Theory LBVSpec

Up to index of Isabelle/HOL/Jinja

theory LBVSpec = SemilatAlg + Opt:

(*  Title:      HOL/MicroJava/BV/LBVSpec.thy
    ID:         $Id: LBVSpec.html 1910 2004-05-19 04:46:04Z kleing $
    Author:     Gerwin Klein
    Copyright   1999 Technische Universitaet Muenchen
*)

header {* \isaheader{The Lightweight Bytecode Verifier} *}

theory LBVSpec = SemilatAlg + Opt:

types
  's certificate = "'s list"   

consts
merge :: "'s certificate => 's binop => 's ord => 's => nat => (nat × 's) list => 's => 's"
primrec
  "merge cert f r T pc []     x = x"
  "merge cert f r T pc (s#ss) x = merge cert f r T pc ss (let (pc',s') = s in 
                                  if pc'=pc+1 then s' \<squnion>f x
                                  else if s' \<sqsubseteq>r cert!pc' then x
                                  else T)"

constdefs
  wtl_inst :: "'s certificate => 's binop => 's ord => 's =>
              's step_type => nat => 's => 's"
  "wtl_inst cert f r T step pc s ≡ merge cert f r T pc (step pc s) (cert!(pc+1))"

  wtl_cert :: "'s certificate => 's binop => 's ord => 's => 's =>
              's step_type => nat => 's => 's"
  "wtl_cert cert f r T B step pc s ≡
  if cert!pc = B then 
    wtl_inst cert f r T step pc s
  else
    if s \<sqsubseteq>r cert!pc then wtl_inst cert f r T step pc (cert!pc) else T"

consts 
  wtl_inst_list :: "'a list => 's certificate => 's binop => 's ord => 's => 's =>
                    's step_type => nat => 's => 's"
primrec
  "wtl_inst_list []     cert f r T B step pc s = s"
  "wtl_inst_list (i#is) cert f r T B step pc s = 
    (let s' = wtl_cert cert f r T B step pc s in
      if s' = T ∨ s = T then T else wtl_inst_list is cert f r T B step (pc+1) s')"

constdefs
  cert_ok :: "'s certificate => nat => 's => 's => 's set => bool"
  "cert_ok cert n T B A ≡ (∀i < n. cert!i ∈ A ∧ cert!i ≠ T) ∧ (cert!n = B)"

constdefs
  bottom :: "'a ord => 'a => bool"
  "bottom r B ≡ ∀x. B \<sqsubseteq>r x"


locale (open) lbv = semilat +
  fixes T :: "'a" ("\<top>") 
  fixes B :: "'a" ("⊥") 
  fixes step :: "'a step_type" 
  assumes top: "top r \<top>"
  assumes T_A: "\<top> ∈ A"
  assumes bot: "bottom r ⊥" 
  assumes B_A: "⊥ ∈ A"

  fixes merge :: "'a certificate => nat => (nat × 'a) list => 'a => 'a"
  defines mrg_def: "merge cert ≡ LBVSpec.merge cert f r \<top>"

  fixes wti :: "'a certificate => nat => 'a => 'a"
  defines wti_def: "wti cert ≡ wtl_inst cert f r \<top> step"
 
  fixes wtc :: "'a certificate => nat => 'a => 'a"
  defines wtc_def: "wtc cert ≡ wtl_cert cert f r \<top> ⊥ step"

  fixes wtl :: "'b list => 'a certificate => nat => 'a => 'a"
  defines wtl_def: "wtl ins cert ≡ wtl_inst_list ins cert f r \<top> ⊥ step"


lemma (in lbv) wti:
  "wti c pc s ≡ merge c pc (step pc s) (c!(pc+1))"
  (*<*) by (simp add: wti_def mrg_def wtl_inst_def) (*>*)

lemma (in lbv) wtc: 
  "wtc c pc s ≡ if c!pc = ⊥ then wti c pc s else if s \<sqsubseteq>r c!pc then wti c pc (c!pc) else \<top>"
  (*<*) by (unfold wtc_def wti_def wtl_cert_def) (*>*)

lemma cert_okD1 [intro?]:
  "cert_ok c n T B A ==> pc < n ==> c!pc ∈ A"
  (*<*) by (unfold cert_ok_def) fast (*>*)

