(* Title: HOL/MicroJava/BV/Listn.thy
ID: $Id: Listn.html 1910 2004-05-19 04:46:04Z kleing $
Author: Tobias Nipkow
Copyright 2000 TUM
Lists of a fixed length
*)
header {* \isaheader{Fixed Length Lists} *}
theory Listn = Err:
constdefs
list :: "nat => 'a set => 'a list set"
"list n A ≡ {xs. size xs = n ∧ set xs ⊆ A}"
le :: "'a ord => ('a list)ord"
"le r ≡ list_all2 (λx y. x \<sqsubseteq>r y)"
(*<*)
syntax
"lesublist" :: "'a list => 'a ord => 'a list => bool" ("(_ /[<=_] _)" [50, 0, 51] 50)
"lesssublist" :: "'a list => 'a ord => 'a list => bool" ("(_ /[<_] _)" [50, 0, 51] 50)
(*>*)
syntax (xsymbols)
"lesublist" :: "'a list => 'a ord => 'a list => bool" ("(_ /[\<sqsubseteq>_] _)" [50, 0, 51] 50)
"lesssublist" :: "'a list => 'a ord => 'a list => bool" ("(_ /[\<sqsubset>_] _)" [50, 0, 51] 50)
translations
"x [\<sqsubseteq>r] y" == "x <=_(Listn.le r) y"
"x [\<sqsubset>r] y" == "x <_(Listn.le r) y"
(*<*)
syntax (xsymbols)
"@lesublist" :: "'a list => 'a ord => 'a list => bool" ("(_ /[\<sqsubseteq>_] _)" [50, 0, 51] 50)
"@lesssublist" :: "'a list => 'a ord => 'a list => bool" ("(_ /[\<sqsubset>_] _)" [50, 0, 51] 50)
translations
"x [\<sqsubseteq>r] y" => "x [\<sqsubseteq>r] y"
"x [\<sqsubset>r] y" => "x [\<sqsubset>r] y"
(*>*)
constdefs
map2 :: "('a => 'b => 'c) => 'a list => 'b list => 'c list"
"map2 f ≡ (λxs ys. map (split f) (zip xs ys))"
(*<*)
syntax
"plussublist" :: "'a list => ('a => 'b => 'c) => 'b list => 'c list" ("(_ /[+_] _)" [65, 0, 66] 65)
(*>*)
syntax (xsymbols)
"plussublist" :: "'a list => ('a => 'b => 'c) => 'b list => 'c list" ("(_ /[\<squnion>_] _)" [65, 0, 66] 65)
translations
"x [\<squnion>f] y" == "x \<squnion>map2 f y"
(*<*)
syntax
"@plussublist" :: "'a list => ('a => 'b => 'c) => 'b list => 'c list" ("(_ /[\<squnion>_] _)" [65, 0, 66] 65)
translations
"x [\<squnion>f] y" == "x [\<squnion>f] y"
(*>*)
consts coalesce :: "'a err list => 'a list err"
primrec
"coalesce [] = OK[]"
"coalesce (ex#exs) = Err.sup (op #) ex (coalesce exs)"
constdefs
sl :: "nat => 'a sl => 'a list sl"
"sl n ≡ λ(A,r,f). (list n A, le r, map2 f)"
sup :: "('a => 'b => 'c err) => 'a list => 'b list => 'c list err"
"sup f ≡ λxs ys. if size xs = size ys then coalesce(xs [\<squnion>f] ys) else Err"
upto_esl :: "nat => 'a esl => 'a list esl"
"upto_esl m ≡ λ(A,r,f). (Union{list n A |n. n ≤ m}, le r, sup f)"
lemmas [simp] = set_update_subsetI
