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Abstract—In this paper, we build upon a previously proposed
neuroevolution framework to evolve deep convolutional models.
Specifically, the genome encoding and the crossover operator
are extended to make them applicable to layered networks. We
also propose a convolutional layer layout which allows kernels
of different shapes and sizes to coexist within the same layer,
and present an argument as to why this may be beneficial.
The proposed layout enables the size of individual kernels
within a layer to be evolved with a corresponding new mutation
operator. The framework employs a hybrid optimisation strategy
involving structural changes through epigenetic evolution and
weight update through backpropagation in a population-based
setting. Experiments on several image classification benchmarks
demonstrate that the crossover operator is sufficiently robust to
produce increasingly performant offspring even when the parents
are trained on only a small random subset of the training
dataset in each epoch, thus providing direct confirmation that
learned features and behaviour can be successfully transferred
from parent networks to offspring in the next generation.

I. Introduction
Neuroevolution (NE), or the process of evolving the structure
and/or the weights of neural networks (NNs), has matured into
a viable and versatile optimisation tool over the past three
decades. Evolution tends to converge slowly and generally
requires a large number of evaluations, so early work on
NE was limited to relatively small networks [1], [2]. As
evolutionary algorithms grew in sophistication and the power
and availability of hardware improved, NE was able to achieve
excellent results in tasks of varying complexity [3], with a
number of incremental improvements in genome encoding and
evolution efficiency (e.g., Symbiotic Adaptive NeuroEvolution
(SANE) [2], Enforced Sub-Populations (ESP) [4], Evolution
Strategy with Covariance Matrix Adaptation (CMA-ES)
[5], NeuroEvolution of Augmenting Topologies (NEAT) [6]
and Cooperative Synapse NeuroEvolution (CoSyNE) [7])
seen around the turn of the century [8]. The success of
NEAT gave rise to variants such as Hypercube-based NEAT
(HyperNEAT), which uses NEAT to evolve a Compositional
Pattern-Producing Network (CPPN) as a compact indirect
encoding of the actual phenotype [9], [10]. Interestingly,
CPPNs can evolve not only the structure and weights but
also the transfer function of the NN nodes, which is a
somewhat rare mutation operation in NE. More recently,
Cartesian Genetic Programming (CGP) has been applied to
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directed graphs (rather than tree-based structures, which are
commonly used in GP) to evolve both feed-forward and
recurrent NNs [11] as well as heterogeneous networks with
evolved transfer functions (similar to CPPNs) [12], which have
achieved excellent results on dynamic control and classification
tasks.

Within the last few years, research on NE has expanded
from tasks which could be solved by evolved networks
with relatively few weights, such as pole balancing [13]
and robot maze navigation in a synthetic environment [14],
to more complex visual tasks such as image classification
[15]. Importantly, recognising the advantages of evolution
as a global optimiser, there has been a paradigm shift
towards utilising NE as an optimiser for the network structure
in combination with backpropagation (BP) to fine-tune the
network weights. For instance, deep convolutional NNs
(CNNs) with multiple layers and millions of parameters have
been evolved for tasks ranging from image classification
[16], [17], image captioning [17] (using an evolved deep
Long Short-Term Memory (LSTM) network) and even
applications in particle physics (neutron scattering model
selection) [18]. A differentiable version of CPPN was proposed
in [19] to efficiently compress the representation of deep
CNNs. Furthermore, genetic algorithms [20], particle swarm
optimisation (PSO) [21] and GP [22] have also demonstrated
excellent results on searching for optimal CNN structures for
image classification tasks. In [23], an additional degree of
complexity was explored by allowing local and long-range
recurrent feedback connections to be discovered by evolution.
As an extreme example of parallel NE, in [24] a massively
parallel distributed environment was set up on top of the
BOINC1 platform to evolve highly optimised convolutional
networks that achieve state-of-the-art performance on the
MNIST dataset with a reported accuracy of 99.43%.