lemma cert_okD2 [intro?]:
  "cert_ok c n T B A ==> c!n = B"
  (*<*) by (simp add: cert_ok_def) (*>*)

lemma cert_okD3 [intro?]:
  "cert_ok c n T B A ==> B ∈ A ==> pc < n ==> c!Suc pc ∈ A"
  (*<*) by (drule Suc_leI) (auto simp add: le_eq_less_or_eq dest: cert_okD1 cert_okD2) (*>*)

lemma cert_okD4 [intro?]:
  "cert_ok c n T B A ==> pc < n ==> c!pc ≠ T"
  (*<*) by (simp add: cert_ok_def) (*>*)

declare Let_def [simp]

section "more semilattice lemmas"


lemma (in lbv) sup_top [simp, elim]:
  assumes x: "x ∈ A" 
  shows "x \<squnion>f \<top> = \<top>"
(*<*)
proof -
  from top have "x \<squnion>f \<top> \<sqsubseteq>r \<top>" ..
  moreover from x have "\<top> \<sqsubseteq>r x \<squnion>f \<top>" ..
  ultimately show ?thesis ..
qed
(*>*)
  
lemma (in lbv) plusplussup_top [simp, elim]:
  "set xs ⊆ A ==> xs \<Squnion>f \<top> = \<top>"
  by (induct xs) auto


lemma (in semilat) pp_ub1':
  assumes S: "snd`set S ⊆ A" 
  assumes y: "y ∈ A" and ab: "(a, b) ∈ set S" 
  shows "b \<sqsubseteq>r map snd [(p', t')∈S . p' = a] \<Squnion>f y"
(*<*)
proof -
  from S have "∀(x,y) ∈ set S. y ∈ A" by auto
  with semilat y ab show ?thesis by - (rule ub1')
qed 
(*>*)

lemma (in lbv) bottom_le [simp, intro!]: "⊥ \<sqsubseteq>r x"
  by (insert bot) (simp add: bottom_def)

lemma (in lbv) le_bottom [simp]: "x \<sqsubseteq>r ⊥ = (x = ⊥)"
  by (blast intro: antisym_r)


section "merge"

lemma (in lbv) merge_Nil [simp]:
  "merge c pc [] x = x" by (simp add: mrg_def)

lemma (in lbv) merge_Cons [simp]:
  "merge c pc (l#ls) x = merge c pc ls (if fst l=pc+1 then snd l +_f x
                                        else if snd l \<sqsubseteq>r c!fst l then x
                                        else \<top>)"
  by (simp add: mrg_def split_beta)

lemma (in lbv) merge_Err [simp]:
  "snd`set ss ⊆ A ==> merge c pc ss \<top> = \<top>"
  by (induct ss) auto

lemma (in lbv) merge_not_top:
  "!!x. snd`set ss ⊆ A ==> merge c pc ss x ≠ \<top> ==> 
  ∀(pc',s') ∈ set ss. (pc' ≠ pc+1 --> s' \<sqsubseteq>r c!pc')"
  (is "!!x. ?set ss ==> ?merge ss x ==> ?P ss")
(*<*)
proof (induct ss)
  show "?P []" by simp
next
  fix x ls l
  assume "?set (l#ls)" then obtain set: "snd`set ls ⊆ A" by simp
  assume merge: "?merge (l#ls) x" 
  moreover
  obtain pc' s' where [simp]: "l = (pc',s')" by (cases l)
  ultimately
  obtain x' where "?merge ls x'" by simp 
  assume "!!x. ?set ls ==> ?merge ls x ==> ?P ls" hence "?P ls" .
  moreover
  from merge set
  have "pc' ≠ pc+1 --> s' \<sqsubseteq>r c!pc'" by (simp split: split_if_asm)
  ultimately show "?P (l#ls)" by simp
qed
(*>*)