lemma unfold_lesub_list: "xs [\<sqsubseteq>r] ys ≡ Listn.le r xs ys"
(*<*) by (simp add: lesub_def) (*>*)
lemma Nil_le_conv [iff]: "([] [\<sqsubseteq>r] ys) = (ys = [])"
(*<*)
apply (unfold lesub_def Listn.le_def)
apply simp
done
(*>*)
lemma Cons_notle_Nil [iff]: "¬ x#xs [\<sqsubseteq>r] []"
(*<*)
apply (unfold lesub_def Listn.le_def)
apply simp
done
(*>*)
lemma Cons_le_Cons [iff]: "x#xs [\<sqsubseteq>r] y#ys = (x \<sqsubseteq>r y ∧ xs [\<sqsubseteq>r] ys)"
(*<*)
apply (unfold lesub_def Listn.le_def)
apply simp
done
(*>*)
lemma Cons_less_Conss [simp]:
"order r ==> x#xs [\<sqsubset>r] y#ys = (x \<sqsubset>r y ∧ xs [\<sqsubseteq>r] ys ∨ x = y ∧ xs [\<sqsubset>r] ys)"
(*<*)
apply (unfold lesssub_def)
apply blast
done
(*>*)
lemma list_update_le_cong:
"[| i<size xs; xs [\<sqsubseteq>r] ys; x \<sqsubseteq>r y |] ==> xs[i:=x] [\<sqsubseteq>r] ys[i:=y]";
(*<*)
apply (unfold unfold_lesub_list)
apply (unfold Listn.le_def)
apply (simp add: list_all2_update_cong)
done
(*>*)
lemma le_listD: "[| xs [\<sqsubseteq>r] ys; p < size xs |] ==> xs!p \<sqsubseteq>r ys!p"
(*<*)
apply (unfold Listn.le_def lesub_def)
apply (simp add: list_all2_nthD)
done
(*>*)
lemma le_list_refl: "∀x. x \<sqsubseteq>r x ==> xs [\<sqsubseteq>r] xs"
(*<*)
apply (unfold unfold_lesub_list lesub_def Listn.le_def)
apply (simp add: list_all2_refl)
done
(*>*)
lemma le_list_trans: "[| order r; xs [\<sqsubseteq>r] ys; ys [\<sqsubseteq>r] zs |] ==> xs [\<sqsubseteq>r] zs"
(*<*)
apply (unfold unfold_lesub_list)
apply (unfold Listn.le_def)
apply (rule list_all2_trans)
apply (erule order_trans)
apply assumption+
done
(*>*)
lemma le_list_antisym: "[| order r; xs [\<sqsubseteq>r] ys; ys [\<sqsubseteq>r] xs |] ==> xs = ys"
(*<*)
apply (unfold unfold_lesub_list)
apply (unfold Listn.le_def)
apply (rule list_all2_antisym)
apply (rule order_antisym)
apply assumption+
done
(*>*)
lemma order_listI [simp, intro!]: "order r ==> order(Listn.le r)"
(*<*)
apply (subst order_def)
apply (blast intro: le_list_refl le_list_trans le_list_antisym
dest: order_refl)
done
(*>*)
lemma lesub_list_impl_same_size [simp]: "xs [\<sqsubseteq>r] ys ==> size ys = size xs"
(*<*)
apply (unfold Listn.le_def lesub_def)
apply (simp add: list_all2_lengthD)
done
(*>*)
lemma lesssub_lengthD: "xs [\<sqsubset>r] ys ==> size ys = size xs"
(*<*)
apply (unfold lesssub_def)
apply auto
done
(*>*)