Evolution is commonly used to optimise the network
architecture and minimise the number of parameters without
compromising performance. For example, evolved CNN
topologies have achieved the highest accuracy on an image
classification task (Fashion-MNIST) compared to ten other
popular models (including AlexNet and GoogLeNet) with
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a small fraction of the weights of the largest compared
model (GoogLeNet) [25]. Similar results (up to 12-fold
reduction in the number of parameters without loss of
accuracy) were achieved through iterative connection pruning
and retraining of large pretrained models (such as VGG-
16 and AlexNet) on image classification tasks [26]. Another
interesting approach proposed recently is MetaQNN [27],
where state-of-the-art performance on image classification
tasks is achieved with simpler network architectures discovered
through reinforcement learning (RL). Although not using
evolution, the latter two examples clearly demonstrate the
merit of architecture search and further strengthen the case
for exploring new avenues for research on NE. Despite the
fact that evolution is usually used for optimising the structure
rather than the weights, it was recently demonstrated [28] that
evolution strategies can successfully optimise the weights of
a NN with millions of parameters, achieving results rivalling
those obtained with RL on a number of OpenAI Gym 3D tasks
and Atari games while offering a number of advantages such
as higher performance under distributed training and lower
sensitivity to the temporal scale of the simulation.

II. Background
In previous research [29], we proposed a NE framework
(named Cortex) which is based on a direct genotype encoding
using the ordered number of nodes in an unstructured network
as a straightforward metric for matching network topologies
during crossover. In this paper, this framework is extended
to make it applicable to deep layered NNs, with particular
focus on deep CNNs. This section provides a brief overview
of a typical CNN architecture and the Cortex NE framework
(particularly genome encoding, speciation and crossover),
which are extended in several ways in III to make them
applicable to deep CNN evolution.

A. Convolutional networks
Convolutional networks have enjoyed an exponential surge in
popularity since they have demonstrated extremely high per-
formance in various domains of machine learning (particularly
classification tasks relying on pattern recognition), such as
document recognition [30] and image classification [31], [32].
The canonical convolutional network architecture consists of
one or more feature extraction layers followed by one or more
classification (fully connected; FC) layers (Fig. 1).

Convolutional layers are characterised by their kernel size K ,
stride S and padding P (Fig. 2), where the kernel size is
regarded as a property of the layer itself. In this study, the
extent of the kernel in the width and height dimensions is
taken as a property of each individual kernel, which enables
kernels of different sizes and shapes to be evolved.

B. Cortex NE framework
In Cortex, a distinction is made between a genome (a ‘skeleton’
of ordered nodes shared by all networks with the same
number of nodes; Fig. 3a), a genotype (a genome with
added connections but without weight information; Fig. 3b)
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Fig. 1. A typical convolutional NN architecture. The first layer convolves
the input with a set of kernels (filters) to obtain a shift-invariant response
map of the input. The kernels in each convolutional layer have dimensionality
D×W ×H , where W and H are the width and height of the kernel and D is
the number of input channels (i.e., the convolution ‘depth’). By convention, all
kernels in a convolutional layer have the same dimensions, so the kernel size
effectively becomes an attribute of the layer itself. In addition, the number
of channels is taken as the number of input maps in the previous layer. In
the example above, D represents the number of channels for kernels in layer
Conv2. The classification part consists of one or more fully connected layers.
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Fig. 2. An illustration of a convolution operation in one dimension. A kernel
with size K is slid across the input, and the dot product of the kernel and
the patch of the input that it covers is computed as the response of the kernel
for that patch. The stride S determines how many tiles the kernel is shifted
by at each step, and the padding P determines the offset of the convolution
operation (i.e., whether or not it is aligned with the edge of the input). Both S
and P determine the size of the response. (a~c) Kernel responses for different
values of K , S and P.

and a phenotype (a genotype with weights assigned to all
connections; Fig. 3c). The genome is used for speciation,
which is a form of niching introduced together with NEAT
[33] as way to group similar network genomes. Speciation
was designed to improve the chance of survival of networks
after structural mutations (such as adding or removing nodes or
connections), which are likely to reduce the network’s fitness
initially, even though they might be beneficial in the long run.
Using this type of speciation, individuals compete only with
other individuals in the same species rather than with the entire
ecosystem2, which increases the chance of survival of unfit
individuals.

