(* ID: $Id: LBVCorrect.html 1910 2004-05-19 04:46:04Z kleing $ Author: Gerwin Klein Copyright 1999 Technische Universitaet Muenchen *) header {* \isaheader{Correctness of the LBV} *} theory LBVCorrect = LBVSpec + Typing_Framework: locale (open) lbvs = lbv + fixes s0 :: 'a fixes c :: "'a list" fixes ins :: "'b list" fixes τs :: "'a list" defines phi_def: "τs ≡ map (λpc. if c!pc = ⊥ then wtl (take pc ins) c 0 s0 else c!pc) [0..size ins(]" assumes bounded: "bounded step (size ins)" assumes cert: "cert_ok c (size ins) \<top> ⊥ A" assumes pres: "pres_type step (size ins) A" lemma (in lbvs) phi_None [intro?]: "[| pc < size ins; c!pc = ⊥ |] ==> τs!pc = wtl (take pc ins) c 0 s0" (*<*) by (simp add: phi_def) (*>*) lemma (in lbvs) phi_Some [intro?]: "[| pc < size ins; c!pc ≠ ⊥ |] ==> τs!pc = c!pc" (*<*) by (simp add: phi_def) (*>*) lemma (in lbvs) phi_len [simp]: "size τs = size ins" (*<*) by (simp add: phi_def) (*>*) lemma (in lbvs) wtl_suc_pc: assumes all: "wtl ins c 0 s0 ≠ \<top>" assumes pc: "pc+1 < size ins" shows "wtl (take (pc+1) ins) c 0 s0 \<sqsubseteq>r τs!(pc+1)" (*<*) proof - from all pc have "wtc c (pc+1) (wtl (take (pc+1) ins) c 0 s0) ≠ T" by (rule wtl_all) with pc show ?thesis by (simp add: phi_def wtc split: split_if_asm) qed (*>*) lemma (in lbvs) wtl_stable: assumes wtl: "wtl ins c 0 s0 ≠ \<top>" assumes s0: "s0 ∈ A" and pc: "pc < size ins" shows "stable r step τs pc" (*<*) proof (unfold stable_def, clarify) fix pc' s' assume step: "(pc',s') ∈ set (step pc (τs ! pc))" (is "(pc',s') ∈ set (?step pc)") from bounded pc step have pc': "pc' < size ins" by (rule boundedD) have tkpc: "wtl (take pc ins) c 0 s0 ≠ \<top>" (is "?s1 ≠ _") by (rule wtl_take) have s2: "wtl (take (pc+1) ins) c 0 s0 ≠ \<top>" (is "?s2 ≠ _") by (rule wtl_take) from wtl pc have wt_s1: "wtc c pc ?s1 ≠ \<top>" by (rule wtl_all) have c_Some: "∀pc t. pc < size ins --> c!pc ≠ ⊥ --> τs!pc = c!pc" by (simp add: phi_def) have c_None: "c!pc = ⊥ ==> τs!pc = ?s1" .. from wt_s1 pc c_None c_Some have inst: "wtc c pc ?s1 = wti c pc (τs!pc)" by (simp add: wtc split: split_if_asm) have "?s1 ∈ A" by (rule wtl_pres) with pc c_Some cert c_None have "τs!pc ∈ A" by (cases "c!pc = ⊥") (auto dest: cert_okD1) with pc pres have step_in_A: "snd`set (?step pc) ⊆ A" by (auto dest: pres_typeD2) show "s' \<sqsubseteq>r τs!pc'" proof (cases "pc' = pc+1") case True with pc' cert have cert_in_A: "c!(pc+1) ∈ A" by (auto dest: cert_okD1) from True pc' have pc1: "pc+1 < size ins" by simp with tkpc have "?s2 = wtc c pc ?s1" by - (rule wtl_Suc) with inst have merge: "?s2 = merge c pc (?step pc) (c!(pc+1))" by (simp add: wti) also from s2 merge have "… ≠ \<top>" (is "?merge ≠ _") by simp with cert_in_A step_in_A have "?merge = (map snd [(p',t')∈?step pc. p'=pc+1] \<Squnion>f c!(pc+1))" by (rule merge_not_top_s) finally have "s' \<sqsubseteq>r ?s2" using step_in_A cert_in_A True step by (auto intro: pp_ub1') also from wtl pc1 have "?s2 \<sqsubseteq>r τs!(pc+1)" by (rule wtl_suc_pc) also note True [symmetric] finally show ?thesis by simp next case False from wt_s1 inst have "merge c pc (?step pc) (c!