lemma le_list_appendI: "a [\<sqsubseteq>r] b ==> c [\<sqsubseteq>r] d ==> a@c [\<sqsubseteq>r] b@d"
(*<*)
apply (unfold Listn.le_def lesub_def)
apply (rule list_all2_appendI, assumption+)
done
(*>*)
lemma le_listI: "size a = size b ==> (!!n. n < size a ==> a!n \<sqsubseteq>r b!n) ==> a [\<sqsubseteq>r] b"
(*<*)
apply (unfold lesub_def Listn.le_def)
apply (simp add: list_all2_all_nthI)
done
(*>*)
lemma listI: "[| size xs = n; set xs ⊆ A |] ==> xs ∈ list n A"
(*<*)
apply (unfold list_def)
apply blast
done
(*>*)
(* FIXME: remove simp *)
lemma listE_length [simp]: "xs ∈ list n A ==> size xs = n"
(*<*)
apply (unfold list_def)
apply blast
done
(*>*)
lemma less_lengthI: "[| xs ∈ list n A; p < n |] ==> p < size xs"
(*<*) by simp (*>*)
lemma listE_set [simp]: "xs ∈ list n A ==> set xs ⊆ A"
(*<*)
apply (unfold list_def)
apply blast
done
(*>*)
lemma list_0 [simp]: "list 0 A = {[]}"
(*<*)
apply (unfold list_def)
apply auto
done
(*>*)
lemma in_list_Suc_iff:
"(xs ∈ list (Suc n) A) = (∃y∈A. ∃ys ∈ list n A. xs = y#ys)"
(*<*)
apply (unfold list_def)
apply (case_tac "xs")
apply auto
done
(*>*)
lemma Cons_in_list_Suc [iff]:
"(x#xs ∈ list (Suc n) A) = (x∈A ∧ xs ∈ list n A)";
(*<*)
apply (simp add: in_list_Suc_iff)
done
(*>*)
lemma list_not_empty:
"∃a. a∈A ==> ∃xs. xs ∈ list n A";
(*<*)
apply (induct "n")
apply simp
apply (simp add: in_list_Suc_iff)
apply blast
done
(*>*)
lemma nth_in [rule_format, simp]:
"∀i n. size xs = n --> set xs ⊆ A --> i < n --> (xs!i) ∈ A"
(*<*)
apply (induct "xs")
apply simp
apply (simp add: nth_Cons split: nat.split)
done
(*>*)
lemma listE_nth_in: "[| xs ∈ list n A; i < n |] ==> xs!i ∈ A"
(*<*) by auto (*>*)
lemma listn_Cons_Suc [elim!]:
"l#xs ∈ list n A ==> (!!n'. n = Suc n' ==> l ∈ A ==> xs ∈ list n' A ==> P) ==> P"
(*<*) by (cases n) auto (*>*)
lemma listn_appendE [elim!]:
"a@b ∈ list n A ==> (!!n1 n2. n=n1+n2 ==> a ∈ list n1 A ==> b ∈ list n2 A ==> P) ==> P"
(*<*)
proof -
have "!!n. a@b ∈ list n A ==> ∃n1 n2. n=n1+n2 ∧ a ∈ list n1 A ∧ b ∈ list n2 A"
(is "!!n. ?list a n ==> ∃n1 n2. ?P a n n1 n2")
proof (induct a)
fix n assume "?list [] n"
hence "?P [] n 0 n" by simp
thus "∃n1 n2. ?P [] n n1 n2" by fast
next
fix n l ls
assume "?list (l#ls) n"
then obtain n' where n: "n = Suc n'" "l ∈ A" and "ls@b ∈ list n' A" by fastsimp
assume "!!n. ls @ b ∈ list n A ==> ∃n1 n2. n = n1 + n2 ∧ ls ∈ list n1 A ∧ b ∈ list n2 A"
hence "∃n1 n2. n' = n1 + n2 ∧ ls ∈ list n1 A ∧ b ∈ list n2 A" .
