61 ± 1.08i (SD =
0.28). The second and third conditions state that
the absolute values of the Fa and Fb fixed points
should be slightly below 1 and above 1, respectively.
The averages are ra = 0.97 (SD = 0.08) and rb = 1.27
(SD = 0.12).

The average difference between angles (in radi-
ans, absolute values) is 0.03 (SD = 0.03), verifying the
fourth condition. Other general observations include
that the real part of the Fa eigenvalue is always slightly
smaller than that of Fb. Similarly, the imaginary part of
the Fa eigenvalue is, in all cases, slightly smaller than
that of Fb.

4.5. Generalization Ability

To investigate generalization ability of the solution
types, each successful network was subjected to fur-
ther training. Each network was trained for a maximum
of 10000 strings (1 ≤ n ≤ 10) with a small learning
rate, η = 0.1.3 The generalization ability was tested
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continuously and the best performance for each net-
work was recorded.

For the oscillatory solution the generalization was,
on average, up to n = 18.9 (SD = 5.9), and maximum
n = 29. The spiraling solution achieved, on average,
up to n = 12.6 (SD = 3.0), and maximum n = 19.

4.6. SRN and SCN

It is interesting to note that the spiraling solution type is
often found by the SCN, but is never found by an SRN
with the same number of hidden units. The main reason
for this seems to be that in the case of the SRN, the maps
Fa and Fb are determined by the same set of weights
(excluding bias connections) making it impossible for
them to implement spiraling in opposite directions. In
contrast, the multiplicative weights of the SCN allow
the two maps to vary independently.

Additionally, the SRN requires that the hidden-to-
output connections define “predict a” and “predict b”
regions in the hidden unit activation space which are
independent of the current input; the input-to-output
connections of the SCN allow these regions to depend
also on the current input, affording more flexibility to
the SCN. A similar advantage of SCN is noted for learn-
ing a simple context-sensitive language with fewer state
units than the SRN [21].

5. Balanced Parentheses Language

Similar to strings from anbn , a BPL string, e.g.
aaaabbabbb, requires that the network pushes as and
that it pops the stack whilst b is presented. Due to the
random generation of strings from the language, it is
not possible for the network to correctly predict all bs
since another a may turn up at any time and not only
when a new string is started. The language can be de-
scribed by simple recursive rules:

R1: S → aX∗b

R2: X → nil

R3: X → aX∗b

Similar to the anbn generator, there is a variable level
which indicates the current R3 count (plus 1). The dif-
ference compared with anbn is that R1 and R3 allow a
selection of any number of intervening Xs, symbolized
by X∗.4 Consequently, by traversing paths created by

multiple substrings, the level can go up, down and up
again.

As with anbn , each string from BPL is generated
by first applying R1 and then applying R2 and R3 in-
terchangeably according to a probability distribution.
There are essentially two phases involved. In phase 1,
P(R2) is low (and P(R3) is high), while in phase 2
the opposite is true. At any time during phase 1 there
is a 1/3 chance that the generator will enter phase 2.
When level reaches 10 the generator is forced to switch
into phase 2 if it has not already done so. When R1 or
R3 is employed the generator also picks a number of
substrings to generate with a constant probability. The
probability for generating 1 is much higher than for
generating 2 and decreases rapidly for higher numbers.
As a whole, the above strategy enforces preference to
short and anbn-like strings.

Two data sets were used in the experiments. The
training set was generated according to a probabil-
ity distribution with P(R3) = 0.95 for phase 1 and
P(R3) = 0.05 for phase 2, which generates strings from
anbn to a high degree. The test set was generated us-
ing P(R3) = 0.80 for phase 1 and P(R3) = 0.20 for
phase 2, which contains more complicated strings with
frequent intervening substrings (more bs are introduced
earlier in the string, and more as appearing after the
first b).

Rodriguez et al. [9] showed how the SRN can main-
tain the coordination of trajectories such that for sub-
strings (multiple Xs in R1 or R3) the network re-
turns to a state still allowing a correct “end-of-string”
prediction (predict the first letter of the next string).
The additional condition for the oscillatory solution
is that the fixed point of Fb should lie on the eigen-
vector associated with the smaller absolute eigenvalue
of Fa when projected through the Fa fixed point.
Thereby, the two systems can exchange “counting in-
formation” at any time, by crossing the state space
along the appropriately aligned eigenvectors of both
Fa and Fb. Our SCNs demonstrate the same char-
acteristics (see Fig. 5). Notably, the same strategy
effectively incorporates a recognition task for BPL
strings. The decision boundary for signalling that an
a is due (during the presentation of bs) can be used
to mark that the presented string is grammatically
correct.

In the entangled spiral there is no explicit need to ex-
change counting information since states of Fa and Fb

are largely superposed. For example, the state arrived at
after aa has been presented is approximately the same
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Figure 5. A state trajectory for aaaaaaabbbbaabbbbb (above). The fixed points and the associated eigenvectors and eigenvalues (below).

as after aaaabb has been presented (same level in both
cases). The interpretation of the state is independent
of which system is currently active. Hence, there is no
additional constraint, only a stronger enforcement of

the existing conditions that the dilation of Fb matches
the contraction of Fa (θa = θb) with great precision and
that the fixed points of Fa and Fb are close in state
space (see Fig. 6 compared with Fig. 4). Thus, spirals
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Figure 6. A state trajectory for aaaaaaabbbbaabbbbb and the fixed points for Fa and Fb .

with good generalization performance on anbn can be
expected to also manage BPL.

