(* Title: HOL/MicroJava/BV/Err.thy
ID: $Id: Err.html 1910 2004-05-19 04:46:04Z kleing $
Author: Tobias Nipkow
Copyright 2000 TUM
The error type
*)
header {* \isaheader{The Error Type} *}
theory Err = Semilat:
datatype 'a err = Err | OK 'a
types 'a ebinop = "'a => 'a => 'a err"
types 'a esl = "'a set × 'a ord × 'a ebinop"
consts
ok_val :: "'a err => 'a"
primrec
"ok_val (OK x) = x"
constdefs
lift :: "('a => 'b err) => ('a err => 'b err)"
"lift f e ≡ case e of Err => Err | OK x => f x"
lift2 :: "('a => 'b => 'c err) => 'a err => 'b err => 'c err"
"lift2 f e1 e2 ≡
case e1 of Err => Err | OK x => (case e2 of Err => Err | OK y => f x y)"
le :: "'a ord => 'a err ord"
"le r e1 e2 ≡
case e2 of Err => True | OK y => (case e1 of Err => False | OK x => x \<sqsubseteq>r y)"
sup :: "('a => 'b => 'c) => ('a err => 'b err => 'c err)"
"sup f ≡ lift2 (λx y. OK (x \<squnion>f y))"
err :: "'a set => 'a err set"
"err A ≡ insert Err {OK x|x. x∈A}"
esl :: "'a sl => 'a esl"
"esl ≡ λ(A,r,f). (A, r, λx y. OK(f x y))"
sl :: "'a esl => 'a err sl"
"sl ≡ λ(A,r,f). (err A, le r, lift2 f)"
syntax
err_semilat :: "'a esl => bool"
translations
"err_semilat L" == "semilat(Err.sl L)"
consts
strict :: "('a => 'b err) => ('a err => 'b err)"
primrec
"strict f Err = Err"
"strict f (OK x) = f x"
lemma err_def':
"err A ≡ insert Err {x. ∃y∈A. x = OK y}"
(*<*)
proof -
have eq: "err A = insert Err {x. ∃y∈A. x = OK y}"
by (unfold err_def) blast
show "err A ≡ insert Err {x. ∃y∈A. x = OK y}" by (simp add: eq)
qed
(*>*)
lemma strict_Some [simp]:
"(strict f x = OK y) = (∃z. x = OK z ∧ f z = OK y)"
(*<*) by (cases x, auto) (*>*)
lemma not_Err_eq: "(x ≠ Err) = (∃a. x = OK a)"
(*<*) by (cases x) auto (*>*)
lemma not_OK_eq: "(∀y. x ≠ OK y) = (x = Err)"
(*<*) by (cases x) auto (*>*)
lemma unfold_lesub_err: "e1 \<sqsubseteq>le r e2 ≡ le r e1 e2"
(*<*) by (simp add: lesub_def) (*>*)
lemma le_err_refl: "∀x. x \<sqsubseteq>r x ==> e \<sqsubseteq>le r e"
(*<*)
apply (unfold lesub_def le_def)
apply (simp split: err.split)
done
(*>*)
lemma le_err_trans [rule_format]:
"order r ==> e1 \<sqsubseteq>le r e2 --> e2 \<sqsubseteq>le r e3 --> e1 \<sqsubseteq>le r e3"
(*<*)
apply (unfold unfold_lesub_err le_def)
apply (simp split: err.split)
apply (blast intro: order_trans)
done
(*>*)
lemma le_err_antisym [rule_format]:
"order r ==> e1 \<sqsubseteq>le r e2 --> e2 \<sqsubseteq>le r e1 --> e1=e2"
(*<*)
apply (unfold unfold_lesub_err le_def)
apply (simp split: err.split)
apply (blast intro: order_antisym)
done
(*>*)
lemma OK_le_err_OK: "(OK x \<sqsubseteq>le r OK y) = (x \<sqsubseteq>r y)"
(*<*) by (simp add: unfold_lesub_err le_def) (*>*)
lemma order_le_err [iff]: "order(le r) = order r"
(*<*)
apply (rule iffI)
apply (subst order_def)
apply (blast dest: order_antisym OK_le_err_OK [THEN iffD2]
intro: order_trans OK_le_err_OK [THEN iffD1])
apply (subst order_def)
apply (blast intro: le_err_refl le_err_trans le_err_antisym
dest: order_refl)
done
(*>*)
lemma le_Err [iff]: "e \<sqsubseteq>le r Err"
(*<*) by (simp add: unfold_lesub_err le_def) (*>*)
lemma Err_le_conv [iff]: "Err \<sqsubseteq>le r e = (e = Err)"