then obtain n1 n2 where "n' = n1 + n2" "ls ∈ list n1 A" "b ∈ list n2 A" by fast
with n have "?P (l#ls) n (n1+1) n2" by simp
thus "∃n1 n2. ?P (l#ls) n n1 n2" by fastsimp
qed
moreover
assume "a@b ∈ list n A" "!!n1 n2. n=n1+n2 ==> a ∈ list n1 A ==> b ∈ list n2 A ==> P"
ultimately
show ?thesis by blast
qed
(*>*)
lemma listt_update_in_list [simp, intro!]:
"[| xs ∈ list n A; x∈A |] ==> xs[i := x] ∈ list n A"
(*<*)
apply (unfold list_def)
apply simp
done
(*>*)
lemma list_appendI [intro?]:
"[| a ∈ list n A; b ∈ list m A |] ==> a @ b ∈ list (n+m) A"
(*<*) by (unfold list_def) auto (*>*)
lemma list_map [simp]: "(map f xs ∈ list (size xs) A) = (f ` set xs ⊆ A)"
(*<*) by (unfold list_def) simp (*>*)
lemma list_replicateI [intro]: "x ∈ A ==> replicate n x ∈ list n A"
(*<*) by (induct n) auto (*>*)
lemma plus_list_Nil [simp]: "[] [\<squnion>f] xs = []"
(*<*)
apply (unfold plussub_def map2_def)
apply simp
done
(*>*)
lemma plus_list_Cons [simp]:
"(x#xs) [\<squnion>f] ys = (case ys of [] => [] | y#ys => (x \<squnion>f y)#(xs [\<squnion>f] ys))"
(*<*) by (simp add: plussub_def map2_def split: list.split) (*>*)
lemma length_plus_list [rule_format, simp]:
"∀ys. size(xs [\<squnion>f] ys) = min(size xs) (size ys)"
(*<*)
apply (induct xs)
apply simp
apply clarify
apply (simp (no_asm_simp) split: list.split)
done
(*>*)
lemma nth_plus_list [rule_format, simp]:
"∀xs ys i. size xs = n --> size ys = n --> i<n --> (xs [\<squnion>f] ys)!i = (xs!i) \<squnion>f (ys!i)"
(*<*)
apply (induct n)
apply simp
apply clarify
apply (case_tac xs)
apply simp
apply (force simp add: nth_Cons split: list.split nat.split)
done
(*>*)
lemma (in semilat) plus_list_ub1 [rule_format]:
"[| set xs ⊆ A; set ys ⊆ A; size xs = size ys |]
==> xs [\<sqsubseteq>r] xs [\<squnion>f] ys"
(*<*)
apply (unfold unfold_lesub_list)
apply (simp add: Listn.le_def list_all2_conv_all_nth)
done
(*>*)
lemma (in semilat) plus_list_ub2:
"[|set xs ⊆ A; set ys ⊆ A; size xs = size ys |] ==> ys [\<sqsubseteq>r] xs [\<squnion>f] ys"
(*<*)
apply (unfold unfold_lesub_list)
apply (simp add: Listn.le_def list_all2_conv_all_nth)
done
(*>*)
lemma (in semilat) plus_list_lub [rule_format]:
shows "∀xs ys zs. set xs ⊆ A --> set ys ⊆ A --> set zs ⊆ A
--> size xs = n ∧ size ys = n -->
xs [\<sqsubseteq>r] zs ∧ ys [\<sqsubseteq>r] zs --> xs [\<squnion>f] ys [\<sqsubseteq>r] zs"
(*<*)
apply (unfold unfold_lesub_list)
apply (simp add: Listn.le_def list_all2_conv_all_nth)
done
(*>*)
lemma (in semilat) list_update_incr [rule_format]:
"x∈A ==> set xs ⊆ A -->
(∀i. i<size xs --> xs [\<sqsubseteq>r] xs[i := x \<squnion>f xs!i])"
(*<*)
apply (unfold unfold_lesub_list)
apply (simp add: Listn.le_def list_all2_conv_all_nth)
apply (induct xs)
apply simp
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp add: nth_Cons split: nat.split)
