Theory Err

Up to index of Isabelle/HOL/Jinja

theory Err = Semilat:

(*  Title:      HOL/MicroJava/BV/Err.thy
    ID:         $Id: Err.html 1910 2004-05-19 04:46:04Z kleing $
    Author:     Tobias Nipkow
    Copyright   2000 TUM

The error type
*)

header {* \isaheader{The Error Type} *}

theory Err = Semilat:

datatype 'a err = Err | OK 'a

types 'a ebinop = "'a => 'a => 'a err"
types 'a esl = "'a set × 'a ord × 'a ebinop"

consts
  ok_val :: "'a err => 'a"
primrec
  "ok_val (OK x) = x"

constdefs
  lift :: "('a => 'b err) => ('a err => 'b err)"
  "lift f e ≡ case e of Err => Err | OK x => f x"

  lift2 :: "('a => 'b => 'c err) => 'a err => 'b err => 'c err"
  "lift2 f e1 e2 ≡
  case e1 of Err  => Err | OK x => (case e2 of Err => Err | OK y => f x y)"

  le :: "'a ord => 'a err ord"
  "le r e1 e2 ≡
  case e2 of Err => True | OK y => (case e1 of Err => False | OK x => x \<sqsubseteq>r y)"

  sup :: "('a => 'b => 'c) => ('a err => 'b err => 'c err)"
  "sup f ≡ lift2 (λx y. OK (x \<squnion>f y))"

  err :: "'a set => 'a err set"
  "err A ≡ insert Err {OK x|x. x∈A}"

  esl :: "'a sl => 'a esl"
  "esl ≡ λ(A,r,f). (A, r, λx y. OK(f x y))"

  sl :: "'a esl => 'a err sl"
  "sl ≡ λ(A,r,f). (err A, le r, lift2 f)"

syntax
  err_semilat :: "'a esl => bool"
translations
  "err_semilat L" == "semilat(Err.sl L)"

consts
  strict  :: "('a => 'b err) => ('a err => 'b err)"
primrec
  "strict f Err    = Err"
  "strict f (OK x) = f x"

lemma err_def':
  "err A ≡ insert Err {x. ∃y∈A. x = OK y}"
(*<*)
proof -
  have eq: "err A = insert Err {x. ∃y∈A. x = OK y}"
    by (unfold err_def) blast
  show "err A ≡ insert Err {x. ∃y∈A. x = OK y}" by (simp add: eq)
qed
(*>*)

lemma strict_Some [simp]: 
  "(strict f x = OK y) = (∃z. x = OK z ∧ f z = OK y)"
(*<*) by (cases x, auto) (*>*)

lemma not_Err_eq: "(x ≠ Err) = (∃a. x = OK a)" 
(*<*) by (cases x) auto (*>*)

lemma not_OK_eq: "(∀y. x ≠ OK y) = (x = Err)"
(*<*) by (cases x) auto   (*>*)

lemma unfold_lesub_err: "e1 \<sqsubseteq>le r e2 ≡ le r e1 e2"
(*<*) by (simp add: lesub_def) (*>*)

lemma le_err_refl: "∀x. x \<sqsubseteq>r x ==> e \<sqsubseteq>le r e"
(*<*)
apply (unfold lesub_def le_def)
apply (simp split: err.split)
done 
(*>*)

lemma le_err_trans [rule_format]:
  "order r ==> e1 \<sqsubseteq>le r e2 --> e2 \<sqsubseteq>le r e3 --> e1 \<sqsubseteq>le r e3"
(*<*)
apply (unfold unfold_lesub_err le_def)
apply (simp split: err.split)
apply (blast intro: order_trans)
done
(*>*)

lemma le_err_antisym [rule_format]:
  "order r ==> e1 \<sqsubseteq>le r e2 --> e2 \<sqsubseteq>le r e1 --> e1=e2"
(*<*)
apply (unfold unfold_lesub_err le_def)
apply (simp split: err.split)
apply (blast intro: order_antisym)
done 
(*>*)