lemma (in lbv) merge_def:
  shows 
  "!!x. x ∈ A ==> snd`set ss ⊆ A ==>
  merge c pc ss x = 
  (if ∀(pc',s') ∈ set ss. pc'≠pc+1 --> s' \<sqsubseteq>r c!pc' then
    map snd [(p',t') ∈ ss. p'=pc+1] \<Squnion>f x
  else \<top>)" 
  (is "!!x. _ ==> _ ==> ?merge ss x = ?if ss x" is "!!x. _ ==> _ ==> ?P ss x")
(*<*)
proof (induct ss)
  fix x show "?P [] x" by simp
next 
  fix x assume x: "x ∈ A" 
  fix l::"nat × 'a" and ls  
  assume "snd`set (l#ls) ⊆ A"
  then obtain l: "snd l ∈ A" and ls: "snd`set ls ⊆ A" by auto
  assume "!!x. x ∈ A ==> snd`set ls ⊆ A ==> ?P ls x" 
  hence IH: "!!x. x ∈ A ==> ?P ls x" .
  obtain pc' s' where [simp]: "l = (pc',s')" by (cases l)
  hence "?merge (l#ls) x = ?merge ls 
    (if pc'=pc+1 then s' \<squnion>f x else if s' \<sqsubseteq>r c!pc' then x else \<top>)"
    (is "?merge (l#ls) x = ?merge ls ?if'")
    by simp 
  also have "… = ?if ls ?if'" 
  proof -
    from l have "s' ∈ A" by simp
    with x have "s' \<squnion>f x ∈ A" by simp
    with x have "?if' ∈ A" by auto
    hence "?P ls ?if'" by (rule IH) thus ?thesis by simp
  qed
  also have "… = ?if (l#ls) x"
    proof (cases "∀(pc', s')∈set (l#ls). pc'≠pc+1 --> s' \<sqsubseteq>r c!pc'")
      case True
      hence "∀(pc', s')∈set ls. pc'≠pc+1 --> s' \<sqsubseteq>r c!pc'" by auto
      moreover
      from True have 
        "map snd [(p',t')∈ls . p'=pc+1] \<Squnion>f ?if' = 
        (map snd [(p',t')∈l#ls . p'=pc+1] \<Squnion>f x)"
        by simp
      ultimately
      show ?thesis using True by simp
    next
      case False 
      moreover
      from ls have "set (map snd [(p', t')∈ls . p' = Suc pc]) ⊆ A" by auto
      ultimately show ?thesis by auto
    qed
  finally show "?P (l#ls) x" .
qed
(*>*)

lemma (in lbv) merge_not_top_s:
  assumes x:  "x ∈ A" and ss: "snd`set ss ⊆ A"
  assumes m:  "merge c pc ss x ≠ \<top>"
  shows "merge c pc ss x = (map snd [(p',t') ∈ ss. p'=pc+1] \<Squnion>f x)"
(*<*)
proof -
  from ss m have "∀(pc',s') ∈ set ss. (pc' ≠ pc+1 --> s' <=_r c!pc')" 
    by (rule merge_not_top)
  with x ss m show ?thesis by - (drule merge_def, auto split: split_if_asm)
qed
(*>*)

section "wtl-inst-list"

lemmas [iff] = not_Err_eq

lemma (in lbv) wtl_Nil [simp]: "wtl [] c pc s = s" 
  by (simp add: wtl_def)

lemma (in lbv) wtl_Cons [simp]: 
  "wtl (i#is) c pc s = 
  (let s' = wtc c pc s in if s' = \<top> ∨ s = \<top> then \<top> else wtl is c (pc+1) s')"
  by (simp add: wtl_def wtc_def)

lemma (in lbv) wtl_Cons_not_top:
  "wtl (i#is) c pc s ≠ \<top> = 
  (wtc c pc s ≠ \<top> ∧ s ≠ T ∧ wtl is c (pc+1) (wtc c pc s) ≠ \<top>)"
  by (auto simp del: split_paired_Ex)

lemma (in lbv) wtl_top [simp]:  "wtl ls c pc \<top> = \<top>"
  by (cases ls) auto

lemma (in lbv) wtl_not_top:
  "wtl ls c pc s ≠ \<top> ==> s ≠ \<top>"
  by (cases "s=\<top>") auto

lemma (in lbv) wtl_append [simp]:
  "!!pc s. wtl (a@b) c pc s = wtl b c (pc+length a) (wtl a c pc s)"
  by (induct a) auto