done
(*>*)
lemma acc_le_listI [intro!]:
"[| order r; acc r |] ==> acc(Listn.le r)"
(*<*)
apply (unfold acc_def)
apply (subgoal_tac
"wf(UN n. {(ys,xs). size xs = n ∧ size ys = n ∧ xs <_(Listn.le r) ys})")
apply (erule wf_subset)
apply (blast intro: lesssub_lengthD)
apply (rule wf_UN)
prefer 2
apply clarify
apply (rename_tac m n)
apply (case_tac "m=n")
apply simp
apply (rule conjI)
apply (fast intro!: equals0I dest: not_sym)
apply (fast intro!: equals0I dest: not_sym)
apply clarify
apply (rename_tac n)
apply (induct_tac n)
apply (simp add: lesssub_def cong: conj_cong)
apply (rename_tac k)
apply (simp add: wf_eq_minimal)
apply (simp (no_asm) add: length_Suc_conv cong: conj_cong)
apply clarify
apply (rename_tac M m)
apply (case_tac "∃x xs. size xs = k ∧ x#xs ∈ M")
prefer 2
apply (erule thin_rl)
apply (erule thin_rl)
apply blast
apply (erule_tac x = "{a. ∃xs. size xs = k ∧ a#xs:M}" in allE)
apply (erule impE)
apply blast
apply (thin_tac "∃x xs. ?P x xs")
apply clarify
apply (rename_tac maxA xs)
apply (erule_tac x = "{ys. size ys = size xs ∧ maxA#ys ∈ M}" in allE)
apply (erule impE)
apply blast
apply clarify
apply (thin_tac "m ∈ M")
apply (thin_tac "maxA#xs ∈ M")
apply (rule bexI)
prefer 2
apply assumption
apply clarify
apply simp
apply blast
done
(*>*)
lemma closed_listI:
"closed S f ==> closed (list n S) (map2 f)"
(*<*)
apply (unfold closed_def)
apply (induct n)
apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply simp
done
(*>*)
lemma Listn_sl_aux:
includes semilat shows "semilat (Listn.sl n (A,r,f))"
(*<*)
apply (unfold Listn.sl_def)
apply (simp (no_asm) only: semilat_Def split_conv)
apply (rule conjI)
apply simp
apply (rule conjI)
apply (simp only: closedI closed_listI)
apply (simp (no_asm) only: list_def)
apply (simp (no_asm_simp) add: plus_list_ub1 plus_list_ub2 plus_list_lub)
done
(*>*)
lemma Listn_sl: "!!L. semilat L ==> semilat (Listn.sl n L)"
(*<*) by(simp add: Listn_sl_aux split_tupled_all) (*>*)
lemma coalesce_in_err_list [rule_format]:
"∀xes. xes ∈ list n (err A) --> coalesce xes ∈ err(list n A)"
(*<*)
apply (induct n)
apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp (no_asm) add: plussub_def Err.sup_def lift2_def split: err.split)
apply force
done
(*>*)
lemma lem: "!!x xs. x \<squnion>op # xs = x#xs"
(*<*) by (simp add: plussub_def) (*>*)
lemma coalesce_eq_OK1_D [rule_format]:
"semilat(err A, Err.le r, lift2 f) ==>
∀xs. xs ∈ list n A --> (∀ys. ys ∈ list n A -->
(∀zs. coalesce (xs [\<squnion>f] ys) = OK zs --> xs [\<sqsubseteq>r] zs))"
(*<*)
apply (induct n)
apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp split: err.split_asm add: lem Err.sup_def lift2_def)
apply (force simp add: semilat_le_err_OK1)
done
(*>*)
lemma coalesce_eq_OK2_D [rule_format]:
"semilat(err A, Err.le r, lift2 f) ==>
