Up to index of Isabelle/HOL/Jinja
theory TF_JVM = Typing_Framework_err + EffectMono + BVSpec:(* Title: HOL/MicroJava/BV/JVM.thy ID: $Id: TF_JVM.html 1910 2004-05-19 04:46:04Z kleing $ Author: Tobias Nipkow, Gerwin Klein Copyright 2000 TUM *) header {* \isaheader{The Typing Framework for the JVM}\label{sec:JVM} *} theory TF_JVM = Typing_Framework_err + EffectMono + BVSpec: constdefs exec :: "jvm_prog => nat => ty => ex_table => instr list => tyi' err step_type" "exec G maxs rT et bs ≡ err_step (size bs) (λpc. app (bs!pc) G maxs rT pc (size bs) et) (λpc. eff (bs!pc) G pc et)" locale JVM_sl = fixes P :: jvm_prog and mxs and mxl0 fixes Ts :: "ty list" and "is" and xt and Tr fixes mxl and A and r and f and app and eff and step defines [simp]: "mxl ≡ 1+size Ts+mxl0" defines [simp]: "A ≡ states P mxs mxl" defines [simp]: "r ≡ JVM_SemiType.le P mxs mxl" defines [simp]: "f ≡ JVM_SemiType.sup P mxs mxl" defines [simp]: "app ≡ λpc. Effect.app (is!pc) P mxs Tr pc (size is) xt" defines [simp]: "eff ≡ λpc. Effect.eff (is!pc) P pc xt" defines [simp]: "step ≡ err_step (size is) app eff" locale start_context = JVM_sl + fixes p and C assumes wf: "wf_prog p P" assumes C: "is_class P C" assumes Ts: "set Ts ⊆ types P" fixes first :: tyi' and start defines [simp]: "first ≡ Some ([],OK (Class C) # map OK Ts @ replicate mxl0 Err)" defines [simp]: "start ≡ OK first # replicate (size is - 1) (OK None)" section {* Connecting JVM and Framework *} lemma (in JVM_sl) step_def_exec: "step ≡ exec P mxs Tr xt is" by (simp add: exec_def) lemma special_ex_swap_lemma [iff]: "(? X. (? n. X = A n & P n) & Q X) = (? n. Q(A n) & P n)" by blast lemma ex_in_list [iff]: "(∃n. ST ∈ list n A ∧ n ≤ mxs) = (set ST ⊆ A ∧ size ST ≤ mxs)" by (unfold list_def) auto lemma singleton_list: "(∃n. [Class C] ∈ list n (types P) ∧ n ≤ mxs) = (is_class P C ∧ 0 < mxs)" by auto lemma set_drop_subset: "set xs ⊆ A ==> set (drop n xs) ⊆ A" by (auto dest: in_set_dropD) lemma Suc_minus_minus_le: "n < mxs ==> Suc (n - (n - b)) ≤ mxs" by arith lemma in_listE: "[| xs ∈ list n A; [|size xs = n; set xs ⊆ A|] ==> P |] ==> P" by (unfold list_def) blast declare is_relevant_entry_def [simp] declare set_drop_subset [simp] theorem (in start_context) exec_pres_type: "pres_type step (size is) A" (*<*) apply (insert wf) apply simp apply (unfold JVM_states_unfold) apply (rule pres_type_lift) apply clarify apply (rename_tac s pc pc' s') apply (case_tac s) apply simp apply (drule effNone) apply simp apply (simp add: Effect.app_def xcpt_app_def Effect.eff_def xcpt_eff_def norm_eff_def relevant_entries_def) apply (case_tac "is!pc") -- Load apply clarsimp apply (frule listE_nth_in, assumption) apply fastsimp -- Store apply fastsimp -- Push apply (fastsimp simp add: typeof_lit_is_type) -- New apply clarsimp apply (erule disjE) apply clarsimp apply clarsimp apply (erule allE)+ apply (erule impE, blast) apply (erule impE, blast) apply fastsimp -- Getfield apply (fastsimp dest: sees_field_is_type) -- Putfield apply fastsimp -- Checkcast apply fastsimp defer -- Return apply fastsimp -- Pop apply fastsimp -- IAdd apply fastsimp -- Goto apply fastsimp -- CmpEq apply fastsimp -- IfFalse apply fastsimp -- Throw apply fastsimp -- Invoke apply (clarsimp split: split_if_asm) apply fastsimp apply (erule disjE) prefer 2 apply fastsimp apply clarsimp apply (rule conjI) apply (drule (1) sees_wf_mdecl) apply (clarsimp simp add: wf_mdecl_def) apply arith done (*>*) declare is_relevant_entry_def [simp del] declare set_drop_subset [simp del] lemma lesubstep_type_simple: "xs [\<sqsubseteq>Product.le (op =) r] ys ==> set xs {\<sqsubseteq>r} set ys" (*<*) apply (unfold lesubstep_type_def) apply clarify apply (simp add: set_conv_nth) apply clarify apply (drule le_listD, assumption) apply (clarsimp simp add: lesub_def Product.le_def) apply (rule exI) apply (rule conjI) apply (rule exI) apply (rule conjI) apply (rule sym) apply assumption apply assumption apply assumption done (*>*) declare is_relevant_entry_def [simp del] lemma conjI2: "[| A; A ==> B |] ==> A ∧ B" by blast lemma (in JVM_sl) eff_mono: "[|wf_prog p P; pc < length is; s \<sqsubseteq>sup_state_opt P t; app pc t|] ==> set (eff pc s) {\<sqsubseteq>sup_state_opt P} set (eff pc t)" (*<*) apply simp apply (unfold Effect.eff_def) apply (cases t) apply (simp add: lesub_def) apply (rename_tac a) apply (cases s) apply simp apply (rename_tac b) apply simp apply (rule lesubstep_union) prefer 2 apply (rule lesubstep_type_simple) apply (simp add: xcpt_eff_def) apply (rule le_listI) apply (simp add: split_beta) apply (simp add: split_beta) apply (simp add: lesub_def fun_of_def) apply (case_tac a) apply (case_tac b) apply simp apply (subgoal_tac "size ab = size aa") prefer 2 apply (clarsimp simp add: list_all2_lengthD) apply simp apply (rule list_all2_dropI) apply (simp add: fun_of_def) apply (clarsimp simp add: norm_eff_def lesubstep_type_def lesub_def iff del: sup_state_conv) apply (rule exI) apply (rule conjI2) apply (rule imageI) apply (clarsimp simp add: Effect.app_def iff del: sup_state_conv) apply (drule (2) succs_mono) apply blast apply simp apply (erule effi_mono) apply simp apply assumption apply clarsimp apply clarsimp done (*>*) lemma (in JVM_sl) bounded_step: "bounded step (size is)" (*<*) apply simp apply (unfold bounded_def err_step_def Effect.app_def Effect.eff_def) apply (auto simp add: error_def map_snd_def split: err.splits option.splits) done (*>*) theorem (in JVM_sl) step_mono: "wf_prog wf_mb P ==> mono r step (size is) A" (*<*) apply (simp add: JVM_le_Err_conv) apply (insert bounded_step) apply (unfold JVM_states_unfold) apply (rule mono_lift) apply blast apply (unfold app_mono_def lesub_def) apply clarsimp apply (erule (2) app_mono) apply simp apply clarify apply (drule eff_mono) apply (auto simp add: lesub_def) done (*>*) lemma (in start_context) first_in_A [iff]: "OK first ∈ A" using Ts C by (force intro!: list_appendI simp add: JVM_states_unfold) lemma (in JVM_sl) wt_method_def2: "wt_method P C' Ts Tr mxs mxl0 is xt τs = (is ≠ [] ∧ size τs = size is ∧ OK ` set τs ⊆ states P mxs mxl ∧ wt_start P C' Ts mxl0 τs ∧ wt_app_eff (sup_state_opt P) app eff τs)" (*<*) apply (unfold wt_method_def wt_app_eff_def wt_instr_def lesub_def check_types_def) apply auto done (*>*) end
lemma step_def_exec:
err_step (length is) (%pc. app (is ! pc) P mxs Tr pc (length is) xt) (%pc. eff (is ! pc) P pc xt) == exec P mxs Tr xt is
lemma special_ex_swap_lemma:
(EX X. (EX n. X = A n & P n) & Q X) = (EX n. Q (A n) & P n)
lemma ex_in_list:
(EX n. ST : list n A & n <= mxs) = (set ST <= A & length ST <= mxs)
lemma singleton_list:
(EX n. [Class C] : list n (types P) & n <= mxs) = (is_class P C & 0 < mxs)
lemma set_drop_subset:
set xs <= A ==> set (drop n xs) <= A
lemma Suc_minus_minus_le:
n < mxs ==> Suc (n - (n - b)) <= mxs
lemma in_listE:
[| xs : list n A; [| length xs = n; set xs <= A |] ==> P |] ==> P
theorem exec_pres_type:
start_context P Ts p C ==> pres_type (err_step (length is) (%pc. app (is ! pc) P mxs Tr pc (length is) xt) (%pc. eff (is ! pc) P pc xt)) (length is) (states P mxs (1 + length Ts + mxl0))
lemma lesubstep_type_simple:
xs [<=Product.le op = r] ys ==> set xs {<=_r} set ys
lemma conjI2:
[| A; A ==> B |] ==> A & B
lemma eff_mono:
[| wf_prog p P; pc < length is; s <=_(sup_state_opt P) t; app (is ! pc) P mxs Tr pc (length is) xt t |] ==> set (eff (is ! pc) P pc xt s) {<=_sup_state_opt P} set (eff (is ! pc) P pc xt t)
lemma bounded_step:
bounded (err_step (length is) (%pc. app (is ! pc) P mxs Tr pc (length is) xt) (%pc. eff (is ! pc) P pc xt)) (length is)
theorem step_mono:
wf_prog wf_mb P ==> SemilatAlg.mono (JVM_SemiType.le P mxs (1 + length Ts + mxl0)) (err_step (length is) (%pc. app (is ! pc) P mxs Tr pc (length is) xt) (%pc. eff (is ! pc) P pc xt)) (length is) (states P mxs (1 + length Ts + mxl0))
lemma first_in_A:
start_context P Ts p C ==> OK ⌊([], OK (Class C) # map OK Ts @ replicate mxl0 Err)⌋ : states P mxs (1 + length Ts + mxl0)
lemma wt_method_def2:
wt_method P C' Ts Tr mxs mxl0 is xt τs = (is ~= [] & length τs = length is & OK ` set τs <= states P mxs (1 + length Ts + mxl0) & wt_start P C' Ts mxl0 τs & wt_app_eff (sup_state_opt P) (%pc. app (is ! pc) P mxs Tr pc (length is) xt) (%pc. eff (is ! pc) P pc xt) τs)