(*<*) by (simp add: unfold_lesub_err le_def split: err.split) (*>*)
lemma le_OK_conv [iff]: "e \<sqsubseteq>le r OK x = (∃y. e = OK y ∧ y \<sqsubseteq>r x)"
(*<*) by (simp add: unfold_lesub_err le_def split: err.split) (*>*)
lemma OK_le_conv: "OK x \<sqsubseteq>le r e = (e = Err ∨ (∃y. e = OK y ∧ x \<sqsubseteq>r y))"
(*<*) by (simp add: unfold_lesub_err le_def split: err.split) (*>*)
lemma top_Err [iff]: "top (le r) Err";
(*<*) by (simp add: top_def) (*>*)
lemma OK_less_conv [rule_format, iff]:
"OK x \<sqsubset>le r e = (e=Err ∨ (∃y. e = OK y ∧ x \<sqsubset>r y))"
(*<*) by (simp add: lesssub_def lesub_def le_def split: err.split) (*>*)
lemma not_Err_less [rule_format, iff]: "¬(Err \<sqsubset>le r x)"
(*<*) by (simp add: lesssub_def lesub_def le_def split: err.split) (*>*)
lemma semilat_errI [intro]: includes semilat
shows "semilat(err A, le r, lift2(λx y. OK(f x y)))"
(*<*)
apply(insert semilat)
apply (unfold semilat_Def closed_def plussub_def lesub_def
lift2_def le_def)
apply (simp add: err_def' split: err.split)
done
(*>*)
lemma err_semilat_eslI_aux:
includes semilat shows "err_semilat(esl(A,r,f))"
(*<*)
apply (unfold sl_def esl_def)
apply (simp add: semilat_errI[OF semilat])
done
(*>*)
lemma err_semilat_eslI [intro, simp]:
"!!L. semilat L ==> err_semilat(esl L)"
(*<*) by(simp add: err_semilat_eslI_aux split_tupled_all) (*>*)
lemma acc_err [simp, intro!]: "acc r ==> acc(le r)"
(*<*)
apply (unfold acc_def lesub_def le_def lesssub_def)
apply (simp add: wf_eq_minimal split: err.split)
apply clarify
apply (case_tac "Err : Q")
apply blast
apply (erule_tac x = "{a . OK a : Q}" in allE)
apply (case_tac "x")
apply fast
apply blast
done
(*>*)
lemma Err_in_err [iff]: "Err : err A"
(*<*) by (simp add: err_def') (*>*)
lemma Ok_in_err [iff]: "(OK x ∈ err A) = (x∈A)"
(*<*) by (auto simp add: err_def') (*>*)
section {* lift *}
lemma lift_in_errI:
"[| e ∈ err S; ∀x∈S. e = OK x --> f x ∈ err S |] ==> lift f e ∈ err S"
(*<*)
apply (unfold lift_def)
apply (simp split: err.split)
apply blast
done
(*>*)
lemma Err_lift2 [simp]: "Err \<squnion>lift2 f x = Err"
(*<*) by (simp add: lift2_def plussub_def) (*>*)
lemma lift2_Err [simp]: "x \<squnion>lift2 f Err = Err"
(*<*) by (simp add: lift2_def plussub_def split: err.split) (*>*)
lemma OK_lift2_OK [simp]: "OK x \<squnion>lift2 f OK y = x \<squnion>f y"
(*<*) by (simp add: lift2_def plussub_def split: err.split) (*>*)
section {* sup *}
lemma Err_sup_Err [simp]: "Err \<squnion>sup f x = Err"
(*<*) by (simp add: plussub_def sup_def lift2_def) (*>*)
lemma Err_sup_Err2 [simp]: "x \<squnion>sup f Err = Err"
(*<*) by (simp add: plussub_def sup_def lift2_def split: err.split) (*>*)
lemma Err_sup_OK [simp]: "OK x \<squnion>sup f OK y = OK (x \<squnion>f y)"
(*<*) by (simp add: plussub_def sup_def lift2_def) (*>*)
lemma Err_sup_eq_OK_conv [iff]:
"(sup f ex ey = OK z) = (∃x y. ex = OK x ∧ ey = OK y ∧ f x y = z)"
(*<*)
apply (unfold sup_def lift2_def plussub_def)
apply (rule iffI)
apply (simp split: err.split_asm)
apply clarify
apply simp
done
(*>*)
lemma Err_sup_eq_Err [iff]: "(sup f ex ey = Err) = (ex=Err ∨ ey=Err)"
(*<*)