∀xs. xs ∈ list n A --> (∀ys. ys ∈ list n A -->
(∀zs. coalesce (xs [\<squnion>f] ys) = OK zs --> ys [\<sqsubseteq>r] zs))"
(*<*)
apply (induct n)
apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp split: err.split_asm add: lem Err.sup_def lift2_def)
apply (force simp add: semilat_le_err_OK2)
done
(*>*)
lemma lift2_le_ub:
"[| semilat(err A, Err.le r, lift2 f); x∈A; y∈A; x \<squnion>f y = OK z;
u∈A; x \<sqsubseteq>r u; y \<sqsubseteq>r u |] ==> z \<sqsubseteq>r u"
(*<*)
apply (unfold semilat_Def plussub_def err_def')
apply (simp add: lift2_def)
apply clarify
apply (rotate_tac -3)
apply (erule thin_rl)
apply (erule thin_rl)
apply force
done
(*>*)
lemma coalesce_eq_OK_ub_D [rule_format]:
"semilat(err A, Err.le r, lift2 f) ==>
∀xs. xs ∈ list n A --> (∀ys. ys ∈ list n A -->
(∀zs us. coalesce (xs [\<squnion>f] ys) = OK zs ∧ xs [\<sqsubseteq>r] us ∧ ys [\<sqsubseteq>r] us
∧ us ∈ list n A --> zs [\<sqsubseteq>r] us))"
(*<*)
apply (induct n)
apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp (no_asm_use) split: err.split_asm add: lem Err.sup_def lift2_def)
apply clarify
apply (rule conjI)
apply (blast intro: lift2_le_ub)
apply blast
done
(*>*)
lemma lift2_eq_ErrD:
"[| x \<squnion>f y = Err; semilat(err A, Err.le r, lift2 f); x∈A; y∈A |]
==> ¬(∃u∈A. x \<sqsubseteq>r u ∧ y \<sqsubseteq>r u)"
(*<*) by (simp add: OK_plus_OK_eq_Err_conv [THEN iffD1]) (*>*)
lemma coalesce_eq_Err_D [rule_format]:
"[| semilat(err A, Err.le r, lift2 f) |]
==> ∀xs. xs ∈ list n A --> (∀ys. ys ∈ list n A -->
coalesce (xs [\<squnion>f] ys) = Err -->
¬(∃zs ∈ list n A. xs [\<sqsubseteq>r] zs ∧ ys [\<sqsubseteq>r] zs))"
(*<*)
apply (induct n)
apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp split: err.split_asm add: lem Err.sup_def lift2_def)
apply (blast dest: lift2_eq_ErrD)
done
(*>*)
lemma closed_err_lift2_conv:
"closed (err A) (lift2 f) = (∀x∈A. ∀y∈A. x \<squnion>f y ∈ err A)"
(*<*)
apply (unfold closed_def)
apply (simp add: err_def')
done
(*>*)
lemma closed_map2_list [rule_format]:
"closed (err A) (lift2 f) ==>
∀xs. xs ∈ list n A --> (∀ys. ys ∈ list n A -->
map2 f xs ys ∈ list n (err A))"
(*<*)
apply (unfold map2_def)
apply (induct n)
apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp add: plussub_def closed_err_lift2_conv)
done
(*>*)
lemma closed_lift2_sup:
"closed (err A) (lift2 f) ==>
closed (err (list n A)) (lift2 (sup f))"
(*<*) by (fastsimp simp add: closed_def plussub_def sup_def lift2_def
coalesce_in_err_list closed_map2_list
split: err.split) (*>*)
lemma err_semilat_sup:
"err_semilat (A,r,f) ==>
err_semilat (list n A, Listn.le r, sup f)"
(*<*)
apply (unfold Err.sl_def)
apply (simp only: split_conv)
apply (simp (no_asm) only: semilat_Def plussub_def)
apply (simp (no_asm_simp) only: semilat.closedI closed_lift2_sup)