(pc+1)) ≠ \<top>" by (simp add: wti) with step_in_A have "∀(pc', s')∈set (?step pc). pc'≠pc+1 --> s' \<sqsubseteq>r c!pc'" by - (rule merge_not_top) with step False have ok: "s' \<sqsubseteq>r c!pc'" by blast moreover from ok have "c!pc' = ⊥ ==> s' = ⊥" by simp moreover from c_Some pc' have "c!pc' ≠ ⊥ ==> τs!pc' = c!pc'" by auto ultimately show ?thesis by (cases "c!pc' = ⊥") auto qed qed (*>*) lemma (in lbvs) phi_not_top: assumes wtl: "wtl ins c 0 s0 ≠ \<top>" and pc: "pc < size ins" shows "τs!pc ≠ \<top>" (*<*) proof (cases "c!pc = ⊥") case False with pc have "τs!pc = c!pc" .. also from cert pc have "… ≠ \<top>" by (rule cert_okD4) finally show ?thesis . next case True with pc have "τs!pc = wtl (take pc ins) c 0 s0" .. also from wtl have "… ≠ \<top>" by (rule wtl_take) finally show ?thesis . qed (*>*) lemma (in lbvs) phi_in_A: assumes wtl: "wtl ins c 0 s0 ≠ \<top>" and s0: "s0 ∈ A" shows "τs ∈ list (size ins) A" (*<*) proof - { fix x assume "x ∈ set τs" then obtain xs ys where "τs = xs @ x # ys" by (auto simp add: in_set_conv_decomp) then obtain pc where pc: "pc < size τs" and x: "τs!pc = x" by (simp add: that [of "size xs"] nth_append) from wtl s0 pc have "wtl (take pc ins) c 0 s0 ∈ A" by (auto intro!: wtl_pres) moreover from pc have "pc < size ins" by simp with cert have "c!pc ∈ A" .. ultimately have "τs!pc ∈ A" using pc by (simp add: phi_def) hence "x ∈ A" using x by simp } hence "set τs ⊆ A" .. thus ?thesis by (unfold list_def) simp qed (*>*) lemma (in lbvs) phi0: assumes wtl: "wtl ins c 0 s0 ≠ \<top>" and 0: "0 < size ins" shows "s0 \<sqsubseteq>r τs!0" (*<*) proof (cases "c!0 = ⊥") case True with 0 have "τs!0 = wtl (take 0 ins) c 0 s0" .. moreover have "wtl (take 0 ins) c 0 s0 = s0" by simp ultimately have "τs!0 = s0" by simp thus ?thesis by simp next case False with 0 have "τs!0 = c!0" .. moreover have "wtl (take 1 ins) c 0 s0 ≠ \<top>" by (rule wtl_take) with 0 False have "s0 \<sqsubseteq>r c!0" by (auto simp add: neq_Nil_conv wtc split: split_if_asm) ultimately show ?thesis by simp qed (*>*) theorem (in lbvs) wtl_sound: assumes "wtl ins c 0 s0 ≠ \<top>" and "s0 ∈ A" shows "∃τs. wt_step r \<top> step τs" (*<*) proof - have "wt_step r \<top> step τs" proof (unfold wt_step_def, intro strip conjI) fix pc assume "pc < size τs" then obtain "pc < size ins" by simp show "τs!pc ≠ \<top>" by (rule phi_not_top) show "stable r step τs pc" by (rule wtl_stable) qed thus ?thesis .. qed (*>*) theorem (in lbvs) wtl_sound_strong: assumes "wtl ins c 0 s0 ≠ \<top>" assumes "s0 ∈ A" and "0 < size ins" shows "∃τs ∈ list (size ins) A. wt_step r \<top> step τs ∧ s0 \<sqsubseteq>r τs!0" (*<*) proof - have "τs ∈ list (size ins) A" by (rule phi_in_A) moreover have "wt_step r \<top> step τs" proof (unfold wt_step_def, intro strip conjI) fix pc assume "pc < size τs" then obtain "pc < size ins" by simp show "τs!pc ≠ \<top>" by (rule phi_not_top) show "stable r step τs pc" by (rule wtl_stable) qed moreover have "s0 \<sqsubseteq>r τs!0" by (rule phi0) ultimately show ?thesis by fast qed (*>*) end
lemma phi_None:
