Theory LBVJVM

Up to index of Isabelle/HOL/Jinja

theory LBVJVM = Abstract_BV + TF_JVM:

(*  Title:      HOL/MicroJava/BV/JVM.thy
    ID:         $Id: LBVJVM.html 1910 2004-05-19 04:46:04Z kleing $
    Author:     Tobias Nipkow, Gerwin Klein
    Copyright   2000 TUM
*)

header {* \isaheader{LBV for the JVM}\label{sec:JVM} *}

theory LBVJVM = Abstract_BV + TF_JVM:

types prog_cert = "cname => mname => tyi' err list"

constdefs
  check_cert :: "jvm_prog => nat => nat => nat => tyi' err list => bool"
  "check_cert P mxs mxl n cert ≡ check_types P mxs mxl cert ∧ size cert = n+1 ∧
                                 (∀i<n. cert!i ≠ Err) ∧ cert!n = OK None"

  lbvjvm :: "jvm_prog => nat => nat => ty => ex_table => 
             tyi' err list => instr list => tyi' err => tyi' err"
  "lbvjvm P mxs maxr Tr et cert bs ≡
  wtl_inst_list bs cert (JVM_SemiType.sup P mxs maxr) (JVM_SemiType.le P mxs maxr) Err (OK None) (exec P mxs Tr et bs) 0"

  wt_lbv :: "jvm_prog => cname => ty list => ty => nat => nat => 
             ex_table => tyi' err list => instr list => bool"
  "wt_lbv P C Ts Tr mxs mxl0 et cert ins ≡
   check_cert P mxs (1+size Ts+mxl0) (size ins) cert ∧
   0 < size ins ∧ 
   (let start  = Some ([],(OK (Class C))#((map OK Ts))@(replicate mxl0 Err));
        result = lbvjvm P mxs (1+size Ts+mxl0) Tr et cert ins (OK start)
    in result ≠ Err)"

  wt_jvm_prog_lbv :: "jvm_prog => prog_cert => bool"
  "wt_jvm_prog_lbv P cert ≡
  wf_prog (λP C (mn,Ts,Tr,(mxs,mxl0,b,et)). wt_lbv P C Ts Tr mxs mxl0 et (cert C mn) b) P"

  mk_cert :: "jvm_prog => nat => ty => ex_table => instr list 
              => tym => tyi' err list"
  "mk_cert P mxs Tr et bs phi ≡ make_cert (exec P mxs Tr et bs) (map OK phi) (OK None)"

  prg_cert :: "jvm_prog => tyP => prog_cert"
  "prg_cert P phi C mn ≡ let (C,Ts,Tr,(mxs,mxl0,ins,et)) = method P C mn
                         in  mk_cert P mxs Tr et ins (phi C mn)"
   
lemma check_certD [intro?]:
  "check_cert P mxs mxl n cert ==> cert_ok cert n Err (OK None) (states P mxs mxl)"
  by (unfold cert_ok_def check_cert_def check_types_def) auto


lemma (in start_context) wt_lbv_wt_step:
  assumes lbv: "wt_lbv P C Ts Tr mxs mxl0 xt cert is"
  shows "∃τs ∈ list (size is) A. wt_step r Err step τs ∧ OK first \<sqsubseteq>r τs!0"
(*<*)
proof -
  from wf have "semilat (JVM_SemiType.sl P mxs mxl)" ..
  hence "semilat (A, r, f)" by (simp add: sl_def2)
  moreover have "top r Err" by (simp add: JVM_le_Err_conv)
  moreover have "Err ∈ A" by (simp add: JVM_states_unfold)
  moreover have "bottom r (OK None)" 
    by (simp add: JVM_le_Err_conv bottom_def lesub_def Err.le_def split: err.split)
  moreover have "OK None ∈ A" by (simp add: JVM_states_unfold)
  moreover note bounded_step
  moreover from lbv have "cert_ok cert (size is) Err (OK None) A"
    by (unfold wt_lbv_def) (auto dest: check_certD)
  moreover note exec_pres_type
  moreover
  from lbv 
  have "wtl_inst_list is cert f r Err (OK None) step 0 (OK first) ≠ Err"
    by (simp add: wt_lbv_def lbvjvm_def step_def_exec [symmetric])    
  moreover note first_in_A
  moreover from lbv have "0 < size is" by (simp add: wt_lbv_def)
  ultimately show ?thesis by (rule lbvs.wtl_sound_strong)
qed
(*>*)