The genotypes defined by a particular genome (species) are
used for crossover, which is convenient because the nodes in
the genotype are ordered, meaning that all genotypes can be
aligned automatically. Although the only difference between a
genotype and a phenotype is that in the latter all connections
have weights assigned to them, the weights do not play a role
in determining which genes are transferred to the offspring
during crossover. Connections are inherited by sampling the

2In Cortex, a group of networks belonging to the same species is referred
to as a population, and a group of two or more coexisting populations is
referred to as an ecosystem.
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Fig. 3. (a) A Cortex genome (an ordered array of nodes), (b) a corresponding
genotype (a genome with added inward connections, but no weights assigned
to them) and (c) a complete phenotype (a NN with weights assigned to all
connections).

parent genotypes with probabilities proportional to the parents’
relative fitness values (cf. (2)). If a connection exists in both
parents, the offspring is more likely to inherit the connection
weight from the fitter parent, whereas if a connection exists
in only one parent, that parent’s relative fitness is used as a
probability to check if the connection should be inherited or
skipped altogether.

In Cortex, the number of nodes in the genome is used as the
sole criterion for speciation. A welcome side effect of this
speciation technique is that the ecosystem can be initialised
with more than one species from the onset, which facilitates
exploration and promotes diversity.

Arguably, the most beneficial aspect of matching network
topologies based on the ordered number of nodes is in
regard to crossover, which is guaranteed to produce functional
offspring containing only genes from the parents, without the
need to introduce new connections or prune existing ones
(Fig. 4). Although the benefits of this are less obvious for
unstructured networks since in general they do not impose any
restrictions on the dimensionality of the fan-in and the fan-out
of individual nodes, it becomes important for layered networks,
where every layer expects the input to have a certain shape and
size. This issue was considered, for example, in [18], where the
fan-in dimensionality of layer modules of incompatible size
was adjusted in order to produce a functional model.

It should be noted that in Cortex weights are inherited
unaltered from the parent networks rather than being initialised
at every generation. In this context, the evolution mode in
Cortex is epigenetic (or Lamarckian) since offspring effectively
inherit traits that the parent networks have acquired during
their lifetime.

III. Evolving deep convolutional models
In this study, the same topology matching and speciation
scheme is applied to layered networks, which ensures that
crossover between two layered networks preserves the input
dimensionality of nodes and layers. This allows nodes together
with all of their input connections to be treated as indelible
genes which can be transferred unaltered from the parents
to the offspring (Fig. 5). In layered networks, layers can
be viewed as chromosomes containing a number of genes
(nodes). Two species are considered identical if they have the
same number of layers of each type (convolutional and FC),
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Fig. 4. Crossover operation between unstructured parent networks with a
matching number of nodes. (a, b) Parents participating in the crossover and
(c) the resulting offspring. Nodes in the genotype are ordered, which aids with
topology matching during crossover.
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Fig. 5. Crossover between layered networks with matching number of nodes
in each layer is guaranteed to preserve the dimensionality of each layer’s
input. This means that nodes can be transferred together with all of their input
connections from the parents to the offspring without modification. In the case
of convolutional layers, each kernel represents a node that can be inherited
from the parent. Therefore, being able to manipulate individual kernels in a
convolutional layer is essential (cf. III-E).

each containing the same number of nodes. However, when
speciation is not used, it may become necessary to add or
remove nodes (and corresponding input connections) to ensure
that the input dimensionalities of layers in the offspring are
correct, which may result in a lower overall fitness of new
offspring. To test this intuition, the experiments presented in
IV were performed with speciation enabled and disabled.

In the proposed framework, a population of deep CNNs
is initialised and subsequently evolved over a number of
generations. A single generation consists of several procedures,
starting with training and evaluating all networks, followed
by calibration, evolution (mutation and crossover), and finally
culling. These procedures are described in more detail below.

A. Ecosystem initialisation
With speciation enabled, the initial networks in the ecosystem
are distributed evenly among the initial number of species,
where each network in a species is initialised according to
the species genome. The first species always has a minimal
genome (containing only an output layer looking directly at the
input). Each subsequent species is generated from an isolated
network (i.e., a randomly generated network which does not
belong to any species) which is mutated randomly until its
genome does not match that of any of the existing species. The
isolated network’s genome is then used to generate the next



species, and so on until the preset number of initial species is
reached.