apply (rule conjI)
apply (drule semilat.orderI)
apply simp
apply (simp (no_asm) only: unfold_lesub_err Err.le_def err_def' sup_def lift2_def)
apply (simp (no_asm_simp) add: coalesce_eq_OK1_D coalesce_eq_OK2_D split: err.split)
apply (blast intro: coalesce_eq_OK_ub_D dest: coalesce_eq_Err_D)
done
(*>*)
lemma err_semilat_upto_esl:
"!!L. err_semilat L ==> err_semilat(upto_esl m L)"
(*<*)
apply (unfold Listn.upto_esl_def)
apply (simp (no_asm_simp) only: split_tupled_all)
apply simp
apply (fastsimp intro!: err_semilat_UnionI err_semilat_sup
dest: lesub_list_impl_same_size
simp add: plussub_def Listn.sup_def)
done
(*>*)
end
lemmas
[| set xs <= A; x : A |] ==> set (xs[i := x]) <= A
lemma unfold_lesub_list:
xs [<=r] ys == Listn.le r xs ys
lemma Nil_le_conv:
([] [<=r] ys) = (ys = [])
lemma Cons_notle_Nil:
¬ x # xs [<=r] []
lemma Cons_le_Cons:
(x # xs [<=r] y # ys) = (x <=_r y & xs [<=r] ys)
lemma Cons_less_Conss:
order r ==> (x # xs [<r] y # ys) = (x <_r y & xs [<=r] ys | x = y & xs [<r] ys)
lemma list_update_le_cong:
[| i < length xs; xs [<=r] ys; x <=_r y |] ==> xs[i := x] [<=r] ys[i := y]
lemma le_listD:
[| xs [<=r] ys; p < length xs |] ==> xs ! p <=_r ys ! p
lemma le_list_refl:
ALL x. x <=_r x ==> xs [<=r] xs
lemma le_list_trans:
[| order r; xs [<=r] ys; ys [<=r] zs |] ==> xs [<=r] zs
lemma le_list_antisym:
[| order r; xs [<=r] ys; ys [<=r] xs |] ==> xs = ys
lemma order_listI:
order r ==> order (Listn.le r)
lemma lesub_list_impl_same_size:
xs [<=r] ys ==> length ys = length xs
lemma lesssub_lengthD:
xs [<r] ys ==> length ys = length xs
lemma le_list_appendI:
[| a [<=r] b; c [<=r] d |] ==> a @ c [<=r] b @ d
lemma le_listI:
[| length a = length b; !!n. n < length a ==> a ! n <=_r b ! n |] ==> a [<=r] b
lemma listI:
[| length xs = n; set xs <= A |] ==> xs : list n A
lemma listE_length:
xs : list n A ==> length xs = n
lemma less_lengthI:
[| xs : list n A; p < n |] ==> p < length xs
lemma listE_set:
xs : list n A ==> set xs <= A
lemma list_0:
list 0 A = {[]}
lemma in_list_Suc_iff:
(xs : list (Suc n) A) = (EX y:A. EX ys:list n A. xs = y # ys)
lemma Cons_in_list_Suc:
(x # xs : list (Suc n) A) = (x : A & xs : list n A)
lemma list_not_empty:
EX a. a : A ==> EX xs. xs : list n A
lemma nth_in:
[| length xs = n; set xs <= A; i < n |] ==> xs ! i : A
lemma listE_nth_in:
[| xs : list n A; i < n |] ==> xs ! i : A
lemma listn_Cons_Suc:
[| l # xs : list n A; !!n'. [| n = Suc n'; l : A; xs : list n' A |] ==> P |] ==> P
lemma listn_appendE:
[| a @ b : list n A; !!n1 n2. [| n = n1 + n2; a : list n1 A; b : list n2 A |] ==> P |] ==> P
lemma listt_update_in_list:
[| xs : list n A; x : A |] ==> xs[i := x] : list n A
lemma list_appendI:
[| a : list n A; b : list m A |] ==> a @ b : list (n + m) A
lemma list_map:
(map f xs : list (length xs) A) = (f ` set xs <= A)