Using the criterion that a successfully processed
string from BPL is one for which the network cor-
rectly predicts the first letter of the following string,
the test set was used to rank each network’s degree of
success. 20 networks successfully predicting anbn for
each solution type were trained further using BPL for
a maximum of 20000 strings with a few different con-
figurations. A learning rate of 0.1 (no momentum) and
an unfolding level of 20 turned out to be the best. The
best configuration produced 6 (of 20) BPL predictors
of the oscillation type, and 5 (of 20) BPL predictors
of the entangled spiral type, all completely success-
ful on 20 random strings from the BPL test set. All
networks maintained the solution type they produced
for the anbn data. To further investigate each network
that managed the first test set, another 100 random test
strings from BPL were generated. The average score on
the second test set was 78 (SD = 24, best = 100/100)
among 10 networks of the oscillation solution type and
52 (SD = 29, best = 91/100) on 10 networks of the en-
tangled spiral type.

Training set probabilities that entailed more com-
plicated strings rendered worse training performance.

300 networks were trained on BPL from small random
initial weights with various learning parameters but no
solutions were found according to the criteria described
above. Thus, successful learning of BPL requires good
initial weights.

6. Discussion

The basic idea behind Siegelmann’s proofs on Turing
equivalence of certain RNNs is that state spaces of
stacks are divided into smaller and smaller intervals
of values as elements are pushed. Hence, the need for
an infinitely large discrete state space is transformed
into a need for a continuous state space with infi-
nite precision. Apart from the apparent transition to
two dimensions (the Cantor set only requires one),
the two observed learned behaviors recall the basic
idea: As elements are pushed onto the stack the state
space is recursively divided into smaller regions. Both
solution types employ behavior where states oscil-
late/rotate around a fixed point and push elements
on the stack by moving closer and closer to it. Sim-
ilarly, elements are popped by moving in a similar
fashion (and speed) away from another fixed point
(see Fig. 7).
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Figure 7. A perspective on the encoding of the string aaaaabbbbb
over time. In the first graph the Cantor encoding (see Eq. (1)) is
shown as seen from the limit value 1/3. The second graph shows the
encoding by a typical oscillating solution and the third graph shows
the encoding by a typical entangled spiral solution, both as seen from
the two main fixed points (the distance between the state and the Fa

fixed point is a solid line, and the distance between the state and the
Fb fixed point is a dashed line).

The push and pop operations defined for the Cantor
set operate independently of the preceding operations
and do not leave a trace. However, the oscillating so-
lution generates states in two parts of state space, dis-
tinguishing between states encoded by Fa and those
encoded by Fb. Thus, the state for aaa is different from
the state for aaaaabb. Similar to the Cantor set, the en-
tangled spiral has state trajectories which are aligned so
as to minimize any difference between states generated
by the two systems.

In general, the learned behavior we observe is differ-
ent from the Cantor set approach in the sense that the
precision is not strictly enforced. Weights are not suffi-
ciently precise to exhibit true fractal nature and enable
generalization to infinitely deep levels. However, the
performance degradation observed in the trained net-
works for deep input strings is also apparent in human
language performance [11].

7. Conclusion

There are a variety of dynamics available for imple-
menting stack-like behavior in RNNs. The present
study has explored two types of dynamics which are
(1) learnable, (2) unlike classical automata, only lim-
ited by numerical precision and not memory, and (3)
conforming to Siegelmann’s [2, 3] principal suggestion
that stacks can be built in analog hardware by recur-
sively subdividing state spaces.

On the technical side, SCNs employ three count-
ing behaviors, one of which is not found by the SRN
with equally many units. Of the three, two have good
potential for handling BPL: oscillation and entangled
spiral. Both exploit the principle of recursively divid-
ing a region in state space into smaller and smaller
pieces as elements are pushed onto the stack and con-
versely expanding in state space while the elements are
popped.

The experiments confirm that networks employing
the oscillating solution type handle anbn and BPL ac-
cording to previously identified criteria [9]. The cri-
teria also hold for a different (higher order) network
type. The conditions for successfully employing the
entangled spiral dynamics can be described in terms
of complex eigenvalues of the Jacobian of the state
units.

Moreover, experiments establish that the oscillatory
type is found more often by BPTT compared with the
entangled spiral type. Further, the oscillation type gen-
eralizes better to both anbn and BPL, a fact that clashes
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with the qualitative observation that entangled spirals
more naturally lend themselves to BPL compared with
oscillating solutions.

Overall, the present study suggests an alternative
explanational framework based on analog recurrent
neural networks for illustrating how mechanisms for
embedded languages can be learned and implemented.
The results are generally in line with Siegelmann’s the-
oretical work and in sharp contrast with classical au-
tomata. Moreover, the theoretical work corresponds to
what (within e.g. generative linguistics) could be re-
garded as a language competence theory and the sim-
ulation results—which are admittedly not achieving
infinite embedding—indicate language performance
factors.

Acknowledgments

The authors gratefully acknowledge feedback from
Morten Christiansen and two anonymous reviewers
on a draft of this paper and discussions with Janet
Wiles, Brad Tonkes and Stephan Chalup. The main
part of this work was carried out while the first au-
thor was at the Department of Computer Science and
Electrical Engineering, University of Queensland, and
supported by a grant from the Australian Research
Council.

Notes

1. It is important to acknowledge that human language users do
not tolerate many levels of center embedding. This is sometimes
referred to as the performance aspect of the language. However,
at the core of many linguisitic theories (including Chomsky’s
generative grammar; see [1]) is language competence (in which
language is genuinely recursive).

2. Note, however, that many of the convergence proofs for Iterated
Function Systems rely on linearity of the automorphisms.

3. Several different learning rates were tested of which 0.1 was close
to optimal for both solution types.

4. If only one intervening substring is allowed, anbn is generated.
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