lemma OK_le_err_OK: "(OK x \<sqsubseteq>le r OK y) = (x \<sqsubseteq>r y)"
(*<*) by (simp add: unfold_lesub_err le_def) (*>*)

lemma order_le_err [iff]: "order(le r) = order r"
(*<*)
apply (rule iffI)
 apply (subst order_def)
 apply (blast dest: order_antisym OK_le_err_OK [THEN iffD2]
              intro: order_trans OK_le_err_OK [THEN iffD1])
apply (subst order_def)
apply (blast intro: le_err_refl le_err_trans le_err_antisym
             dest: order_refl)
done 
(*>*)

lemma le_Err [iff]: "e \<sqsubseteq>le r Err"
(*<*) by (simp add: unfold_lesub_err le_def) (*>*)

lemma Err_le_conv [iff]: "Err \<sqsubseteq>le r e  = (e = Err)"
(*<*) by (simp add: unfold_lesub_err le_def  split: err.split) (*>*)

lemma le_OK_conv [iff]: "e \<sqsubseteq>le r OK x  =  (∃y. e = OK y ∧ y \<sqsubseteq>r x)"
(*<*) by (simp add: unfold_lesub_err le_def split: err.split) (*>*)

lemma OK_le_conv: "OK x \<sqsubseteq>le r e = (e = Err ∨ (∃y. e = OK y ∧ x \<sqsubseteq>r y))"
(*<*) by (simp add: unfold_lesub_err le_def split: err.split) (*>*)

lemma top_Err [iff]: "top (le r) Err";
(*<*) by (simp add: top_def) (*>*)

lemma OK_less_conv [rule_format, iff]:
  "OK x \<sqsubset>le r e = (e=Err ∨ (∃y. e = OK y ∧ x \<sqsubset>r y))"
(*<*) by (simp add: lesssub_def lesub_def le_def split: err.split) (*>*)

lemma not_Err_less [rule_format, iff]: "¬(Err \<sqsubset>le r x)"
(*<*) by (simp add: lesssub_def lesub_def le_def split: err.split) (*>*)

lemma semilat_errI [intro]: includes semilat
shows "semilat(err A, le r, lift2(λx y. OK(f x y)))"
(*<*)
apply(insert semilat)
apply (unfold semilat_Def closed_def plussub_def lesub_def 
              lift2_def le_def)
apply (simp add: err_def' split: err.split)
done
(*>*)

lemma err_semilat_eslI_aux:
includes semilat shows "err_semilat(esl(A,r,f))"
(*<*)
apply (unfold sl_def esl_def)
apply (simp add: semilat_errI[OF semilat])
done
(*>*)

lemma err_semilat_eslI [intro, simp]:
 "!!L. semilat L ==> err_semilat(esl L)"
(*<*) by(simp add: err_semilat_eslI_aux split_tupled_all) (*>*)

lemma acc_err [simp, intro!]:  "acc r ==> acc(le r)"
(*<*)
apply (unfold acc_def lesub_def le_def lesssub_def)
apply (simp add: wf_eq_minimal split: err.split)
apply clarify
apply (case_tac "Err : Q")
 apply blast
apply (erule_tac x = "{a . OK a : Q}" in allE)
apply (case_tac "x")
 apply fast
apply blast
done 
(*>*)

lemma Err_in_err [iff]: "Err : err A"
(*<*) by (simp add: err_def') (*>*)

lemma Ok_in_err [iff]: "(OK x ∈ err A) = (x∈A)"
(*<*) by (auto simp add: err_def') (*>*)

section {* lift *}

lemma lift_in_errI:
  "[| e ∈ err S; ∀x∈S. e = OK x --> f x ∈ err S |] ==> lift f e ∈ err S"
(*<*)
apply (unfold lift_def)
apply (simp split: err.split)
apply blast
done 
(*>*)