lemma (in start_context) wt_lbv_wt_method:
  assumes lbv: "wt_lbv P C Ts Tr mxs mxl0 xt cert is"  
  shows "∃τs. wt_method P C Ts Tr mxs mxl0 is xt τs"
(*<*)
proof -
  from lbv have l: "is ≠ []" by (simp add: wt_lbv_def)
  moreover
  from wf lbv C Ts obtain τs where 
    list:  "τs ∈ list (size is) A" and
    step:  "wt_step r Err step τs" and    
    start: "OK first \<sqsubseteq>r τs!0" 
    by (blast dest: wt_lbv_wt_step)
  from list have [simp]: "size τs = size is" by simp
  have "size (map ok_val τs) = size is" by simp  
  moreover from l have 0: "0 < size τs" by simp
  with step obtain τs0 where "τs!0 = OK τs0"
    by (unfold wt_step_def) blast
  with start 0 have "wt_start P C Ts mxl0 (map ok_val τs)"
    by (simp add: wt_start_def JVM_le_Err_conv lesub_def Err.le_def)    
  moreover {
    from list have "check_types P mxs mxl τs" by (simp add: check_types_def)
    also from step  have "∀x ∈ set τs. x ≠ Err" 
      by (auto simp add: all_set_conv_all_nth wt_step_def)    
    hence [symmetric]: "map OK (map ok_val τs) = τs"
      by (auto intro!: map_idI simp add: map_compose [symmetric])
    finally have "check_types P mxs mxl (map OK (map ok_val τs))" .
  }
  moreover {  
    note bounded_step
    moreover from list have "set τs ⊆ A" by simp
    moreover from step have "wt_err_step (sup_state_opt P) step τs"
      by (simp add: wt_err_step_def JVM_le_Err_conv)
    ultimately have "wt_app_eff (sup_state_opt P) app eff (map ok_val τs)"
      by (auto intro: wt_err_imp_wt_app_eff simp add: exec_def states_def)
  }    
  ultimately have "wt_method P C Ts Tr mxs mxl0 is xt (map ok_val τs)"
    by (simp add: wt_method_def2 check_types_def)
  thus ?thesis ..
qed
(*>*)

  
lemma (in start_context) wt_method_wt_lbv:
  assumes wt: "wt_method P C Ts Tr mxs mxl0 is xt τs" 
  defines [simp]: "cert ≡ mk_cert P mxs Tr xt is τs"
  
  shows "wt_lbv P C Ts Tr mxs mxl0 xt cert is" 
(*<*)
proof -
  let ?τs  = "map OK τs"
  let ?cert = "make_cert step ?τs (OK None)"

  from wt obtain 
    0:        "0 < size is" and
    size:     "size is = size ?τs" and
    ck_types: "check_types P mxs mxl ?τs" and
    wt_start: "wt_start P C Ts mxl0 τs" and
    app_eff:  "wt_app_eff (sup_state_opt P) app eff τs"
    by (force simp add: wt_method_def2 check_types_def) 
  