lemma (in lbv) wtl_take:
  "wtl is c pc s ≠ \<top> ==> wtl (take pc' is) c pc s ≠ \<top>"
  (is "?wtl is ≠ _ ==> _")
(*<*)
proof -
  assume "?wtl is ≠ \<top>"
  hence "?wtl (take pc' is @ drop pc' is) ≠ \<top>" by simp  
  thus ?thesis by (auto dest!: wtl_not_top simp del: append_take_drop_id)
qed
(*>*)

lemma take_Suc:
  "∀n. n < length l --> take (Suc n) l = (take n l)@[l!n]" (is "?P l")
(*<*)
proof (induct l)
  show "?P []" by simp
next
  fix x xs assume IH: "?P xs"  
  show "?P (x#xs)"
  proof (intro strip)
    fix n assume "n < length (x#xs)"
    with IH show "take (Suc n) (x # xs) = take n (x # xs) @ [(x # xs) ! n]" 
      by (cases n, auto)
  qed
qed
(*>*)

lemma (in lbv) wtl_Suc:
  assumes suc: "pc+1 < length is"
  assumes wtl: "wtl (take pc is) c 0 s ≠ \<top>"
  shows "wtl (take (pc+1) is) c 0 s = wtc c pc (wtl (take pc is) c 0 s)"
(*<*)
proof -
  from suc have "take (pc+1) is=(take pc is)@[is!pc]" by (simp add: take_Suc)
  with suc wtl show ?thesis by (simp add: min_def)
qed
(*>*)

lemma (in lbv) wtl_all:
  assumes all: "wtl is c 0 s ≠ \<top>" (is "?wtl is ≠ _") 
  assumes pc:  "pc < length is"
  shows  "wtc c pc (wtl (take pc is) c 0 s) ≠ \<top>"
(*<*)
proof -
  from pc have "0 < length (drop pc is)" by simp
  then  obtain i r where Cons: "drop pc is = i#r" 
    by (auto simp add: neq_Nil_conv simp del: length_drop)
  hence "i#r = drop pc is" ..
  with all have take: "?wtl (take pc is@i#r) ≠ \<top>" by simp 
  from pc have "is!pc = drop pc is ! 0" by simp
  with Cons have "is!pc = i" by simp
  with take pc show ?thesis by (auto simp add: min_def split: split_if_asm)
qed
(*>*)

section "preserves-type"

lemma (in lbv) merge_pres:
  assumes s0: "snd`set ss ⊆ A" and x: "x ∈ A"
  shows "merge c pc ss x ∈ A"
(*<*)
proof -
  from s0 have "set (map snd [(p', t')∈ss . p'=pc+1]) ⊆ A" by auto
  with x  have "(map snd [(p', t')∈ss . p'=pc+1] \<Squnion>f x) ∈ A"
    by (auto intro!: plusplus_closed)
  with s0 x show ?thesis by (simp add: merge_def T_A)
qed
(*>*)
  
lemma pres_typeD2:
  "pres_type step n A ==> s ∈ A ==> p < n ==> snd`set (step p s) ⊆ A"
  by auto (drule pres_typeD)

lemma (in lbv) wti_pres [intro?]:
  assumes pres: "pres_type step n A" 
  assumes cert: "c!(pc+1) ∈ A"
  assumes s_pc: "s ∈ A" "pc < n"
  shows "wti c pc s ∈ A"
(*<*)
proof -
  from pres s_pc have "snd`set (step pc s) ⊆ A" by (rule pres_typeD2)
  with cert show ?thesis by (simp add: wti merge_pres)
qed
(*>*)

lemma (in lbv) wtc_pres:
  assumes "pres_type step n A"
  assumes "c!pc ∈ A" and "c!(pc+1) ∈ A"
  assumes "s ∈ A" and "pc < n"
  shows "wtc c pc s ∈ A"
(*<*)
proof -
  have "wti c pc s ∈ A" ..
  moreover have "wti c pc (c!pc) ∈ A" ..
  ultimately show ?thesis using T_A by (simp add: wtc) 
qed
(*>*)