apply (unfold sup_def lift2_def plussub_def)
apply (simp split: err.split)
done
(*>*)
section {* semilat (err A) (le r) f *}
lemma semilat_le_err_Err_plus [simp]:
"[| x∈ err A; semilat(err A, le r, f) |] ==> Err \<squnion>f x = Err"
(*<*) by (blast intro: semilat.le_iff_plus_unchanged [THEN iffD1]
semilat.le_iff_plus_unchanged2 [THEN iffD1]) (*>*)
lemma semilat_le_err_plus_Err [simp]:
"[| x∈ err A; semilat(err A, le r, f) |] ==> x \<squnion>f Err = Err"
(*<*) by (blast intro: semilat.le_iff_plus_unchanged [THEN iffD1]
semilat.le_iff_plus_unchanged2 [THEN iffD1]) (*>*)
lemma semilat_le_err_OK1:
"[| x∈A; y∈A; semilat(err A, le r, f); OK x \<squnion>f OK y = OK z |]
==> x \<sqsubseteq>r z"
(*<*)
apply (rule OK_le_err_OK [THEN iffD1])
apply (erule subst)
apply (simp add:semilat.ub1)
done
(*>*)
lemma semilat_le_err_OK2:
"[| x∈A; y∈A; semilat(err A, le r, f); OK x \<squnion>f OK y = OK z |]
==> y \<sqsubseteq>r z"
(*<*)
apply (rule OK_le_err_OK [THEN iffD1])
apply (erule subst)
apply (simp add:semilat.ub2)
done
(*>*)
lemma eq_order_le:
"[| x=y; order r |] ==> x \<sqsubseteq>r y"
(*<*)
apply (unfold order_def)
apply blast
done
(*>*)
lemma OK_plus_OK_eq_Err_conv [simp]:
"[| x∈A; y∈A; semilat(err A, le r, fe) |] ==>
(OK x \<squnion>fe OK y = Err) = (¬(∃z∈A. x \<sqsubseteq>r z ∧ y \<sqsubseteq>r z))"
(*<*)
proof -
have plus_le_conv3: "!!A x y z f r.
[| semilat (A,r,f); x \<squnion>f y \<sqsubseteq>r z; x∈A; y∈A; z∈A |]
==> x \<sqsubseteq>r z ∧ y \<sqsubseteq>r z"
(*<*) by (rule semilat.plus_le_conv [THEN iffD1]) (*>*)
case rule_context
thus ?thesis
apply (rule_tac iffI)
apply clarify
apply (drule OK_le_err_OK [THEN iffD2])
apply (drule OK_le_err_OK [THEN iffD2])
apply (drule semilat.lub[of _ _ _ "OK x" _ "OK y"])
apply assumption
apply assumption
apply simp
apply simp
apply simp
apply simp
apply (case_tac "OK x \<squnion>fe OK y")
apply assumption
apply (rename_tac z)
apply (subgoal_tac "OK z∈ err A")
apply (drule eq_order_le)
apply (erule semilat.orderI)
apply (blast dest: plus_le_conv3)
apply (erule subst)
apply (blast intro: semilat.closedI closedD)
done
qed
(*>*)
section {* semilat (err(Union AS)) *}
(* FIXME? *)
lemma all_bex_swap_lemma [iff]:
"(∀x. (∃y∈A. x = f y) --> P x) = (∀y∈A. P(f y))"
(*<*) by blast (*>*)
lemma closed_err_Union_lift2I:
"[| ∀A∈AS. closed (err A) (lift2 f); AS ≠ {};
∀A∈AS.∀B∈AS. A≠B --> (∀a∈A.∀b∈B. a \<squnion>f b = Err) |]
==> closed (err(Union AS)) (lift2 f)"
(*<*)
apply (unfold closed_def err_def')
apply simp
apply clarify
apply simp
apply fast
done
(*>*)
text {*
If @{term "AS = {}"} the thm collapses to
@{prop "order r ∧ closed {Err} f ∧ Err \<squnion>f Err = Err"}
which may not hold
*}
lemma err_semilat_UnionI:
"[| ∀A∈AS. err_semilat(A, r, f); AS ≠ {};
∀A∈AS.∀B∈AS. A≠B --> (∀a∈A.∀b∈B. ¬a \<sqsubseteq>r b ∧ a \<squnion>f b = Err) |]
==> err_semilat(Union AS, r, f)"
(*<*)
apply (unfold semilat_def sl_def)
apply (simp add: closed_err_Union_lift2I)
apply (rule conjI)
apply blast
apply (simp add: err_def')
apply (rule conjI)
apply clarify
apply (rename_tac A a u B b)
apply (case_tac "A = B")
apply simp
apply simp
apply (rule conjI)
apply clarify