With speciation disabled, the initial ecosystem is essentially
treated as a single species regardless of the genome. Networks
are generated one at a time with a minimal genome (just
an output layer), and a random mutation is applied to each
network to promote initial diversity.

The shape of each kernel is initialised by sampling a weighted
distribution of kernel shapes. Each shape is assigned a
probability weighting pw,h inversely proportional to the area
of the corresponding kernel computed as the product of its
width and height dimensions dw and dh (not considering the
number of channels):

pw,h = exp(−
∏
w,h

dwdh) (1)

For example, a kernel of size 3 × 3 would have a probability
weighting of exp(−9) (≈ 0.00012). The same procedure is used
to initialise the stride of convolutional layers. The motivation
for this initialisation method is to ensure that most networks
start with minimal kernels and strides and increase them over
the course of the evolution. Kernel and stride mutations are
described in more detail in III-E.

B. Training and evaluation
All networks are trained with standard BP with Adadelta as
the optimiser by default, which is chosen because it does not
require the learning rate to be set manually. The classification
accuracy on the test set is used as the absolute fitness.

C. Calibration
Before the evolution step, the fitness values and complexity of
all networks are scaled to fall between 0 and 1 by computing
the mean µ f and standard deviation σf of the fitness values of
networks in the species (or the entire ecosystem if speciation
is disabled). Then, the relative fitness fr (ni) for network ni is
computed from its absolute fitness fa(ni) as follows:

fr (ni) = g

(
fa(ni) − µ f
σf

)
(2)

where g denotes the logistic function. Scaling the fitness to a
value between 0 and 1 enables the relative fitness to be used
as a probability for various random operations.

D. Mutation
Direct addition and removal of layers (both convolutional and
fully connected) and nodes (in convolutional layers, a node
is defined as a single kernel) is allowed, as well as changing
the size of individual kernels and the stride of convolutional
layers. For the kernel size and stride parameters, mutation is
applied to a randomly selected dimension with probability as
outlined below.

Structural mutations (adding or removing a node or a layer,
resizing a kernel or resizing the stride parameter of a

Concatenated responses

1 × 1 convolutions 3 × 3 convolutions 5 × 5 convolutions Maxpool

Input

Fig. 6. A high-level representation of an Inception module. The input is
convolved with kernels of multiple sizes, and the results are concatenated
before being fed into the next layer.

convolutional layer) are performed by sampling mutation
types from a weighted probability distribution. The probability
weighting of each mutation type is inversely proportional to an
estimate of how many connections in the network the mutation
would affect. For stride resizing, we use an estimate of how
many output nodes in convolutional layers would be affected:

player ∝
1

µc(µn + σn)
(3)

pnode ∝
1
µc

(4)

pstride ∝
1

Nclµo
(5)

pkernel ∝
1

Nk Ak

(6)

where µc is the mean number of connections per node, µn
and σn are the mean and standard deviation of the node count
per layer, Ncl is the number of convolutional layers, µo is the
mean number of output nodes per convolutional layer, Nk is
the mean number of kernels3, and Ak is the mean kernel area
(W × H) in the network’s convolutional layers. All of these
probability weightings are computed by using statistics only
for the network being mutated.

E. Evolving convolutional layer parameters
As mentioned above, it is usually assumed that the kernel size
is a property of the layer rather than individual kernels. In
other words, all kernels in the same layer usually have the
same shape and size. However, the recently proposed Inception
module architecture (Fig. 6) [32] breaks this trend by using
kernels of different size (1 × 1, 3 × 3 and 5 × 5 in the original
paper) to convolve the input of some of the layers, and the
outputs of all the kernels are concatenated to produce the final
output of the layer. The GoogLeNet implementation of the
Inception architecture won the 2014 ILSVRC4 challenge with
a top-5 error rate of 5%.

