Up to index of Isabelle/HOL/Jinja
theory LBVComplete = LBVSpec + Typing_Framework:(* Title: HOL/MicroJava/BV/LBVComplete.thy ID: $Id: LBVComplete.html 1910 2004-05-19 04:46:04Z kleing $ Author: Gerwin Klein Copyright 2000 Technische Universitaet Muenchen *) header {* \isaheader{Completeness of the LBV} *} theory LBVComplete = LBVSpec + Typing_Framework: constdefs is_target :: "['s step_type, 's list, nat] => bool" "is_target step τs pc' ≡ ∃pc s'. pc' ≠ pc+1 ∧ pc < size τs ∧ (pc',s') ∈ set (step pc (τs!pc))" make_cert :: "['s step_type, 's list, 's] => 's certificate" "make_cert step τs B ≡ map (λpc. if is_target step τs pc then τs!pc else B) [0..size τs(] @ [B]" text {* For the code generator: *} constdefs list_ex :: "('a => bool) => 'a list => bool" "list_ex P xs ≡ ∃x ∈ set xs. P x" lemma [code]: "list_ex P [] = False" by (simp add: list_ex_def) lemma [code]: "list_ex P (x#xs) = (P x ∨ list_ex P xs)" by (simp add: list_ex_def) lemma [code]: "is_target step τs pc' = list_ex (λpc. pc' ≠ pc+1 ∧ pc' mem (map fst (step pc (τs!pc)))) [0..size τs(]" (*<*) apply (simp add: list_ex_def is_target_def set_mem_eq) apply force done (*>*) locale (open) lbvc = lbv + fixes τs :: "'a list" fixes c :: "'a list" defines cert_def: "c ≡ make_cert step τs ⊥" assumes mono: "mono r step (size τs) A" assumes pres: "pres_type step (size τs) A" assumes τs: "∀pc < size τs. τs!pc ∈ A ∧ τs!pc ≠ \<top>" assumes bounded: "bounded step (size τs)" assumes B_neq_T: "⊥ ≠ \<top>" lemma (in lbvc) cert: "cert_ok c (size τs) \<top> ⊥ A" (*<*) proof (unfold cert_ok_def, intro strip conjI) note [simp] = make_cert_def cert_def nth_append show "c!size τs = ⊥" by simp fix pc assume pc: "pc < size τs" from pc τs B_A show "c!pc ∈ A" by simp from pc τs B_neq_T show "c!pc ≠ \<top>" by simp qed (*>*) lemmas [simp del] = split_paired_Ex lemma (in lbvc) cert_target [intro?]: "[| (pc',s') ∈ set (step pc (τs!pc)); pc' ≠ pc+1; pc < size τs; pc' < size τs |] ==> c!pc' = τs!pc'" (*<*) by (auto simp add: cert_def make_cert_def nth_append is_target_def) (*>*) lemma (in lbvc) cert_approx [intro?]: "[| pc < size τs; c!pc ≠ ⊥ |] ==> c!pc = τs!pc" (*<*) by (auto simp add: cert_def make_cert_def nth_append) (*>*) lemma (in lbv) le_top [simp, intro]: "x <=_r \<top>" (*<*) by (insert top) simp (*>*) lemma (in lbv) merge_mono: assumes less: "set ss2 {\<sqsubseteq>r} set ss1" assumes x: "x ∈ A" assumes ss1: "snd`set ss1 ⊆ A" assumes ss2: "snd`set ss2 ⊆ A" shows "merge c pc ss2 x \<sqsubseteq>r merge c pc ss1 x" (is "?s2 \<sqsubseteq>r ?s1") (*<*) proof- have "?s1 = \<top> ==> ?thesis" by simp moreover { assume merge: "?s1 ≠ T" from x ss1 have "?s1 = (if ∀(pc',s')∈set ss1. pc' ≠ pc + 1 --> s' \<sqsubseteq>r c!pc' then (map snd [(p', t')∈ss1 . p'=pc+1]) \<Squnion>f x else \<top>)" by (rule merge_def) with merge obtain app: "∀(pc',s')∈set ss1. pc' ≠ pc+1 --> s' \<sqsubseteq>r c!pc'" (is "?app ss1") and sum: "(map snd [(p',t')∈ss1 . p' = pc+1] \<Squnion>f x) = ?s1" (is "?map ss1 \<Squnion>f x = _" is "?sum ss1 = _") by (simp split: split_if_asm) from app less have "?app ss2" by (blast dest: trans_r lesub_step_typeD) moreover { from ss1 have map1: "set (?map ss1) ⊆ A" by auto with x have "?sum ss1 ∈ A" by (auto intro!: plusplus_closed) with sum have "?s1 ∈ A" by simp moreover have mapD: "!!x ss. x ∈ set (?map ss) ==> ∃p. (p,x) ∈ set ss ∧ p=pc+1" by auto from x map1 have "∀x ∈ set (?map ss1). x \<sqsubseteq>r ?sum ss1" by clarify (rule pp_ub1) with sum have "∀x ∈ set (?map ss1). x \<sqsubseteq>r ?s1" by simp with less have "∀x ∈ set (?map ss2). x \<sqsubseteq>r ?s1" by (fastsimp dest!: mapD lesub_step_typeD intro: trans_r) moreover from map1 x have "x \<sqsubseteq>r (?sum ss1)" by (rule pp_ub2) with sum have "x \<sqsubseteq>r ?s1" by simp moreover from ss2 have "set (?map ss2) ⊆ A" by auto ultimately have "?sum ss2 \<sqsubseteq>r ?s1" using x by - (rule pp_lub) } moreover from x ss2 have "?s2 = (if ∀(pc', s')∈set ss2. pc' ≠ pc + 1 --> s' \<sqsubseteq>r c!pc' then map snd [(p', t')∈ss2 . p' = pc + 1] \<Squnion>f x else \<top>)" by (rule merge_def) ultimately have ?thesis by simp } ultimately show ?thesis by (cases "?s1 = \<top>") auto qed (*>*) lemma (in lbvc) wti_mono: assumes less: "s2 \<sqsubseteq>r s1" assumes pc: "pc < size τs" and s1: "s1 ∈ A" and s2: "s2 ∈ A" shows "wti c pc s2 \<sqsubseteq>r wti c pc s1" (is "?s2' \<sqsubseteq>r ?s1'") (*<*) proof - from mono s2 have "set (step pc s2) {\<sqsubseteq>r} set (step pc s1)" by - (rule monoD) moreover from pc cert have "c!Suc pc ∈ A" by - (rule cert_okD3) moreover from pres s1 pc have "snd`set (step pc s1) ⊆ A" by (rule pres_typeD2) moreover from pres s2 pc have "snd`set (step pc s2) ⊆ A" by (rule pres_typeD2) ultimately show ?thesis by (simp add: wti merge_mono) qed (*>*) lemma (in lbvc) wtc_mono: assumes less: "s2 \<sqsubseteq>r s1" assumes pc: "pc < size τs" and s1: "s1 ∈ A" and s2: "s2 ∈ A" shows "wtc c pc s2 \<sqsubseteq>r wtc c pc s1" (is "?s2' \<sqsubseteq>r ?s1'") (*<*) proof (cases "c!pc = ⊥") case True moreover have "wti c pc s2 \<sqsubseteq>r wti c pc s1" by (rule wti_mono) ultimately show ?thesis by (simp add: wtc) next case False have "?s1' = \<top> ==> ?thesis" by simp moreover { assume "?s1' ≠ \<top>" with False have c: "s1 \<sqsubseteq>r c!pc" by (simp add: wtc split: split_if_asm) with less have "s2 \<sqsubseteq>r c!pc" .. with False c have ?thesis by (simp add: wtc) } ultimately show ?thesis by (cases "?s1' = \<top>") auto qed (*>*) lemma (in lbv) top_le_conv [simp]: "\<top> \<sqsubseteq>r x = (x = \<top>)" (*<*) by (insert semilat) (simp add: top top_le_conv) (*>*) lemma (in lbv) neq_top [simp, elim]: "[| x \<sqsubseteq>r y; y ≠ \<top> |] ==> x ≠ \<top>" (*<*) by (cases "x = T") auto (*>*) lemma (in lbvc) stable_wti: assumes stable: "stable r step τs pc" and pc: "pc < size τs" shows "wti c pc (τs!pc) ≠ \<top>" (*<*) proof - let ?step = "step pc (τs!pc)" from stable have less: "∀(q,s')∈set ?step. s' \<sqsubseteq>r τs!q" by (simp add: stable_def) from cert pc have cert_suc: "c!Suc pc ∈ A" by - (rule cert_okD3) moreover from τs pc have "τs!pc ∈ A" by simp with pres pc have stepA: "snd`set ?step ⊆ A" by - (rule pres_typeD2) ultimately have "merge c pc ?step (c!Suc pc) = (if ∀(pc',s')∈set ?step. pc'≠pc+1 --> s' \<sqsubseteq>r c!pc' then map snd [(p',t')∈?step.p'=pc+1] \<Squnion>f c!Suc pc else \<top>)" by (rule merge_def) moreover { fix pc' s' assume s': "(pc',s') ∈ set ?step" and suc_pc: "pc' ≠ pc+1" with less have "s' \<sqsubseteq>r τs!pc'" by auto also from bounded pc s' have "pc' < size τs" by (rule boundedD) with s' suc_pc pc have "c!pc' = τs!pc'" .. hence "τs!pc' = c!pc'" .. finally have "s' \<sqsubseteq>r c!pc'" . } hence "∀(pc',s')∈set ?step. pc'≠pc+1 --> s' \<sqsubseteq>r c!pc'" by auto moreover from pc have "Suc pc = size τs ∨ Suc pc < size τs" by auto hence "map snd [(p',t')∈?step.p'=pc+1] \<Squnion>f c!Suc pc ≠ \<top>" (is "?map \<Squnion>f _ ≠ _") proof (rule disjE) assume pc': "Suc pc = size τs" with cert have "c!Suc pc = ⊥" by (simp add: cert_okD2) moreover from pc' bounded pc have "∀(p',t')∈set ?step. p'≠pc+1" by clarify (drule boundedD, auto) hence "[(p',t')∈?step. p'=pc+1] = []" by (blast intro: filter_False) hence "?map = []" by simp ultimately show ?thesis by (simp add: B_neq_T) next assume pc': "Suc pc < size τs" from pc' τs have "τs!Suc pc ∈ A" by simp moreover note cert_suc moreover from stepA have "set ?map ⊆ A" by auto moreover have "!!s. s ∈ set ?map ==> ∃t. (Suc pc, t) ∈ set ?step" by auto with less have "∀s' ∈ set ?map. s' \<sqsubseteq>r τs!Suc pc" by auto moreover from pc' have "c!Suc pc \<sqsubseteq>r τs!Suc pc" by (cases "c!Suc pc = ⊥") (auto dest: cert_approx) ultimately have "?map \<Squnion>f c!Suc pc \<sqsubseteq>r τs!Suc pc" by (rule pp_lub) moreover from pc' τs have "τs!Suc pc ≠ \<top>" by simp ultimately show ?thesis by auto qed ultimately have "merge c pc ?step (c!Suc pc) ≠ \<top>" by simp thus ?thesis by (simp add: wti) qed (*>*) lemma (in lbvc) wti_less: assumes stable: "stable r step τs pc" and suc_pc: "Suc pc < size τs" shows "wti c pc (τs!pc) \<sqsubseteq>r τs!Suc pc" (is "?wti \<sqsubseteq>r _") (*<*) proof - let ?step = "step pc (τs!pc)" from stable have less: "∀(q,s')∈set ?step. s' \<sqsubseteq>r τs!q" by (simp add: stable_def) from suc_pc have pc: "pc < size τs" by simp with cert have cert_suc: "c!Suc pc ∈ A" by - (rule cert_okD3) moreover from τs pc have "τs!pc ∈ A" by simp with pres pc have stepA: "snd`set ?step ⊆ A" by - (rule pres_typeD2) moreover from stable pc have "?wti ≠ \<top>" by (rule stable_wti) hence "merge c pc ?step (c!Suc pc) ≠ \<top>" by (simp add: wti) ultimately have "merge c pc ?step (c!Suc pc) = map snd [(p',t')∈?step.p'=pc+1] \<Squnion>f c!Suc pc" by (rule merge_not_top_s) hence "?wti = …" (is "_ = (?map \<Squnion>f _)" is "_ = ?sum") by (simp add: wti) also { from suc_pc τs have "τs!Suc pc ∈ A" by simp moreover note cert_suc moreover from stepA have "set ?map ⊆ A" by auto moreover have "!!s. s ∈ set ?map ==> ∃t. (Suc pc, t) ∈ set ?step" by auto with less have "∀s' ∈ set ?map. s' \<sqsubseteq>r τs!Suc pc" by auto moreover from suc_pc have "c!Suc pc \<sqsubseteq>r τs!Suc pc" by (cases "c!Suc pc = ⊥") (auto dest: cert_approx) ultimately have "?sum \<sqsubseteq>r τs!Suc pc" by (rule pp_lub) } finally show ?thesis . qed (*>*) lemma (in lbvc) stable_wtc: assumes stable: "stable r step τs pc" and pc: "pc < size τs" shows "wtc c pc (τs!pc) ≠ \<top>" (*<*) proof - have wti: "wti c pc (τs!pc) ≠ \<top>" by (rule stable_wti) show ?thesis proof (cases "c!pc = ⊥") case True with wti show ?thesis by (simp add: wtc) next case False with pc have "c!pc = τs!pc" .. with False wti show ?thesis by (simp add: wtc) qed qed (*>*) lemma (in lbvc) wtc_less: assumes stable: "stable r step τs pc" and suc_pc: "Suc pc < size τs" shows "wtc c pc (τs!pc) \<sqsubseteq>r τs!Suc pc" (is "?wtc \<sqsubseteq>r _") (*<*) proof (cases "c!pc = ⊥") case True moreover have "wti c pc (τs!pc) \<sqsubseteq>r τs!Suc pc" by (rule wti_less) ultimately show ?thesis by (simp add: wtc) next case False from suc_pc have pc: "pc < size τs" by simp hence "?wtc ≠ \<top>" by - (rule stable_wtc) with False have "?wtc = wti c pc (c!pc)" by (unfold wtc) (simp split: split_if_asm) also from pc False have "c!pc = τs!pc" .. finally have "?wtc = wti c pc (τs!pc)" . also have "wti c pc (τs!pc) \<sqsubseteq>r τs!Suc pc" by (rule wti_less) finally show ?thesis . qed (*>*) lemma (in lbvc) wt_step_wtl_lemma: assumes wt_step: "wt_step r \<top> step τs" shows "!!pc s. pc+size ls = size τs ==> s \<sqsubseteq>r τs!pc ==> s ∈ A ==> s≠\<top> ==> wtl ls c pc s ≠ \<top>" (is "!!pc s. _ ==> _ ==> _ ==> _ ==> ?wtl ls pc s ≠ _") (*<*) proof (induct ls) fix pc s assume "s≠\<top>" thus "?wtl [] pc s ≠ \<top>" by simp next fix pc s i ls assume "!!pc s. pc+size ls=size τs ==> s \<sqsubseteq>r τs!pc ==> s ∈ A ==> s≠\<top> ==> ?wtl ls pc s ≠ \<top>" moreover assume pc_l: "pc + size (i#ls) = size τs" hence suc_pc_l: "Suc pc + size ls = size τs" by simp ultimately have IH: "!!s. s \<sqsubseteq>r τs!Suc pc ==> s ∈ A ==> s ≠ \<top> ==> ?wtl ls (Suc pc) s ≠ \<top>" . from pc_l obtain pc: "pc < size τs" by simp with wt_step have stable: "stable r step τs pc" by (simp add: wt_step_def) moreover assume s_τs: "s \<sqsubseteq>r τs!pc" ultimately have wt_τs: "wtc c pc (τs!pc) ≠ \<top>" by - (rule stable_wtc) from τs pc have τs_pc: "τs!pc ∈ A" by simp moreover assume s: "s ∈ A" ultimately have wt_s_τs: "wtc c pc s \<sqsubseteq>r wtc c pc (τs!pc)" using s_τs by - (rule wtc_mono) with wt_τs have wt_s: "wtc c pc s ≠ \<top>" by simp moreover assume s: "s ≠ \<top>" ultimately have "ls = [] ==> ?wtl (i#ls) pc s ≠ \<top>" by simp moreover { assume "ls ≠ []" with pc_l have suc_pc: "Suc pc < size τs" by (auto simp add: neq_Nil_conv) with stable have "wtc c pc (τs!pc) \<sqsubseteq>r τs!Suc pc" by (rule wtc_less) with wt_s_τs have "wtc c pc s \<sqsubseteq>r τs!Suc pc" by (rule trans_r) moreover from cert suc_pc have "c!pc ∈ A" "c!(pc+1) ∈ A" by (auto simp add: cert_ok_def) with pres have "wtc c pc s ∈ A" by (rule wtc_pres) ultimately have "?wtl ls (Suc pc) (wtc c pc s) ≠ \<top>" using IH wt_s by blast with s wt_s have "?wtl (i#ls) pc s ≠ \<top>" by simp } ultimately show "?wtl (i#ls) pc s ≠ \<top>" by (cases ls) blast+ qed (*>*) theorem (in lbvc) wtl_complete: assumes "wt_step r \<top> step τs" assumes "s \<sqsubseteq>r τs!0" and "s ∈ A" and "s ≠ \<top>" and "size ins = size τs" shows "wtl ins c 0 s ≠ \<top>" (*<*) proof - have "0+size ins = size τs" by simp thus ?thesis by - (rule wt_step_wtl_lemma) qed (*>*) end
lemma
list_ex P [] = False
lemma
list_ex P (x # xs) = (P x | list_ex P xs)
lemma
is_target step τs pc' = list_ex (%pc. pc' ~= pc + 1 & pc' mem map fst (step pc (τs ! pc))) [0..length τs(]
lemma cert:
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; SemilatAlg.mono r step (length τs) A; pres_type step (length τs) A; ALL pc<length τs. τs ! pc : A & τs ! pc ~= T; bounded step (length τs); B ~= T |] ==> cert_ok (make_cert step τs B) (length τs) T B A
lemmas
(EX x. P x) = (EX a b. P (a, b))
lemma cert_target:
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; SemilatAlg.mono r step (length τs) A; pres_type step (length τs) A; ALL pc<length τs. τs ! pc : A & τs ! pc ~= T; bounded step (length τs); B ~= T; (pc', s') : set (step pc (τs ! pc)); pc' ~= pc + 1; pc < length τs; pc' < length τs |] ==> make_cert step τs B ! pc' = τs ! pc'
lemma cert_approx:
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; SemilatAlg.mono r step (length τs) A; pres_type step (length τs) A; ALL pc<length τs. τs ! pc : A & τs ! pc ~= T; bounded step (length τs); B ~= T; pc < length τs; make_cert step τs B ! pc ~= B |] ==> make_cert step τs B ! pc = τs ! pc
lemma le_top:
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A |] ==> x <=_r T
lemma
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; set ss2 {<=_r} set ss1; x : A; snd ` set ss1 <= A; snd ` set ss2 <= A |] ==> merge c f r T pc ss2 x <=_r merge c f r T pc ss1 x
lemma
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; SemilatAlg.mono r step (length τs) A; pres_type step (length τs) A; ALL pc<length τs. τs ! pc : A & τs ! pc ~= T; bounded step (length τs); B ~= T; s2 <=_r s1; pc < length τs; s1 : A; s2 : A |] ==> wtl_inst (make_cert step τs B) f r T step pc s2 <=_r wtl_inst (make_cert step τs B) f r T step pc s1
lemma
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; SemilatAlg.mono r step (length τs) A; pres_type step (length τs) A; ALL pc<length τs. τs ! pc : A & τs ! pc ~= T; bounded step (length τs); B ~= T; s2 <=_r s1; pc < length τs; s1 : A; s2 : A |] ==> wtl_cert (make_cert step τs B) f r T B step pc s2 <=_r wtl_cert (make_cert step τs B) f r T B step pc s1
lemma top_le_conv:
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A |] ==> (T <=_r x) = (x = T)
lemma neq_top:
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; x <=_r y; y ~= T |] ==> x ~= T
lemma
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; SemilatAlg.mono r step (length τs) A; pres_type step (length τs) A; ALL pc<length τs. τs ! pc : A & τs ! pc ~= T; bounded step (length τs); B ~= T; stable r step τs pc; pc < length τs |] ==> wtl_inst (make_cert step τs B) f r T step pc (τs ! pc) ~= T
lemma
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; SemilatAlg.mono r step (length τs) A; pres_type step (length τs) A; ALL pc<length τs. τs ! pc : A & τs ! pc ~= T; bounded step (length τs); B ~= T; stable r step τs pc; Suc pc < length τs |] ==> wtl_inst (make_cert step τs B) f r T step pc (τs ! pc) <=_r τs ! Suc pc
lemma
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; SemilatAlg.mono r step (length τs) A; pres_type step (length τs) A; ALL pc<length τs. τs ! pc : A & τs ! pc ~= T; bounded step (length τs); B ~= T; stable r step τs pc; pc < length τs |] ==> wtl_cert (make_cert step τs B) f r T B step pc (τs ! pc) ~= T
lemma
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; SemilatAlg.mono r step (length τs) A; pres_type step (length τs) A; ALL pc<length τs. τs ! pc : A & τs ! pc ~= T; bounded step (length τs); B ~= T; stable r step τs pc; Suc pc < length τs |] ==> wtl_cert (make_cert step τs B) f r T B step pc (τs ! pc) <=_r τs ! Suc pc
lemma
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; SemilatAlg.mono r step (length τs) A; pres_type step (length τs) A; ALL pc<length τs. τs ! pc : A & τs ! pc ~= T; bounded step (length τs); B ~= T; wt_step r T step τs; pc + length ls = length τs; s <=_r τs ! pc; s : A; s ~= T |] ==> wtl_inst_list ls (make_cert step τs B) f r T B step pc s ~= T
theorem
[| semilat (A, r, f); top r T; T : A; bottom r B; B : A; SemilatAlg.mono r step (length τs) A; pres_type step (length τs) A; ALL pc<length τs. τs ! pc : A & τs ! pc ~= T; bounded step (length τs); B ~= T; wt_step r T step τs; s <=_r τs ! 0; s : A; s ~= T; length ins = length τs |] ==> wtl_inst_list ins (make_cert step τs B) f r T B step 0 s ~= T