apply (rename_tac A a u B b)
apply (case_tac "A = B")
apply simp
apply simp
apply clarify
apply (rename_tac A ya yb B yd z C c a b)
apply (case_tac "A = B")
apply (case_tac "A = C")
apply simp
apply simp
apply (case_tac "B = C")
apply simp
apply simp
done
(*>*)
end
lemma err_def':
err A == insert Err {x. EX y:A. x = OK y}
lemma strict_Some:
(strict f x = OK y) = (EX z. x = OK z & f z = OK y)
lemma not_Err_eq:
(x ~= Err) = (EX a. x = OK a)
lemma not_OK_eq:
(ALL y. x ~= OK y) = (x = Err)
lemma unfold_lesub_err:
e1 <=_(le r) e2 == le r e1 e2
lemma le_err_refl:
ALL x. x <=_r x ==> e <=_(le r) e
lemma le_err_trans:
[| order r; e1 <=_(le r) e2; e2 <=_(le r) e3 |] ==> e1 <=_(le r) e3
lemma le_err_antisym:
[| order r; e1 <=_(le r) e2; e2 <=_(le r) e1 |] ==> e1 = e2
lemma OK_le_err_OK:
(OK x <=_(le r) OK y) = (x <=_r y)
lemma order_le_err:
order (le r) = order r
lemma le_Err:
e <=_(le r) Err
lemma Err_le_conv:
(Err <=_(le r) e) = (e = Err)
lemma le_OK_conv:
(e <=_(le r) OK x) = (EX y. e = OK y & y <=_r x)
lemma OK_le_conv:
(OK x <=_(le r) e) = (e = Err | (EX y. e = OK y & x <=_r y))
lemma top_Err:
top (le r) Err
lemma OK_less_conv:
(OK x <_(le r) e) = (e = Err | (EX y. e = OK y & x <_r y))
lemma not_Err_less:
¬ Err <_(le r) x
lemma
semilat (A, r, f) ==> semilat (err A, le r, lift2 (%x y. OK (f x y)))
lemma
semilat (A, r, f) ==> semilat (sl (esl (A, r, f)))
lemma err_semilat_eslI:
semilat L ==> semilat (sl (esl L))
lemma acc_err:
acc r ==> acc (le r)
lemma Err_in_err:
Err : err A
lemma Ok_in_err:
(OK x : err A) = (x : A)
lemma lift_in_errI:
[| e : err S; ALL x:S. e = OK x --> f x : err S |] ==> lift f e : err S
lemma Err_lift2:
Err +_(lift2 f) x = Err
lemma lift2_Err:
x +_(lift2 f) Err = Err
lemma OK_lift2_OK:
OK x +_(lift2 f) OK y = x +_f y
lemma Err_sup_Err:
Err +_(sup f) x = Err
lemma Err_sup_Err2:
x +_(sup f) Err = Err
lemma Err_sup_OK:
OK x +_(sup f) OK y = OK (x +_f y)
lemma Err_sup_eq_OK_conv:
(sup f ex ey = OK z) = (EX x y. ex = OK x & ey = OK y & f x y = z)
lemma Err_sup_eq_Err:
(sup f ex ey = Err) = (ex = Err | ey = Err)
lemma semilat_le_err_Err_plus:
[| x : err A; semilat (err A, le r, f) |] ==> Err +_f x = Err
lemma semilat_le_err_plus_Err:
[| x : err A; semilat (err A, le r, f) |] ==> x +_f Err = Err
lemma semilat_le_err_OK1:
[| x : A; y : A; semilat (err A, le r, f); OK x +_f OK y = OK z |] ==> x <=_r z
lemma semilat_le_err_OK2:
[| x : A; y : A; semilat (err A, le r, f); OK x +_f OK y = OK z |] ==> y <=_r z
lemma eq_order_le:
[| x = y; order r |] ==> x <=_r y
lemma OK_plus_OK_eq_Err_conv:
[| x : A; y : A; semilat (err A, le r, fe) |] ==> (OK x +_fe OK y = Err) = (¬ (EX z:A. x <=_r z & y <=_r z))
lemma all_bex_swap_lemma:
(ALL x. (EX y:A. x = f y) --> P x) = (ALL y:A. P (f y))
lemma closed_err_Union_lift2I:
[| ALL A:AS. closed (err A) (lift2 f); AS ~= {}; ALL A:AS. ALL B:AS. A ~= B --> (ALL a:A. ALL b:B. a +_f b = Err) |] ==> closed (err (Union AS)) (lift2 f)
lemma err_semilat_UnionI:
[| ALL A:AS. semilat (sl (A, r, f)); AS ~= {}; ALL A:AS. ALL B:AS. A ~= B --> (ALL a:A. ALL b:B. ¬ a <=_r b & a +_f b = Err) |] ==> semilat (sl (Union AS, r, f))