lemma list_replicateI:
x : A ==> replicate n x : list n A
lemma plus_list_Nil:
[] [\<squnion>f] xs = []
lemma plus_list_Cons:
x # xs [\<squnion>f] ys = (case ys of [] => [] | y # ys => (x +_f y) # xs [\<squnion>f] ys)
lemma length_plus_list:
length (xs [\<squnion>f] ys) = min (length xs) (length ys)
lemma nth_plus_list:
[| length xs = n; length ys = n; i < n |] ==> (xs [\<squnion>f] ys) ! i = xs ! i +_f ys ! i
lemma plus_list_ub1:
[| semilat (A, r, f); set xs <= A; set ys <= A; length xs = length ys |] ==> xs [<=r] xs [\<squnion>f] ys
lemma plus_list_ub2:
[| semilat (A, r, f); set xs <= A; set ys <= A; length xs = length ys |] ==> ys [<=r] xs [\<squnion>f] ys
lemma
semilat (A, r, f) ==> ALL xs ys zs. set xs <= A --> set ys <= A --> set zs <= A --> length xs = n & length ys = n --> xs [<=r] zs & ys [<=r] zs --> xs [\<squnion>f] ys [<=r] zs
lemma list_update_incr:
[| semilat (A, r, f); x : A |] ==> set xs <= A --> (ALL i<length xs. xs [<=r] xs[i := x +_f xs ! i])
lemma acc_le_listI:
[| order r; acc r |] ==> acc (Listn.le r)
lemma closed_listI:
closed S f ==> closed (list n S) (map2 f)
lemma
semilat (A, r, f) ==> semilat (Listn.sl n (A, r, f))
lemma Listn_sl:
semilat L ==> semilat (Listn.sl n L)
lemma coalesce_in_err_list:
xes : list n (err A) ==> coalesce xes : err (list n A)
lemma lem:
x +_op # xs = x # xs
lemma coalesce_eq_OK1_D:
[| semilat (err A, Err.le r, lift2 f); xs : list n A; ys : list n A; coalesce (xs [\<squnion>f] ys) = OK zs |] ==> xs [<=r] zs
lemma coalesce_eq_OK2_D:
[| semilat (err A, Err.le r, lift2 f); xs : list n A; ys : list n A; coalesce (xs [\<squnion>f] ys) = OK zs |] ==> ys [<=r] zs
lemma lift2_le_ub:
[| semilat (err A, Err.le r, lift2 f); x : A; y : A; x +_f y = OK z; u : A; x <=_r u; y <=_r u |] ==> z <=_r u
lemma coalesce_eq_OK_ub_D:
[| semilat (err A, Err.le r, lift2 f); xs : list n A; ys : list n A; coalesce (xs [\<squnion>f] ys) = OK zs & xs [<=r] us & ys [<=r] us & us : list n A |] ==> zs [<=r] us
lemma lift2_eq_ErrD:
[| x +_f y = Err; semilat (err A, Err.le r, lift2 f); x : A; y : A |] ==> ¬ (EX u:A. x <=_r u & y <=_r u)
lemma coalesce_eq_Err_D:
[| semilat (err A, Err.le r, lift2 f); xs : list n A; ys : list n A; coalesce (xs [\<squnion>f] ys) = Err |] ==> ¬ (EX zs:list n A. xs [<=r] zs & ys [<=r] zs)
lemma closed_err_lift2_conv:
closed (err A) (lift2 f) = (ALL x:A. ALL y:A. x +_f y : err A)
lemma closed_map2_list:
[| closed (err A) (lift2 f); xs : list n A; ys : list n A |] ==> map2 f xs ys : list n (err A)
lemma closed_lift2_sup:
closed (err A) (lift2 f) ==> closed (err (list n A)) (lift2 (Listn.sup f))
lemma err_semilat_sup:
err_semilat (A, r, f) ==> err_semilat (list n A, Listn.le r, Listn.sup f)
lemma err_semilat_upto_esl:
err_semilat L ==> err_semilat (upto_esl m L)