lemma (in lbv) wtl_pres:
  assumes pres: "pres_type step (length is) A"
  assumes cert: "cert_ok c (length is) \<top> ⊥ A"
  assumes s:    "s ∈ A" 
  assumes all:  "wtl is c 0 s ≠ \<top>"
  shows "pc < length is ==> wtl (take pc is) c 0 s ∈ A"
  (is "?len pc ==> ?wtl pc ∈ A")
(*<*)
proof (induct pc)
  from s show "?wtl 0 ∈ A" by simp
next
  fix n assume "Suc n < length is"
  then obtain n: "n < length is" by simp  
  assume "n < length is ==> ?wtl n ∈ A"
  hence "?wtl n ∈ A" .
  moreover
  from cert have "c!n ∈ A" by (rule cert_okD1)
  moreover
  have n1: "n+1 < length is" by simp
  with cert have "c!(n+1) ∈ A" by (rule cert_okD1)
  ultimately
  have "wtc c n (?wtl n) ∈ A" by - (rule wtc_pres)
  also
  from all n have "?wtl n ≠ \<top>" by - (rule wtl_take)
  with n1 have "wtc c n (?wtl n) = ?wtl (n+1)" by (rule wtl_Suc [symmetric])
  finally  show "?wtl (Suc n) ∈ A" by simp
qed
(*>*)


end

lemma wti:

  [| semilat (A, r, f); top r T; T : A; bottom r B; B : A |]
  ==> wtl_inst c f r T step pc s == merge c f r T pc (step pc s) (c ! (pc + 1))

lemma wtc:

  [| semilat (A, r, f); top r T; T : A; bottom r B; B : A |]
  ==> wtl_cert c f r T B step pc s ==
      if c ! pc = B then wtl_inst c f r T step pc s
      else if s <=_r c ! pc then wtl_inst c f r T step pc (c ! pc) else T

lemma cert_okD1:

  [| cert_ok c n T B A; pc < n |] ==> c ! pc : A

lemma cert_okD2:

  cert_ok c n T B A ==> c ! n = B

lemma cert_okD3:

  [| cert_ok c n T B A; B : A; pc < n |] ==> c ! Suc pc : A

lemma cert_okD4:

  [| cert_ok c n T B A; pc < n |] ==> c ! pc ~= T

more semilattice lemmas

lemma

  [| semilat (A, r, f); top r T; T : A; bottom r B; B : A; x : A |]
  ==> x +_f T = T

lemma plusplussup_top:

  [| semilat (A, r, f); top r T; T : A; bottom r B; B : A; set xs <= A |]
  ==> xs ++_f T = T

lemma

  [| semilat (A, r, f); snd ` set S <= A; y : A; (a, b) : set S |]
  ==> b <=_r map snd [(p', t'):S. p' = a] ++_f y

lemma bottom_le:

  [| semilat (A, r, f); top r T; T : A; bottom r B; B : A |] ==> B <=_r x

lemma le_bottom:

  [| semilat (A, r, f); top r T; T : A; bottom r B; B : A |]
  ==> (x <=_r B) = (x = B)

merge

lemma merge_Nil:

  [| semilat (A, r, f); top r T; T : A; bottom r B; B : A |]
  ==> merge c f r T pc [] x = x

lemma merge_Cons:

  [| semilat (A, r, f); top r T; T : A; bottom r B; B : A |]
  ==> merge c f r T pc (l # ls) x =
      merge c f r T pc ls
       (if fst l = pc + 1 then snd l +_f x
        else if snd l <=_r c ! fst l then x else T)

lemma merge_Err:

  [| semilat (A, r, f); top r T; T : A; bottom r B; B : A; snd ` set ss <= A |]
  ==> merge c f r T pc ss T = T

lemma merge_not_top:

  [| semilat (A, r, f); top r T; T : A; bottom r B; B : A; snd ` set ss <= A;
     merge c f r T pc ss x ~= T |]
  ==> ALL (pc', s'):set ss. pc' ~= pc + 1 --> s' <=_r c ! pc'

lemma

  [| semilat (A, r, f); top r T; T : A; bottom r B; B : A; x : A;
     snd ` set ss <= A |]
  ==> merge c f r T pc ss x =
      (if ALL (pc', s'):set ss. pc' ~= pc + 1 --> s' <=_r c ! pc'
       then map snd [(p', t'):ss. p' = pc + 1] ++_f x else T)

lemma

  [| semilat (A, r, f); top r T; T : A; bottom r B; B : A; x : A;
     snd ` set ss <= A; merge c f r T pc ss x ~= T |]
  ==> merge c f r T pc ss x = map snd [(p', t'):ss. p' = pc + 1] ++_f x

wtl-inst-list

lemmas

  (x ~= Err) = (EX a. x = OK a)

lemma wtl_Nil:

  [| semilat (A, r, f); top r T; T : A; bottom r B; B : A |]
  ==> wtl_inst_list [] c f r T B step pc s = s

lemma wtl_Cons:

  [| semilat (A, r, f); top r T; T : A; bottom r B; B : A |]
  ==> wtl_inst_list (i # is) c f r T B step pc s =
      (let s' = wtl_cert c f r T B step pc s
       in if s' = T | s = T then T
          else wtl_inst_list is c f r T B step (pc + 1) s')

lemma wtl_Cons_not_top:

  [| semilat (A, r, f); top r T; T : A; bottom r B; B : A |]
  ==> (wtl_inst_list (i # is) c f r T B step pc s ~= T) =
      (wtl_cert c f r T B step pc s ~= T &
       s ~= T &
       wtl_inst_list is c f r T B step (pc + 1) (wtl_cert c f r T B step pc s) ~=
       T)

lemma wtl_top:

  [| semilat (A, r, f); top r T; T : A; bottom r B; B : A |]
  ==> wtl_inst_list ls c f r T B step pc T = T

lemma wtl_not_top:

  [| semilat (A, r, f); top r T; T : A; bottom r B; B : A;
     wtl_inst_list ls c f r T B step pc s ~= T |]
  ==> s ~= T

lemma wtl_append:

  [| semilat (A, r, f); top r T; T : A; bottom r B; B : A |]
  ==> wtl_inst_list (a @ b) c f r T B step pc s =
      wtl_inst_list b c f r T B step (pc + length a)
       (wtl_inst_list a c f r T B step pc s)

lemma wtl_take:

  [| semilat (A, r, f); top r T; T : A; bottom r B; B : A;
     wtl_inst_list is c f r T B step pc s ~= T |]
  ==> wtl_inst_list (take pc' is) c f r T B step pc s ~= T

lemma take_Suc:

  ALL n<length l. take (Suc n) l = take n l @ [l ! n]

lemma

  [| semilat (A, r, f); top r T; T : A; bottom r B; B : A; pc + 1 < length is;
     wtl_inst_list (take pc is) c f r T B step 0 s ~= T |]
  ==> wtl_inst_list (take (pc + 1) is) c f r T B step 0 s =
      wtl_cert c f r T B step pc (wtl_inst_list (take pc is) c f r T B step 0 s)

lemma

  [| semilat (A, r, f); top r T; T : A; bottom r B; B : A;
     wtl_inst_list is c f r T B step 0 s ~= T; pc < length is |]
  ==> wtl_cert c f r T B step pc
       (wtl_inst_list (take pc is) c f r T B step 0 s) ~=
      T

preserves-type

lemma

  [| semilat (A, r, f); top r T; T : A; bottom r B; B : A; snd ` set ss <= A;
     x : A |]
  ==> merge c f r T pc ss x : A

lemma pres_typeD2:

  [| pres_type step n A; s : A; p < n |] ==> snd ` set (step p s) <= A

lemma

  [| semilat (A, r, f); top r T; T : A; bottom r B; B : A; pres_type step n A;
     c ! (pc + 1) : A; s : A; pc < n |]
  ==> wtl_inst c f r T step pc s : A

lemma

  [| semilat (A, r, f); top r T; T : A; bottom r B; B : A; pres_type step n A;
     c ! pc : A; c ! (pc + 1) : A; s : A; pc < n |]
  ==> wtl_cert c f r T B step pc s : A

lemma

  [| semilat (A, r, f); top r T; T : A; bottom r B; B : A;
     pres_type step (length is) A; cert_ok c (length is) T B A; s : A;
     wtl_inst_list is c f r T B step 0 s ~= T; pc < length is |]
  ==> wtl_inst_list (take pc is) c f r T B step 0 s : A