lemma Err_lift2 [simp]: "Err \<squnion>lift2 f x = Err"
(*<*) by (simp add: lift2_def plussub_def) (*>*)

lemma lift2_Err [simp]: "x \<squnion>lift2 f Err = Err"
(*<*) by (simp add: lift2_def plussub_def split: err.split) (*>*)

lemma OK_lift2_OK [simp]: "OK x \<squnion>lift2 f OK y = x \<squnion>f y"
(*<*) by (simp add: lift2_def plussub_def split: err.split) (*>*)


section {* sup *}

lemma Err_sup_Err [simp]: "Err \<squnion>sup f x = Err"
(*<*) by (simp add: plussub_def sup_def lift2_def) (*>*)

lemma Err_sup_Err2 [simp]: "x \<squnion>sup f Err = Err"
(*<*) by (simp add: plussub_def sup_def lift2_def split: err.split) (*>*)

lemma Err_sup_OK [simp]: "OK x \<squnion>sup f OK y = OK (x \<squnion>f y)"
(*<*) by (simp add: plussub_def sup_def lift2_def) (*>*)

lemma Err_sup_eq_OK_conv [iff]:
  "(sup f ex ey = OK z) = (∃x y. ex = OK x ∧ ey = OK y ∧ f x y = z)"
(*<*)
apply (unfold sup_def lift2_def plussub_def)
apply (rule iffI)
 apply (simp split: err.split_asm)
apply clarify
apply simp
done
(*>*)

lemma Err_sup_eq_Err [iff]: "(sup f ex ey = Err) = (ex=Err ∨ ey=Err)"
(*<*)
apply (unfold sup_def lift2_def plussub_def)
apply (simp split: err.split)
done 
(*>*)

section {* semilat (err A) (le r) f *}

lemma semilat_le_err_Err_plus [simp]:
  "[| x∈ err A; semilat(err A, le r, f) |] ==> Err \<squnion>f x = Err"
(*<*) by (blast intro: semilat.le_iff_plus_unchanged [THEN iffD1] 
                   semilat.le_iff_plus_unchanged2 [THEN iffD1]) (*>*)

lemma semilat_le_err_plus_Err [simp]:
  "[| x∈ err A; semilat(err A, le r, f) |] ==> x \<squnion>f Err = Err"
(*<*) by (blast intro: semilat.le_iff_plus_unchanged [THEN iffD1]
                   semilat.le_iff_plus_unchanged2 [THEN iffD1]) (*>*)

lemma semilat_le_err_OK1:
  "[| x∈A; y∈A; semilat(err A, le r, f); OK x \<squnion>f OK y = OK z |] 
  ==> x \<sqsubseteq>r z"
(*<*)
apply (rule OK_le_err_OK [THEN iffD1])
apply (erule subst)
apply (simp add:semilat.ub1)
done
(*>*)

lemma semilat_le_err_OK2:
  "[| x∈A; y∈A; semilat(err A, le r, f); OK x \<squnion>f OK y = OK z |] 
  ==> y \<sqsubseteq>r z"
(*<*)
apply (rule OK_le_err_OK [THEN iffD1])
apply (erule subst)
apply (simp add:semilat.ub2)
done
(*>*)

lemma eq_order_le:
  "[| x=y; order r |] ==> x \<sqsubseteq>r y"
(*<*)
apply (unfold order_def)
apply blast
done
(*>*)