3The experiments below were conducted with the mean number of all
nodes (Nn) instead of Nk due to an oversight. However, in practical terms
this did not significantly change the ratio of the corresponding weights in the
weighted distribution.

4ImageNet Large Scale Visual Recognition Competition
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Fig. 7. (a) A layer containing square kernels with the same size (7× 7 tiles).
The kernel size is essentially a property of the layer. (b) A layer with kernels
of various shapes and sizes stacked along a line passing through the central
element (marked as a darker tile).

Inspired by the concept of convolving the input with kernels
of various sizes, we go one step further and consider
convolutional layers containing kernels of different shapes,
where the shape is taken as a property of individual kernels
rather than the entire layer. Below, we use kernel shape instead
of kernel size to indicate that the kernel might not be square.
Specifically, under the mild assumption that kernels have an
odd number of tiles in all dimensions (e.g., 3 × 7 for a 2D
kernel), all kernels in a layer can be stacked along a line
passing through their central element (Fig. 7).

The motivation behind this design is that having kernels with
different shapes in the same layer allows the layer to readily
‘notice’ certain features that would otherwise be masked if
all kernels had the same shape. For instance, long skinny
kernels can act as sharp edge detectors without pollution from
neighbouring pixels, and pairs of such kernels that extend in
different dimensions can act as detectors for crosshair-shaped
features (Fig. 8a). Furthermore, pairs of kernels that differ by
one or more tiles in each dimension (for example, 7 × 7 and
5× 5) would effectively act as enclosure detectors for features
that surround the central receptive field shared by the two
kernels (Fig. 8b). In the same line of thought, large kernels can
provide the next layer with contextual information for the finer,
sharper features detected by smaller kernels (Fig. 8c). In other
words, combinations of small and large kernels can reduce the
confusion arising from having a lot of fine-grained features
obtained from small kernels in the previous layer which cannot
be easily associated with each other for lack of longer-range
dependency information from one layer to the next.

Viewing the kernel shape as a property of each kernel allows
us to introduce a new kernel shape mutation operator which
affects individual kernels rather than the entire layer. Although
the implementation of such irregularly shaped layers is fairly
straightforward (it requires keeping the kernels as separate
tensors and stacking them into a single weight tensor with
dimensions equal to the largest dimensions of those kernels
along the line passing through the central tile right before
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Fig. 8. (a) A pair of two long skinny kernels spanning orthogonal dimensions
can detect intersecting (crosshair-shaped) features. (b) Detecting enclosures
within a single layer is possible by subtracting the activations of two kernels
of different shapes. (c) Large kernels can provide contextual information for
features extracted by smaller kernels. This information becomes immediately
available to the next layer.

evaluation), none of the existing deep learning libraries support
such operations out of the box due to the assumption that
the layer has a consistent shape. For example, in the case of
2D convolution, a layer is usually implemented a 4D tensor
of shape N × D ×W × H, where N is the batch size, D is the
number of channels, and W×H is the shape (width and height)
of the convolutional kernel. Consequently, it was necessary
to use a library which is flexible enough to allow for such a
modified evaluation procedure to be implemented while being
efficient enough to minimise the impact of the extra stacking
operation (cf. III-H).

Kernels are mutated by either growing or shrinking either the
width or height of a single kernel by 2. For example, a 3 × 5
kernel could grow into a 5×5 or a 3×7 kernel by adding a 1×5
or a 3 × 1 block of tiles on both sides of the existing kernel
along the width or height dimension, respectively. In this way,
the functionality of the central part of the kernel is preserved
while ensuring that the width and height remain odd so that
all kernels in the same layer can be stacked along a line passing
through the central tile of each kernel. All kernels always span
the full depth of the input (i.e., all input channels), and the
number of channels does not participate in mutations. Kernels
are not allowed to grow larger than half of the input in width
or height, and the minimal kernel size is naturally 1 × 1.

The stride of convolutional layers is evolved by growing or
shrinking the stride parameter by 1 in the width or height
dimension. Stride mutations are very disruptive as they do
change the output size of the mutated layer and all layers
above it, and for that reason stride mutations are much rarer
that kernel mutations. The padding parameter is not mutated.
Instead, it is set to half of the size of the largest kernel in
each dimension (rounded down) to ensure that the size of the
response of the convolutional layer is the same as the size of
the input regardless of the shapes and sizes of the kernels (cf.
Fig. 2c). This is important because otherwise kernel mutation
might have a far-reaching effect similar to stride mutation.