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; bounded step (length ins); cert_ok c (length ins) T B A; pres_type step (length ins) A; pc < length ins; c ! pc = B |] ==> map (%pc. if c ! pc = B then wtl_inst_list (take pc ins) c f r T B step 0 s0 else c ! pc) [0..length ins(] ! pc = wtl_inst_list (take pc ins) c f r T B step 0 s0
lemma phi_Some:
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; bounded step (length ins); cert_ok c (length ins) T B A; pres_type step (length ins) A; pc < length ins; c ! pc ~= B |] ==> map (%pc. if c ! pc = B then wtl_inst_list (take pc ins) c f r T B step 0 s0 else c ! pc) [0..length ins(] ! pc = c ! pc
lemma phi_len:
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; bounded step (length ins); cert_ok c (length ins) T B A; pres_type step (length ins) A |] ==> length (map (%pc. if c ! pc = B then wtl_inst_list (take pc ins) c f r T B step 0 s0 else c ! pc) [0..length ins(]) = length ins
lemma
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; bounded step (length ins); cert_ok c (length ins) T B A; pres_type step (length ins) A; wtl_inst_list ins c f r T B step 0 s0 ~= T; pc + 1 < length ins |] ==> wtl_inst_list (take (pc + 1) ins) c f r T B step 0 s0 <=_r map (%pc. if c ! pc = B then wtl_inst_list (take pc ins) c f r T B step 0 s0 else c ! pc) [0..length ins(] ! (pc + 1)
lemma
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; bounded step (length ins); cert_ok c (length ins) T B A; pres_type step (length ins) A; wtl_inst_list ins c f r T B step 0 s0 ~= T; s0 : A; pc < length ins |] ==> stable r step (map (%pc. if c ! pc = B then wtl_inst_list (take pc ins) c f r T B step 0 s0 else c ! pc) [0..length ins(]) pc
lemma
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; bounded step (length ins); cert_ok c (length ins) T B A; pres_type step (length ins) A; wtl_inst_list ins c f r T B step 0 s0 ~= T; pc < length ins |] ==> map (%pc. if c ! pc = B then wtl_inst_list (take pc ins) c f r T B step 0 s0 else c ! pc) [0..length ins(] ! pc ~= T
lemma
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; bounded step (length ins); cert_ok c (length ins) T B A; pres_type step (length ins) A; wtl_inst_list ins c f r T B step 0 s0 ~= T; s0 : A |] ==> map (%pc. if c ! pc = B then wtl_inst_list (take pc ins) c f r T B step 0 s0 else c ! pc) [0..length ins(] : list (length ins) A
lemma
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; bounded step (length ins); cert_ok c (length ins) T B A; pres_type step (length ins) A; wtl_inst_list ins c f r T B step 0 s0 ~= T; 0 < length ins |] ==> s0 <=_r map (%pc. if c ! pc = B then wtl_inst_list (take pc ins) c f r T B step 0 s0 else c ! pc) [0..length ins(] ! 0
theorem
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; bounded step (length ins); cert_ok c (length ins) T B A; pres_type step (length ins) A; wtl_inst_list ins c f r T B step 0 s0 ~= T; s0 : A |] ==> EX τs. wt_step r T step τs
theorem
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; bounded step (length ins); cert_ok c (length ins) T B A; pres_type step (length ins) A; wtl_inst_list ins c f r T B step 0 s0 ~= T; s0 : A; 0 < length ins |] ==> EX τs:list (length ins) A. wt_step r T step τs & s0 <=_r τs ! 0