lemma OK_plus_OK_eq_Err_conv [simp]:
  "[| x∈A; y∈A; semilat(err A, le r, fe) |] ==> 
  (OK x \<squnion>fe OK y = Err) = (¬(∃z∈A. x \<sqsubseteq>r z ∧ y \<sqsubseteq>r z))"
(*<*)
proof -
  have plus_le_conv3: "!!A x y z f r. 
    [| semilat (A,r,f); x \<squnion>f y \<sqsubseteq>r z; x∈A; y∈A; z∈A |] 
    ==> x \<sqsubseteq>r z ∧ y \<sqsubseteq>r z"
(*<*) by (rule semilat.plus_le_conv [THEN iffD1]) (*>*)
  case rule_context
  thus ?thesis
  apply (rule_tac iffI)
   apply clarify
   apply (drule OK_le_err_OK [THEN iffD2])
   apply (drule OK_le_err_OK [THEN iffD2])
   apply (drule semilat.lub[of _ _ _ "OK x" _ "OK y"])
        apply assumption
       apply assumption
      apply simp
     apply simp
    apply simp
   apply simp
  apply (case_tac "OK x \<squnion>fe OK y")
   apply assumption
  apply (rename_tac z)
  apply (subgoal_tac "OK z∈ err A")
  apply (drule eq_order_le)
    apply (erule semilat.orderI)
   apply (blast dest: plus_le_conv3) 
  apply (erule subst)
  apply (blast intro: semilat.closedI closedD)
  done 
qed
(*>*)

section {* semilat (err(Union AS)) *}

(* FIXME? *)
lemma all_bex_swap_lemma [iff]:
  "(∀x. (∃y∈A. x = f y) --> P x) = (∀y∈A. P(f y))"
(*<*) by blast (*>*)

lemma closed_err_Union_lift2I: 
  "[| ∀A∈AS. closed (err A) (lift2 f); AS ≠ {}; 
      ∀A∈AS.∀B∈AS. A≠B --> (∀a∈A.∀b∈B. a \<squnion>f b = Err) |] 
  ==> closed (err(Union AS)) (lift2 f)"
(*<*)
apply (unfold closed_def err_def')
apply simp
apply clarify
apply simp
apply fast
done 
(*>*)

text {* 
  If @{term "AS = {}"} the thm collapses to
  @{prop "order r ∧ closed {Err} f ∧ Err \<squnion>f Err = Err"}
  which may not hold 
*}
lemma err_semilat_UnionI:
  "[| ∀A∈AS. err_semilat(A, r, f); AS ≠ {}; 
      ∀A∈AS.∀B∈AS. A≠B --> (∀a∈A.∀b∈B. ¬a \<sqsubseteq>r b ∧ a \<squnion>f b = Err) |] 
  ==> err_semilat(Union AS, r, f)"
(*<*)
apply (unfold semilat_def sl_def)
apply (simp add: closed_err_Union_lift2I)
apply (rule conjI)
 apply blast
apply (simp add: err_def')
apply (rule conjI)
 apply clarify
 apply (rename_tac A a u B b)
 apply (case_tac "A = B")
  apply simp
 apply simp
apply (rule conjI)
 apply clarify
 apply (rename_tac A a u B b)
 apply (case_tac "A = B")
  apply simp
 apply simp
apply clarify
apply (rename_tac A ya yb B yd z C c a b)
apply (case_tac "A = B")
 apply (case_tac "A = C")
  apply simp
 apply simp
apply (case_tac "B = C")
 apply simp
apply simp
done 
(*>*)

end

lemma err_def':

  err A == insert Err {x. EX y:A. x = OK y}

lemma strict_Some:

  (strict f x = OK y) = (EX z. x = OK z & f z = OK y)

lemma not_Err_eq:

  (x ~= Err) = (EX a. x = OK a)

lemma not_OK_eq:

  (ALL y. x ~= OK y) = (x = Err)

lemma unfold_lesub_err:

  e1 <=_(le r) e2 == le r e1 e2

lemma le_err_refl:

  ALL x. x <=_r x ==> e <=_(le r) e

lemma le_err_trans:

  [| order r; e1 <=_(le r) e2; e2 <=_(le r) e3 |] ==> e1 <=_(le r) e3

lemma le_err_antisym:

  [| order r; e1 <=_(le r) e2; e2 <=_(le r) e1 |] ==> e1 = e2

lemma OK_le_err_OK:

  (OK x <=_(le r) OK y) = (x <=_r y)

lemma order_le_err:

  order (le r) = order r

lemma le_Err:

  e <=_(le r) Err

lemma Err_le_conv:

  (Err <=_(le r) e) = (e = Err)

lemma le_OK_conv:

  (e <=_(le r) OK x) = (EX y. e = OK y & y <=_r x)

lemma OK_le_conv:

  (OK x <=_(le r) e) = (e = Err | (EX y. e = OK y & x <=_r y))

lemma top_Err:

  top (le r) Err

lemma OK_less_conv:

  (OK x <_(le r) e) = (e = Err | (EX y. e = OK y & x <_r y))

lemma not_Err_less:

  ¬ Err <_(le r) x

lemma

  semilat (A, r, f) ==> semilat (err A, le r, lift2 (%x y. OK (f x y)))

lemma

  semilat (A, r, f) ==> semilat (sl (esl (A, r, f)))

lemma err_semilat_eslI:

  semilat L ==> semilat (sl (esl L))

lemma acc_err:

  acc r ==> acc (le r)

lemma Err_in_err:

  Err : err A

lemma Ok_in_err:

  (OK x : err A) = (x : A)

lift

lemma lift_in_errI:

  [| e : err S; ALL x:S. e = OK x --> f x : err S |] ==> lift f e : err S

lemma Err_lift2:

  Err +_(lift2 f) x = Err

lemma lift2_Err:

  x +_(lift2 f) Err = Err

lemma OK_lift2_OK:

  OK x +_(lift2 f) OK y = x +_f y

sup

lemma Err_sup_Err:

  Err +_(sup f) x = Err

lemma Err_sup_Err2:

  x +_(sup f) Err = Err

lemma Err_sup_OK:

  OK x +_(sup f) OK y = OK (x +_f y)

lemma Err_sup_eq_OK_conv:

  (sup f ex ey = OK z) = (EX x y. ex = OK x & ey = OK y & f x y = z)

lemma Err_sup_eq_Err:

  (sup f ex ey = Err) = (ex = Err | ey = Err)

semilat (err A) (le r) f

lemma semilat_le_err_Err_plus:

  [| x : err A; semilat (err A, le r, f) |] ==> Err +_f x = Err

lemma semilat_le_err_plus_Err:

  [| x : err A; semilat (err A, le r, f) |] ==> x +_f Err = Err

lemma semilat_le_err_OK1:

  [| x : A; y : A; semilat (err A, le r, f); OK x +_f OK y = OK z |] ==> x <=_r z

lemma semilat_le_err_OK2:

  [| x : A; y : A; semilat (err A, le r, f); OK x +_f OK y = OK z |] ==> y <=_r z

lemma eq_order_le:

  [| x = y; order r |] ==> x <=_r y

lemma OK_plus_OK_eq_Err_conv:

  [| x : A; y : A; semilat (err A, le r, fe) |]
  ==> (OK x +_fe OK y = Err) = (¬ (EX z:A. x <=_r z & y <=_r z))

semilat (err(Union AS))

lemma all_bex_swap_lemma:

  (ALL x. (EX y:A. x = f y) --> P x) = (ALL y:A. P (f y))

lemma closed_err_Union_lift2I:

  [| ALL A:AS. closed (err A) (lift2 f); AS ~= {};
     ALL A:AS. ALL B:AS. A ~= B --> (ALL a:A. ALL b:B. a +_f b = Err) |]
  ==> closed (err (Union AS)) (lift2 f)

lemma err_semilat_UnionI:

  [| ALL A:AS. semilat (sl (A, r, f)); AS ~= {};
     ALL A:AS.
        ALL B:AS. A ~= B --> (ALL a:A. ALL b:B. ¬ a <=_r b & a +_f b = Err) |]
  ==> semilat (sl (Union AS, r, f))