  from wf have "semilat (JVM_SemiType.sl P mxs mxl)" ..
  hence "semilat (A, r, f)" by (simp add: sl_def2)
  moreover have "top r Err" by (simp add: JVM_le_Err_conv)
  moreover have "Err ∈ A" by (simp add: JVM_states_unfold)
  moreover have "bottom r (OK None)" 
    by (simp add: JVM_le_Err_conv bottom_def lesub_def Err.le_def split: err.split)
  moreover have "OK None ∈ A" by (simp add: JVM_states_unfold)
  moreover from wf have "mono r step (size is) A" by (rule step_mono)
  hence "mono r step (size ?τs) A" by (simp add: size)
  moreover from exec_pres_type 
  have "pres_type step (size ?τs) A" by (simp add: size) 
  moreover
  from ck_types have τs_in_A: "set ?τs ⊆ A" by (simp add: check_types_def)
  hence "∀pc. pc < size ?τs --> ?τs!pc ∈ A ∧ ?τs!pc ≠ Err" by auto
  moreover from bounded_step 
  have "bounded step (size ?τs)" by (simp add: size)
  moreover have "OK None ≠ Err" by simp
  moreover from bounded_step size τs_in_A app_eff
  have "wt_err_step (sup_state_opt P) step ?τs"
    by (auto intro: wt_app_eff_imp_wt_err simp add: exec_def states_def)    
  hence "wt_step r Err step ?τs"
    by (simp add: wt_err_step_def JVM_le_Err_conv)
  moreover
  from 0 size have "0 < size τs" by auto
  hence "?τs!0 = OK (τs!0)" by simp
  with wt_start have "OK first \<sqsubseteq>r ?τs!0"
    by (clarsimp simp add: wt_start_def lesub_def Err.le_def JVM_le_Err_conv)
  moreover note first_in_A
  moreover have "OK first ≠ Err" by simp
  moreover note size 
  ultimately
  have "wtl_inst_list is ?cert f r Err (OK None) step 0 (OK first) ≠ Err"
    by (rule lbvc.wtl_complete) 
  moreover from 0 size have "τs ≠ []" by auto
  moreover from ck_types have "check_types P mxs mxl ?cert"
    by (auto simp add: make_cert_def check_types_def JVM_states_unfold)
  moreover note 0 size
  ultimately show ?thesis 
    by (simp add: wt_lbv_def lbvjvm_def mk_cert_def step_def_exec [symmetric]
                  check_cert_def make_cert_def nth_append)
qed  
(*>*)


theorem jvm_lbv_correct:
  "wt_jvm_prog_lbv P Cert ==> wf_jvm_prog P"
(*<*)
proof -  
  let ?Φ = "λC mn. let (C,Ts,Tr,(mxs,mxl0,is,xt)) = method P C mn in 
              SOME τs. wt_method P C Ts Tr mxs mxl0 is xt τs"
    
  assume wt: "wt_jvm_prog_lbv P Cert"
  hence "wf_jvm_prog P"
    apply (unfold wf_jvm_prog_phi_def wt_jvm_prog_lbv_def) 
    apply (erule wf_prog_lift)
    apply (auto dest!: start_context.wt_lbv_wt_method [OF start_context.intro] 
                intro: someI)
    apply (erule sees_method_is_class)
    done
  thus ?thesis by (unfold wf_jvm_prog_def) blast
qed
(*>*)

theorem jvm_lbv_complete:
  assumes wt: "wf_jvm_progΦ P" 
  shows "wt_jvm_prog_lbv P (prg_cert P Φ)"
(*<*)
  using wt
  apply (unfold wf_jvm_prog_phi_def wt_jvm_prog_lbv_def)
  apply (erule wf_prog_lift)
  apply (auto simp add: prg_cert_def 
              intro!: start_context.wt_method_wt_lbv start_context.intro)
  apply (erule sees_method_is_class)                                     
  done
(*>*)

end  

lemma check_certD:

  check_cert P mxs mxl n cert ==> cert_ok cert n Err (OK None) (states P mxs mxl)

lemma

  [| start_context P Ts p C; wt_lbv P C Ts Tr mxs mxl0 xt cert is |]
  ==> EX τs:list (length is) (states P mxs (1 + length Ts + mxl0)).
         wt_step (JVM_SemiType.le P mxs (1 + length Ts + mxl0)) Err
          (err_step (length is) (%pc. app (is ! pc) P mxs Tr pc (length is) xt)
            (%pc. eff (is ! pc) P pc xt))
          τs &
         OK ⌊([], OK (Class C) # map OK Ts @ replicate mxl0 Err)⌋ 
         <=_(JVM_SemiType.le P mxs (1 + length Ts + mxl0)) τs ! 0

lemma

  [| start_context P Ts p C; wt_lbv P C Ts Tr mxs mxl0 xt cert is |]
  ==> EX τs. wt_method P C Ts Tr mxs mxl0 is xt τs

lemma

  [| start_context P Ts p C; wt_method P C Ts Tr mxs mxl0 is xt τs |]
  ==> wt_lbv P C Ts Tr mxs mxl0 xt (mk_cert P mxs Tr xt is τs) is

theorem jvm_lbv_correct:

  wt_jvm_prog_lbv P Cert ==> wf_jvm_prog P

theorem

  wf_jvm_progΦ P ==> wt_jvm_prog_lbv P (prg_cert P Φ)