F. Crossover
The procedure outlined in II-B is used for crossover, regardless
of whether speciation is enabled or disabled. With speciation
disabled, crossover proceeds by iterating over the layers in
the two parents and subsequently iterating over nodes in each
layer. If one of the networks happens to contain fewer layers
of a particular type than the other, the excess layers of that
type from the larger parent are inherited unaltered with a
probability proportional to the fitness of the larger parent. The
same principle is applied to nodes in each layer in case of
layer size mismatch.

With speciation enabled, crossover is restricted to networks
within the same species. At the crossover step, all networks in a
species are selected to be parents with probability proportional
to their respective relative fitness values (cf. III-C). This is
done in order to give all networks a chance to reproduce
while ensuring that networks with higher fitness would have a
better chance to do so. With speciation disabled, any network
can participate in crossover with any other network in the
ecosystem. In this case, we adopt the following measure for
the similarity of the genomes of two networks ni and nj :

sni ,n j =
Oi, j

Ni + Nj − Oi, j
(7)

where Oi, j is the total intersection and Ni and Nj are the total
number of nodes in the genomes. The total intersection Oi, j

is computed as

Oi, j =
∑
k

Lk(ni) ∩ Lk(nj) (8)

where Lk(ni)∩Lk(nj) is the intersection of the k th layer of the
same type (i.e., convolutional or fully connected) in networks
ni and nj in terms of number of nodes. For networks with the
same number of layers of each type and the same number
of nodes in each layer, this similarity measure is 1, which
coincides with the case where speciation is enabled. Since
sni ,n j ∈ [0,1], it can be used as a probability for crossover.

G. Culling
Once the ecosystem grows beyond the preset limit as a result
of crossover, a culling procedure takes place to reduce the
ecosystem size. New offspring are guaranteed to survive, as
well as the champion for each species (or the ecosystem
champion with speciation disabled). All other networks
are sampled from a weighted distribution with probability
weighting pcull(ni) for network ni computed as follows:

pcull(ni) =
age(ni)

fr (ni)cr (ni)
(9)

where age(ni) is the age of network ni in terms of epochs.
The culling continues by selecting networks one by one until
the ecosystem size limit is reached.

H. PyCortex NE platform
We developed a NE platform (PyCortex) which implements
the above framework, including a mutation operation capable
of altering the size of individual kernels as outlined in III-E
as well as other common mutation operations (adding and
removing nodes and entire layers and mutating the stride
of convolutional layers). In essence, PyCortex provides a
convenient interface to an established deep learning platform
(PyTorch5) and can be used for direct evolution of both
regular and convolutional deep NNs by abstracting the
computational details of the crossover and mutation operations.
Each evolved network is a valid model which can be evaluated
directly in PyTorch, harnessing all the effort that has been
invested into making the platform efficient and flexible.
At present, PyCortex employs a hybrid strategy where the
network structure is evolved while weights are optimised
with BP. However, PyTorch provides easy access to all
learnable parameters in a model, which paves the way to
testing alternative weight optimisation algorithms, such as
evolutionary strategies. The proposed platform is released as
an open-source project6 to facilitate research in NE. We hope
that as it matures it can serve as a standard tool for prototyping
and benchmarking novel NE algorithms.

IV. Experiments
We conducted experiments on several image classification
tasks to test the feasibility of the proposed framework with
respect to deep convolutional models. Following the insight
in [34], the layer types were limited to convolutional and
fully connected, without pooling layers. All experiments
were performed with and without speciation to test whether
crossover in the case without speciation would result in
lower offspring fitness (cf. Fig. 5). All other configuration
options were identical across the experiments. With speciation
enabled, ecosystems were initialised with 8 species, and a hard
limit of 16 species was used in all experiments.

