(* Title: HOL/MicroJava/BV/Opt.thy ID: $Id: Opt.html 1910 2004-05-19 04:46:04Z kleing $ Author: Tobias Nipkow Copyright 2000 TUM More about options *) header {* \isaheader{More about Options} *} theory Opt = Err: constdefs le :: "'a ord => 'a option ord" "le r o1 o2 ≡ case o2 of None => o1=None | Some y => (case o1 of None => True | Some x => x \<sqsubseteq>r y)" opt :: "'a set => 'a option set" "opt A ≡ insert None {Some y |y. y ∈ A}" sup :: "'a ebinop => 'a option ebinop" "sup f o1 o2 ≡ case o1 of None => OK o2 | Some x => (case o2 of None => OK o1 | Some y => (case f x y of Err => Err | OK z => OK (Some z)))" esl :: "'a esl => 'a option esl" "esl ≡ λ(A,r,f). (opt A, le r, sup f)" lemma unfold_le_opt: "o1 \<sqsubseteq>le r o2 = (case o2 of None => o1=None | Some y => (case o1 of None => True | Some x => x \<sqsubseteq>r y))" (*<*) apply (unfold lesub_def le_def) apply (rule refl) done (*>*) lemma le_opt_refl: "order r ==> x \<sqsubseteq>le r x" (*<*) by (simp add: unfold_le_opt split: option.split) (*<*) lemma le_opt_trans [rule_format]: "order r ==> x \<sqsubseteq>le r y --> y \<sqsubseteq>le r z --> x \<sqsubseteq>le r z" (*<*) apply (simp add: unfold_le_opt split: option.split) apply (blast intro: order_trans) done (*>*) lemma le_opt_antisym [rule_format]: "order r ==> x \<sqsubseteq>le r y --> y \<sqsubseteq>le r x --> x=y" (*<*) apply (simp add: unfold_le_opt split: option.split) apply (blast intro: order_antisym) done (*>*) lemma order_le_opt [intro!,simp]: "order r ==> order(le r)" (*<*) apply (subst order_def) apply (blast intro: le_opt_refl le_opt_trans le_opt_antisym) done (*>*) lemma None_bot [iff]: "None \<sqsubseteq>le r ox" (*<*) apply (unfold lesub_def le_def) apply (simp split: option.split) done (*>*) lemma Some_le [iff]: "(Some x \<sqsubseteq>le r z) = (∃y. z = Some y ∧ x \<sqsubseteq>r y)" (*<*) apply (unfold lesub_def le_def) apply (simp split: option.split) done (*>*) lemma le_None [iff]: "(x \<sqsubseteq>le r None) = (x = None)"; (*<*) apply (unfold lesub_def le_def) apply (simp split: option.split) done (*>*) lemma OK_None_bot [iff]: "OK None \<sqsubseteq>Err.le (le r) x" (*<*) by (simp add: lesub_def Err.le_def le_def split: option.split err.split) (*>*) lemma sup_None1 [iff]: "x \<squnion>sup f None = OK x" (*<*) by (simp add: plussub_def sup_def split: option.split) (*>*) lemma sup_None2 [iff]: "None \<squnion>sup f x = OK x" (*<*) by (simp add: plussub_def sup_def split: option.split) (*>*) lemma None_in_opt [iff]: "None ∈ opt A" (*<*) by (simp add: opt_def) (*>*) lemma Some_in_opt [iff]: "(Some x ∈ opt A) = (x ∈ A)" (*<*) by (unfold opt_def) auto (*>*) lemma semilat_opt [intro, simp]: "err_semilat L ==> err_semilat (Opt.esl L)" (*<*) proof - assume s: "err_semilat L" obtain A r f where [simp]: "L = (A,r,f)" by (cases L) let ?A0 = "err A" and ?r0 = "Err.le r" and ?f0 = "lift2 f" from s obtain ord: "order ?r0" and clo: "closed ?A0 ?f0" and ub1: "∀x∈?A0. ∀y∈?A0. x \<sqsubseteq>?r0 x \<squnion>?f0 y" and ub2: "∀x∈?A0. ∀y∈?A0. y \<sqsubseteq>?r0 x \<squnion>?f0 y" and lub: "∀x∈?A0. ∀y∈?A0. ∀z∈?A0. x \<sqsubseteq>?r0 z ∧ y \<sqsubseteq>?r0 z --> x \<squnion>?f0 y \<sqsubseteq>?r0 z" by (unfold semilat_def sl_def) simp let ?A = "err (opt A)" and ?r = "Err.le (Opt.le r)" and ?f = "lift2 (Opt.sup f)" from ord have "order ?r" by simp moreover have "closed ?A ?f" proof (unfold closed_def, intro strip) fix x y assume x: "x ∈ ?A" and y: "y ∈ ?A" { fix a b assume ab: "x = OK a" "y = OK b" with x have a: "!!c. a = Some c ==> c ∈ A" by (clarsimp simp add: opt_def) from ab y have b: "!!d. b = Some d ==> d ∈ A" by (clarsimp simp add: opt_def) { fix c d assume "a = Some c" "b = Some d" with ab x y have "c ∈ A & d ∈ A" by (simp add: err_def opt_def Bex_def) with clo have "f c d ∈ err A" by (simp add: closed_def plussub_def err_def' lift2_def) moreover fix z assume "f c d = OK z" ultimately have "z ∈ A" by simp } note f_closed = this have "sup f a b ∈ ?A" proof (cases a) case None thus ?thesis by (simp add: sup_def opt_def) (cases b, simp, simp add: b Bex_def) next case Some thus ?thesis by (auto simp add: sup_def opt_def Bex_def a b f_closed split: err.split option.split) qed } thus "x \<squnion>?f y ∈ ?A" by (simp add: plussub_def lift2_def split: err.split) qed moreover { fix a b c assume "a ∈ opt A" and "b ∈ opt A" and "a \<squnion>sup f b = OK c" moreover from ord have "order r" by simp moreover { fix x y z assume "x ∈ A" and "y ∈ A" hence "OK x ∈ err A ∧ OK y ∈ err A" by simp with ub1 ub2 have "(OK x) \<sqsubseteq>Err.le r (OK x) \<squnion>lift2 f (OK y) ∧ (OK y) \<sqsubseteq>Err.le r (OK x) \<squnion>lift2 f (OK y)" by blast moreover assume "x \<squnion>f y = OK z" ultimately have "x \<sqsubseteq>r z ∧ y \<sqsubseteq>r z" by (auto simp add: plussub_def lift2_def Err.le_def lesub_def) } ultimately have "a \<sqsubseteq>le r c ∧ b \<sqsubseteq>le r c" by (auto simp add: sup_def le_def lesub_def plussub_def dest: order_refl split: option.splits err.splits) } hence "(∀x∈?A. ∀y∈?A. x \<sqsubseteq>?r x \<squnion>?f y) ∧ (∀x∈?A. ∀y∈?A. y \<sqsubseteq>?r x \<squnion>?f y)" by (auto simp add: lesub_def plussub_def Err.le_def lift2_def split: err.split) moreover have "∀x∈?A. ∀y∈?A. ∀z∈?A. x \<sqsubseteq>?r z ∧ y \<sqsubseteq>?r z --> x \<squnion>?f y \<sqsubseteq>?r z" proof (intro strip, elim conjE) fix x y z assume xyz: "x ∈ ?A" "y ∈ ?A" "z ∈ ?A" assume xz: "x \<sqsubseteq>?r z" and yz: "y \<sqsubseteq>?r z" { fix a b c assume ok: "x = OK a" "y = OK b" "z = OK c" { fix d e g assume some: "a = Some d" "b = Some e" "c = Some g" with ok xyz obtain "OK d:err A" "OK