(* Title: HOL/MicroJava/BV/Product.thy ID: $Id: Product.html 1910 2004-05-19 04:46:04Z kleing $ Author: Tobias Nipkow Copyright 2000 TUM Products as semilattices *) header {* \isaheader{Products as Semilattices} *} theory Product = Err: constdefs le :: "'a ord => 'b ord => ('a × 'b) ord" "le rA rB ≡ λ(a1,b1) (a2,b2). a1 \<sqsubseteq>rA a2 ∧ b1 \<sqsubseteq>rB b2" sup :: "'a ebinop => 'b ebinop => ('a × 'b) ebinop" "sup f g ≡ λ(a1,b1)(a2,b2). Err.sup Pair (a1 \<squnion>f a2) (b1 \<squnion>g b2)" esl :: "'a esl => 'b esl => ('a × 'b ) esl" "esl ≡ λ(A,rA,fA) (B,rB,fB). (A × B, le rA rB, sup fA fB)" (*<*) syntax "@lesubprod" :: "'a × 'b => 'a ord => 'b ord => 'b => bool" ("(_ /<='(_,_') _)" [50, 0, 0, 51] 50) (*>*) syntax (xsymbols) "@lesubprod" :: "'a × 'b => 'a ord => 'b ord => 'b => bool" ("(_ /\<sqsubseteq>'(_,_') _)" [50, 0, 0, 51] 50) translations "p \<sqsubseteq>(rA,rB) q" == "p \<sqsubseteq>Product.le rA rB q" lemma unfold_lesub_prod: "x \<sqsubseteq>(rA,rB) y ≡ le rA rB x y" (*<*) by (simp add: lesub_def) (*>*) lemma le_prod_Pair_conv [iff]: "((a1,b1) \<sqsubseteq>(rA,rB) (a2,b2)) = (a1 \<sqsubseteq>rA a2 & b1 \<sqsubseteq>rB b2)" (*<*) by (simp add: lesub_def le_def) (*>*) lemma less_prod_Pair_conv: "((a1,b1) \<sqsubset>Product.le rA rB (a2,b2)) = (a1 \<sqsubset>rA a2 & b1 \<sqsubseteq>rB b2 | a1 \<sqsubseteq>rA a2 & b1 \<sqsubset>rB b2)" (*<*) apply (unfold lesssub_def) apply simp apply blast done (*>*) lemma order_le_prod [iff]: "order(Product.le rA rB) = (order rA & order rB)" (*<*) apply (unfold order_def) apply simp apply safe apply blast+ done (*>*) lemma acc_le_prodI [intro!]: "[| acc rA; acc rB |] ==> acc(Product.le rA rB)" (*<*) apply (unfold acc_def) apply (rule wf_subset) apply (erule wf_lex_prod) apply assumption apply (auto simp add: lesssub_def less_prod_Pair_conv lex_prod_def) done (*>*) lemma closed_lift2_sup: "[| closed (err A) (lift2 f); closed (err B) (lift2 g) |] ==> closed (err(A×B)) (lift2(sup f g))"; (*<*) apply (unfold closed_def plussub_def lift2_def err_def' sup_def) apply (simp split: err.split) apply blast done (*>*) lemma unfold_plussub_lift2: "e1 \<squnion>lift2 f e2 ≡ lift2 f e1 e2" (*<*) by (simp add: plussub_def) (*>*) lemma plus_eq_Err_conv [simp]: "[| x∈A; y∈A; semilat(err A, Err.le r, lift2 f) |] ==> (x \<squnion>f y = Err) = (¬(∃z∈A. x \<sqsubseteq>r z ∧ y \<sqsubseteq>r z))" (*<*) proof - have plus_le_conv2: "!!r f z. [| z ∈ err A; semilat (err A, r, f); OK x ∈ err A; OK y ∈ err A; OK x \<squnion>f OK y \<sqsubseteq>r z|] ==> OK x \<sqsubseteq>r z ∧ OK y \<sqsubseteq>r z" (*<*) by (rule semilat.plus_le_conv [THEN iffD1]) (*>*) case rule_context thus ?thesis apply (rule_tac iffI) apply clarify apply (drule OK_le_err_OK [THEN iffD2]) apply (drule OK_le_err_OK [THEN iffD2]) apply (drule semilat.lub[of _ _ _ "OK x" _ "OK y"]) apply assumption apply assumption apply simp apply simp apply simp apply simp apply (case_tac "x \<squnion>f y") apply assumption apply (rename_tac "z") apply (subgoal_tac "OK z: err A") apply (frule plus_le_conv2) apply assumption apply simp apply blast apply simp apply (blast dest: semilat.orderI order_refl) apply blast apply (erule subst) apply (unfold semilat_def err_def' closed_def) apply simp done qed (*>*) lemma err_semilat_Product_esl: "!!L1 L2. [| err_semilat L1; err_semilat L2 |] ==> err_semilat(Product.esl L1 L2)" (*<*) apply (unfold esl_def Err.sl_def) apply (simp (no_asm_simp) only: split_tupled_all) apply simp apply (simp (no_asm) only: semilat_Def) apply (simp (no_asm_simp) only: semilat.closedI closed_lift2_sup) apply (simp (no_asm) only: unfold_lesub_err Err.le_def unfold_plussub_lift2 sup_def) apply (auto elim: semilat_le_err_OK1 semilat_le_err_OK2 simp add: lift2_def split: err.split) apply (blast dest: semilat.orderI) apply (blast dest: semilat.orderI) apply (rule OK_le_err_OK [THEN iffD1]) apply (erule subst, subst OK_lift2_OK [symmetric], rule semilat.lub) apply simp apply simp apply simp apply simp apply simp apply simp apply (rule OK_le_err_OK [THEN iffD1]) apply (erule subst, subst OK_lift2_OK [symmetric], rule semilat.lub) apply simp apply simp apply simp apply simp apply simp apply simp done (*>*) end
lemma unfold_lesub_prod:
x <=(rA,rB) y == Product.le rA rB x y
lemma le_prod_Pair_conv:
((a1, b1) <=(rA,rB) (a2, b2)) = (a1 <=_rA a2 & b1 <=_rB b2)
lemma less_prod_Pair_conv:
((a1, b1) <_(Product.le rA rB) (a2, b2)) = (a1 <_rA a2 & b1 <=_rB b2 | a1 <=_rA a2 & b1 <_rB b2)
lemma order_le_prod:
order (Product.le rA rB) = (order rA & order rB)
lemma acc_le_prodI:
[| acc rA; acc rB |] ==> acc (Product.le rA rB)
lemma closed_lift2_sup:
[| closed (err A) (lift2 f); closed (err B) (lift2 g) |] ==> closed (err (A <*> B)) (lift2 (Product.sup f g))
lemma unfold_plussub_lift2:
e1 +_(lift2 f) e2 == lift2 f e1 e2
lemma plus_eq_Err_conv:
[| x : A; y : A; semilat (err A, Err.le r, lift2 f) |] ==> (x +_f y = Err) = (¬ (EX z:A. x <=_r z & y <=_r z))
lemma err_semilat_Product_esl:
[| semilat (sl L1); semilat (sl L2) |] ==> semilat (sl (Product.esl L1 L2))