The experiments were conducted with initial and maximal
ecosystem size of 64 and 111, respectively7. Connection
weights were drawn from a normal distribution with mean
0 and standard deviation of 0.1, both during ecosystem
initialisation and when any new connections were added
through mutations.

Two important points about the training procedure are worth
emphasising.

• At each generation (training epoch), each network in the
ecosystem was trained on a random 10% subset of

5PyTorch was chosen for its flexible interface which allows network
evaluation graphs to be generated at runtime, which was essential for the
efficient implementation of convolutional layers with varying kernel sizes.

6PyCortex repository on GitLab.
7The number 111 was an artefact of the cluster configuration. The goal

was to ensure that each network had a dedicated CPU core for evaluation.
Each node on the particular cluster we used contains 28 cores, and four nodes
were used for each experiment, raising the total core count to 112. However,
one core was reserved for the master MPI process, bringing the total number
of available cores to 111.

https://gitlab.com/cantordust/pycortex


the training data, after which it was evaluated on the
entire test set. The accuracy on the test set was used
as the absolute fitness of that network. The decision to
use a small random portion of the data for training was
motivated by the aim to examine whether crossover can
transfer learned features to the offspring in an epigenetic
evolution scenario. For that purpose, all new offspring
were evaluated on the test set prior to commencing
training with BP.

• We used a relatively large training batch size of 128.
Large training batches tend to produce solutions which
converge to ‘sharp’ minima [35], with a negative impact
on generalisation. Hence, it was of particular interest
to examine whether the perturbations introduced by the
mutation and crossover operations would still allow the
networks to generalise well even with a large batch size.

A. Datasets
Four commonly used datasets (MNIST [36], SVHN [37],
Fashion-MNIST [38]) and CIFAR-10 [39]) were used in the
experiments. All datasets have 10 classes. MNIST and SVHN
contain images of digits (preprocessed and grayscale in the
case of MNIST, natural RGB in the case of SVHN), while
Fashion-MNIST and CIFAR-10 contain images of 10 different
types of objects (preprocessed and grayscale in the case of
Fashion-MNIST, natural RGB in the case of CIFAR-10). This
allows us to compare potential differences arising from the use
of colour information. Each experiment was run 10 times for
100 generations per run.

B. Results
One of the key advantages of using an established platform
for evaluation is that all the tools available for that platform
can be readily used to track and analyse the learning progress
and other parameters. Specifically, we used the tensorboardX
module for saving epoch data in TensorBoard log format
directly from PyTorch, which has the added advantage of being
able to plot the data in real time. The results for the highest
fitness, average fitness and average offspring fitness before
BP for all experiments are summarised in Table I (results for
MNIST with speciation enabled are presented in Fig. 9).

V. Discussion
The evolved CNNs performed admirably on the MNIST
dataset, reaching an overall high scores of 98.32% and
98.14% with and without speciation, respectively, whereas the
highest score for the SVHN dataset was considerably lower
(although still above 80%). This reflects the higher difficulty
of classifying natural images versus pre-processed ones, as the
objective is the same in both cases (classifying digits). The
same trend can be observed in the case of Fashion-MNIST
and CIFAR-10, where it is even more pronounced.

The results in Table I reveal surprisingly small differences
for the highest recorded fitness between the experiments with
and without speciation. In previous research, we employed
speciation to protect mutated networks from being eliminated
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Fig. 9. Experiment results for the MNIST benchmark with speciation enabled.
(a) Highest fitness, (b) average fitness and (c) average fitness of new offspring
before BP.

from the ecosystem before they had had a chance to optimise
any new weights introduced by mutations. However, in
that case weights were optimised by evolution, whereas in
the above experiments the weights were optimised by BP,
which likely reduces the importance of speciation for this
particular purpose. Furthermore, the experiment logs (not
shown) revealed that in the experiments with speciation
disabled the parameter count increased steadily over the 100
epochs, whereas in those with speciation enabled it was
essentially stagnant and even decreased in a number of runs.
In all cases with speciation enabled, the logs also revealed
a large number of failed structural mutations (addition and



Table I
Highest value, mean and standard deviation recorded over 10 runs
after epoch 100 for the highest fitness, average fitness and average

offspring fitness before BP for each experiment.