e:err A" "OK g:err A" by simp with lub have "[| OK d \<sqsubseteq>Err.le r OK g; OK e \<sqsubseteq>Err.le r OK g |] ==> OK d \<squnion>lift2 f OK e \<sqsubseteq>Err.le r OK g" by blast hence "[| d \<sqsubseteq>r g; e \<sqsubseteq>r g |] ==> ∃y. d \<squnion>f e = OK y ∧ y \<sqsubseteq>r g" by simp with ok some xyz xz yz have "x \<squnion>?f y \<sqsubseteq>?r z" by (auto simp add: sup_def le_def lesub_def lift2_def plussub_def Err.le_def) } note this [intro!] from ok xyz xz yz have "x \<squnion>?f y \<sqsubseteq>?r z" by - (cases a, simp, cases b, simp, cases c, simp, blast) } with xyz xz yz show "x \<squnion>?f y \<sqsubseteq>?r z" by - (cases x, simp, cases y, simp, cases z, simp+) qed ultimately show "err_semilat (Opt.esl L)" by (unfold semilat_def esl_def sl_def) simp qed (*>*) lemma top_le_opt_Some [iff]: "top (le r) (Some T) = top r T" (*<*) apply (unfold top_def) apply (rule iffI) apply blast apply (rule allI) apply (case_tac "x") apply simp+ done (*>*) lemma Top_le_conv: "[| order r; top r T |] ==> (T \<sqsubseteq>r x) = (x = T)" (*<*) apply (unfold top_def) apply (blast intro: order_antisym) done (*>*) lemma acc_le_optI [intro!]: "acc r ==> acc(le r)" (*<*) apply (unfold acc_def lesub_def le_def lesssub_def) apply (simp add: wf_eq_minimal split: option.split) apply clarify apply (case_tac "∃a. Some a ∈ Q") apply (erule_tac x = "{a . Some a ∈ Q}" in allE) apply blast apply (case_tac "x") apply blast apply blast done (*>*) lemma option_map_in_optionI: "[| ox ∈ opt S; ∀x∈S. ox = Some x --> f x ∈ S |] ==> option_map f ox ∈ opt S"; (*<*) apply (unfold option_map_def) apply (simp split: option.split) apply blast done (*>*) end
lemma unfold_le_opt:
(o1 <=_(Opt.le r) o2) = (case o2 of None => o1 = None | Some y => case o1 of None => True | Some x => x <=_r y)
lemma le_opt_refl:
order r ==> x <=_(Opt.le r) x
lemma le_opt_trans:
[| order r; x <=_(Opt.le r) y; y <=_(Opt.le r) z |] ==> x <=_(Opt.le r) z
lemma le_opt_antisym:
[| order r; x <=_(Opt.le r) y; y <=_(Opt.le r) x |] ==> x = y
lemma order_le_opt:
order r ==> order (Opt.le r)
lemma None_bot:
None <=_(Opt.le r) ox
lemma Some_le:
(Some x <=_(Opt.le r) z) = (EX y. z = Some y & x <=_r y)
lemma le_None:
(x <=_(Opt.le r) None) = (x = None)
lemma OK_None_bot:
OK None <=_(Err.le (Opt.le r)) x
lemma sup_None1:
x +_(Opt.sup f) None = OK x
lemma sup_None2:
None +_(Opt.sup f) x = OK x
lemma None_in_opt:
None : opt A
lemma Some_in_opt:
(Some x : opt A) = (x : A)
lemma semilat_opt:
semilat (sl L) ==> semilat (sl (Opt.esl L))
lemma top_le_opt_Some:
top (Opt.le r) (Some T) = top r T
lemma Top_le_conv:
[| order r; top r T |] ==> (T <=_r x) = (x = T)
lemma acc_le_optI:
acc r ==> acc (Opt.le r)
lemma option_map_in_optionI:
[| ox : opt S; ALL x:S. ox = Some x --> f x : S |] ==> option_map f ox : opt S