Experiment
Highest
fitness

Average
fitness

Average offspring
fitness before BP

MNIST
(with speciation)

98.32%
(98.13 ± 0.15)

97.14%
(96.8 ± 0.4)

97.28%
(95.6 ± 1.8)

MNIST
(no speciation)

98.14%
(97.98 ± 0.13)

95.31%
(93.7 ± 1.1)

82.98%
(72.5 ±10.7)

SVHN
(with speciation)

82.84%
(79.86 ± 2.06)

76.9%
(70.2 ± 7.5)

77.25%
(66.5 ± 8.0)

SVHN
(no speciation)

81.20%
(80.22 ± 0.89)

70.62%
(66.5 ± 3.1)

55.53%
(44.4 ± 7.4)

Fashion-MNIST
(with speciation)

89.49%
(88.54 ± 0.70)

87.89%
(85.3 ± 1.4)

88.18%
(82.0 ± 4.3)

Fashion-MNIST
(no speciation)

88.88%
(88.44 ± 0.36)

85.53%
(83.3 ± 1.1)

83.61%
(64.9 ± 7.8)

CIFAR-10
(with speciation)

55.52%
(51.35 ± 3.44)

46.45%
(43.9 ± 4.8)

45.94%
(42.7 ± 5.1)

CIFAR-10
(no speciation)

54.4%
(52.44 ± 0.85)

43.87%
(41.9 ± 1.1)

35.8%
(32.4 ± 1.8)

removal of nodes and layers) due to reaching the limit on the
species count, which is likely the cause for the stagnation. In
this regard, the champions in all experiments were relatively
small (~105 parameters), which can at least partially explain
the low scores obtained on CIFAR-10 and, to a smaller
extent, SVHN and Fashion-MNIST. Nevertheless, for all four
datasets, the average overall fitness and the average offspring
fitness before BP at epoch 100 are higher in the cases with
speciation than in those without, but more experiments are
necessary in order to run a proper statistical analysis on the
significance level of this difference. In future work, we plan
to develop a more robust method for determining the mutation
rate for complexifying mutations in order to evolve much larger
models with potentially millions of parameters. We are also
working on a dynamic speciation limit which is designed
to altogether eliminate the need to set a hard species limit,
allowing the number of parameters to increase more rapidly
when speciation is enabled.

Perhaps the most satisfying part of the results is the average
offspring fitness before BP, which represents the performance
of new offspring evaluated before any training. As outlined
in IV, all networks were trained on a random 10% subset
of the training data at each epoch, which means that no
single network ever saw the entire dataset. However, over the
course of 100 epochs, practically all of the dataset would
have been collectively seen by the ecosystem. The only
way that this could be useful to new offspring would be
if crossover could successfully preserve and transfer learned
features by combining useful genes (nodes with all of their
input connections) from the parents into the offspring. The
results for the average offspring fitness before BP, which

increased steadily over the 100 epochs in all cases (cf. Fig.
9c; a similar trend was observed in all other experiments),
provides direct confirmation that this is in fact the case. There
is also a clear difference in the results for the offspring fitness
before BP between experiments with and without speciation,
which confirms the intuition presented in II-B that speciation
affects the fitness of new offspring by determining the way
genes and chromosomes are matched during crossover.

VI. Conclusion
This study extended previous research on NE and demon-
strated its applicability to the direct evolution of deep
convolutional models. A new convolutional layer layout which
allows kernels of different size and shape to coexist within
the same convolutional layer was also proposed, and a
corresponding mutation operator which can resize individual
kernels was introduced. A detailed analysis and visualisation of
the kernels in evolved CNNs will be presented in future work.
Furthermore, the crossover procedure previously proposed
for unstructured networks was extended to deep layered
networks, and its feasibility was demonstrated through image
classification experiments with evolved CNNs. Finally, a NE
platform which implements the proposed framework, including
crossover and kernel mutation operators for deep CNNs, was
developed on top of an established deep learning library
(PyTorch). This platform is released as an open-source project
with the aim to provide a common framework for prototyping,
evaluating and comparing NE algorithms.
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