(* Title: HOL/MicroJava/BV/Semilat.thy ID: $Id: Semilat.html 1910 2004-05-19 04:46:04Z kleing $ Author: Tobias Nipkow Copyright 2000 TUM Semilattices *) header {* \chapter{Bytecode Verifier}\label{cha:bv} \isaheader{Semilattices} *} theory Semilat = While_Combinator: types 'a ord = "'a => 'a => bool" 'a binop = "'a => 'a => 'a" 'a sl = "'a set × 'a ord × 'a binop" consts "lesub" :: "'a => 'a ord => 'a => bool" "lesssub" :: "'a => 'a ord => 'a => bool" "plussub" :: "'a => ('a => 'b => 'c) => 'b => 'c" (*<*) syntax "lesub" :: "'a => 'a ord => 'a => bool" ("(_ /<='__ _)" [50, 1000, 51] 50) "lesssub" :: "'a => 'a ord => 'a => bool" ("(_ /<'__ _)" [50, 1000, 51] 50) "plussub" :: "'a => ('a => 'b => 'c) => 'b => 'c" ("(_ /+'__ _)" [65, 1000, 66] 65) (*>*) syntax (xsymbols) "lesub" :: "'a => 'a ord => 'a => bool" ("(_ /\<sqsubseteq>_ _)" [50, 0, 51] 50) "lesssub" :: "'a => 'a ord => 'a => bool" ("(_ /\<sqsubset>_ _)" [50, 0, 51] 50) "plussub" :: "'a => ('a => 'b => 'c) => 'b => 'c" ("(_ /\<squnion>_ _)" [65, 0, 66] 65) (*<*) (* allow \<sub> instead of \<bsub>..\<esub> *) "@lesub" :: "'a => 'a ord => 'a => bool" ("(_ /\<sqsubseteq>_ _)" [50, 1000, 51] 50) "@lesssub" :: "'a => 'a ord => 'a => bool" ("(_ /\<sqsubset>_ _)" [50, 1000, 51] 50) "@plussub" :: "'a => ('a => 'b => 'c) => 'b => 'c" ("(_ /\<squnion>_ _)" [65, 1000, 66] 65) translations "x \<sqsubseteq>r y" => "x \<sqsubseteq>r y" "x \<sqsubset>r y" => "x \<sqsubset>r y" "x \<squnion>f y" => "x \<squnion>f y" (*>*) defs lesub_def: "x \<sqsubseteq>r y ≡ r x y" lesssub_def: "x \<sqsubset>r y ≡ x \<sqsubseteq>r y ∧ x ≠ y" plussub_def: "x \<squnion>f y ≡ f x y" constdefs ord :: "('a × 'a) set => 'a ord" "ord r ≡ λx y. (x,y) ∈ r" order :: "'a ord => bool" "order r ≡ (∀x. x \<sqsubseteq>r x) ∧ (∀x y. x \<sqsubseteq>r y ∧ y \<sqsubseteq>r x --> x=y) ∧ (∀x y z. x \<sqsubseteq>r y ∧ y \<sqsubseteq>r z --> x \<sqsubseteq>r z)" top :: "'a ord => 'a => bool" "top r T ≡ ∀x. x \<sqsubseteq>r T" acc :: "'a ord => bool" "acc r ≡ wf {(y,x). x \<sqsubset>r y}" closed :: "'a set => 'a binop => bool" "closed A f ≡ ∀x∈A. ∀y∈A. x \<squnion>f y ∈ A" semilat :: "'a sl => bool" "semilat ≡ λ(A,r,f). order r ∧ closed A f ∧ (∀x∈A. ∀y∈A. x \<sqsubseteq>r x \<squnion>f y) ∧ (∀x∈A. ∀y∈A. y \<sqsubseteq>r x \<squnion>f y) ∧ (∀x∈A. ∀y∈A. ∀z∈A. x \<sqsubseteq>r z ∧ y \<sqsubseteq>r z --> x \<squnion>f y \<sqsubseteq>r z)" is_ub :: "('a × 'a) set => 'a => 'a => 'a => bool" "is_ub r x y u ≡ (x,u)∈r ∧ (y,u)∈r" is_lub :: "('a × 'a) set => 'a => 'a => 'a => bool" "is_lub r x y u ≡ is_ub r x y u ∧ (∀z. is_ub r x y z --> (u,z)∈r)" some_lub :: "('a × 'a) set => 'a => 'a => 'a" "some_lub r x y ≡ SOME z. is_lub r x y z" locale (open) semilat = fixes A :: "'a set" fixes r :: "'a ord" fixes f :: "'a binop" assumes semilat: "semilat(A,r,f)" lemma order_refl [simp, intro]: "order r ==> x \<sqsubseteq>r x" (*<*) by (unfold order_def) (simp (no_asm_simp)) (*>*) lemma order_antisym: "[| order r; x \<sqsubseteq>r y; y \<sqsubseteq>r x |] ==> x = y" (*<*) by (unfold order_def) (simp (no_asm_simp)) (*>*) lemma order_trans: "[| order r; x \<sqsubseteq>r y; y \<sqsubseteq>r z |] ==> x \<sqsubseteq>r z" (*<*) by (unfold order_def) blast (*>*) lemma order_less_irrefl [intro, simp]: "order r ==> ¬ x \<sqsubset>r x" (*<*) by (unfold order_def lesssub_def) blast (*>*) lemma order_less_trans: "[| order r; x \<sqsubset>r y; y \<sqsubset>r z |] ==> x \<sqsubset>r z" (*<*) by (unfold order_def lesssub_def) blast (*>*) lemma topD [simp, intro]: "top r T ==> x \<sqsubseteq>r T" (*<*) by (simp add: top_def) (*>*) lemma top_le_conv [simp]: "[| order r; top r T |] ==> (T \<sqsubseteq>r x) = (x = T)" (*<*) by (blast intro: order_antisym) (*>*) lemma semilat_Def: "semilat(A,r,f) ≡ order r ∧ closed A f ∧ (∀x∈A. ∀y∈A. x \<sqsubseteq>r x \<squnion>f y) ∧ (∀x∈A. ∀y∈A. y \<sqsubseteq>r x \<squnion>f y) ∧ (∀x∈A. ∀y∈A. ∀z∈A. x \<sqsubseteq>r z ∧ y \<sqsubseteq>r z --> x \<squnion>f y \<sqsubseteq>r z)" (*<*) by (unfold semilat_def) clarsimp (*>*) lemma (in semilat) orderI [simp, intro]: "order r" (*<*) using semilat by (simp add: semilat_Def) (*>*) lemma (in semilat) closedI [simp, intro]: "closed A f" (*<*) using semilat by (simp add: semilat_Def) (*>*) lemma closedD: "[| closed A f; x∈A; y∈A |] ==> x \<squnion>f y ∈ A" (*<*) by (unfold closed_def) blast (*>*) lemma closed_UNIV [simp]: "closed UNIV f" (*<*) by (simp add: closed_def) (*>*) lemma (in semilat) closed_f [simp, intro]: "[|x ∈ A; y ∈ A|] ==> x \<squnion>f y ∈ A" (*<*) by (simp add: closedD [OF closedI]) (*>*) lemma (in semilat) refl_r [intro, simp]: "x \<sqsubseteq>r x" by simp lemma (in semilat) antisym_r [intro?]: "[| x \<sqsubseteq>r y; y \<sqsubseteq>r x |] ==> x = y" (*<*) by (rule order_antisym) auto (*>*) lemma (in semilat) trans_r [trans, intro?]: "[|x \<sqsubseteq>r y; y \<sqsubseteq>r z|] ==> x \<sqsubseteq>r z" (*<*) by (auto intro: order_trans) (*>*) lemma (in semilat) ub1 [simp, intro?]: "[| x ∈ A; y ∈ A |] ==> x \<sqsubseteq>r x \<squnion>f y" (*<*) by (insert semilat) (unfold semilat_Def, simp) (*>*) lemma (in semilat) ub2 [simp, intro?]: "[| x ∈ A; y ∈ A |] ==> y \<sqsubseteq>r x \<squnion>f y" (*<*) by (insert semilat) (unfold semilat_Def, simp) (*>*) lemma (in semilat) lub [simp, intro?]: "[| x \<sqsubseteq>r z; y \<sqsubseteq>r z; x ∈ A; y ∈ A; z ∈ A |] ==> x \<squnion>f y \<sqsubseteq>r z"; (*<*) by (insert semilat) (unfold semilat_Def, simp) (*>*) lemma (in semilat) plus_le_conv [simp]: "[| x ∈ A; y ∈ A; z ∈ A |] ==> (x \<squnion>f y \<sqsubseteq>r z) = (x \<sqsubseteq>r z ∧ y \<sqsubseteq>r z)" (*<*) by (blast intro: ub1 ub2 lub order_trans) (*>*) lemma (in semilat) le_iff_plus_unchanged: "[| x ∈ A; y ∈ A |] ==> (x \<sqsubseteq>r y) = (x \<squnion>f y = y)" (*<*) apply (rule iffI) apply (blast intro: antisym_r refl_r lub ub2) apply (erule subst) apply simp done (*>*) lemma (in semilat) le_iff_plus_unchanged2: "[| x ∈ A; y ∈ A |] ==> (x \<sqsubseteq>r y) = (y \<squnion>f x = y)" (*<*) apply (rule iffI) apply (blast intro: order_antisym lub order_refl ub1) apply (erule subst) apply simp done (*>*) lemma (in semilat) plus_assoc [simp]: assumes a: "a ∈ A" and b: "b ∈ A" and c: "c ∈ A" shows "a \<squnion>f (b \<squnion>f c) = a \<squnion>f b \<squnion>f c" (*<*) proof - from a b have ab: "a \<squnion>f b ∈ A" .. from this c have abc: "(a \<squnion>f b) \<squnion>f c ∈ A" .. from b c have bc: "b \<squnion>f c ∈ A" .. from a this have abc': "a \<squnion>f (b \<squnion>f c) ∈ A" .. show ?thesis proof show "a \<squnion>f (b \<squnion>f c) \<sqsubseteq>r (a \<squnion>f b) \<squnion>f c" proof - from a b have "a \<sqsubseteq>r a \<squnion>f b" .. also from ab c have "… \<sqsubseteq>r … \<squnion>f c" .. finally have "a<": "a \<sqsubseteq>r (a \<squnion>f b) \<squnion>f c" . from a b have "b \<sqsubseteq>r a \<squnion>f b" .. also from ab c have "… \<sqsubseteq>r … \<squnion>f c" .. finally have "b<": "b \<sqsubseteq>r (a \<squnion>f b) \<squnion>f c" . from ab c have "c<": "c \<sqsubseteq>r (a \<squnion>f b) \<squnion>f c" .. from "b<" "c<" b c abc have "b \<squnion>f c \<sqsubseteq>r (a \<squnion>f b) \<squnion>f c" .. from "a<" this a bc abc show ?thesis .. qed show "(a \<squnion>f b) \<squnion>f c \<sqsubseteq>r a \<squnion>f (b \<squnion>f c)" proof - from b c have "b \<sqsubseteq>r b \<squnion>f c" .. also from a bc have "… \<sqsubseteq>r a \<squnion>f …" .. finally have "b<": "b \<sqsubseteq>r a \<squnion>f (b \<squnion>f c)" . from b c have "c \<sqsubseteq>r b \<squnion>f c" .. also from a bc have "… \<sqsubseteq>r a \<squnion>f …" .. finally have "c<": "c \<sqsubseteq>r a \<squnion>f (b \<squnion>f c)" . from a bc have "a<": "a \<sqsubseteq>r a \<squnion>f (b \<squnion>f c)" .. from "a<" "b<" a b abc' have "a \<squnion>f b \<sqsubseteq>r a \<squnion>f (b \<squnion>f c)" .. from this "c<" ab c abc' show ?thesis .. qed qed qed (*>*) lemma (in semilat) plus_com_lemma: "[|a ∈ A; b ∈ A|] ==> a \<squnion>f b \<sqsubseteq>r b \<squnion>f a" (*<*) proof - assume a: "a ∈ A" and b: "b ∈ A" from b a have "a \<sqsubseteq>r b \<squnion>f a" .. moreover from b a have "b \<sqsubseteq>r b \<squnion>f a" .. moreover note a b moreover from b a have "b \<squnion>f a ∈ A" .. ultimately show ?thesis .. qed (*>*) lemma (in semilat) plus_commutative: "[|a ∈ A; b ∈ A|] ==> a \<squnion>f b = b \<squnion>f a" (*<*) by(blast intro: order_antisym plus_com_lemma) (*>*) lemma is_lubD: "is_lub r x y u ==> is_ub r x y u ∧ (∀z. is_ub r x y z --> (u,z) ∈ r)" (*<*) by (simp add: is_lub_def) (*>*) lemma is_ubI: "[| (x,u) ∈ r; (y,u) ∈ r |] ==> is_ub r x y u" (*<*) by (simp add: is_ub_def) (*>*) lemma is_ubD: "is_ub r x y u ==> (x,u) ∈ r ∧ (y,u) ∈ r" (*<*) by (simp add: is_ub_def) (*>*) lemma is_lub_bigger1 [iff]: "is_lub (r^* ) x y y = ((x,y)∈r^* )" (*<*) apply (unfold is_lub_def is_ub_def) apply blast done (*>*) lemma is_lub_bigger2 [iff]: "is_lub (r^* ) x y x = ((y,x)∈r^* )" (*<*) apply (unfold is_lub_def is_ub_def) apply blast done (*>*) lemma extend_lub: "[| single_valued r; is_lub (r^* ) x y u; (x',x) ∈ r |] ==> EX v. is_lub (r^* ) x' y v" (*<*) apply (unfold is_lub_def is_ub_def) apply (case_tac "(y,x) ∈ r^*") apply (case_tac "(y,x') ∈ r^*") apply blast apply (blast elim: converse_rtranclE dest: single_valuedD) apply (rule exI) apply (rule conjI) apply (blast intro: converse_rtrancl_into_rtrancl dest: single_valuedD) apply (blast intro: rtrancl_into_rtrancl converse_rtrancl_into_rtrancl elim: converse_rtranclE dest: single_valuedD) done (*>*) lemma single_valued_has_lubs [rule_format]: "[| single_valued r; (x,u) ∈ r^* |] ==> (∀y. (y,u) ∈ r^* --> (EX z. is_lub (r^* ) x y z))" (*<*) apply (erule converse_rtrancl_induct) apply clarify apply (erule converse_rtrancl_induct) apply blast apply (blast intro: converse_rtrancl_into_rtrancl) apply (blast intro: extend_lub) done (*>*) lemma some_lub_conv: "[| acyclic r; is_lub (r^* ) x y u |] ==> some_lub (r^* ) x y = u" (*<*) apply (unfold some_lub_def is_lub_def) apply (rule someI2) apply assumption apply (blast intro: antisymD dest!: acyclic_impl_antisym_rtrancl) done (*>*) lemma is_lub_some_lub: "[| single_valued r; acyclic r; (x,u)∈r^*; (y,u)∈r^* |] ==> is_lub (r^* ) x y (some_lub (r^* ) x y)"; (*<*) by (fastsimp dest: single_valued_has_lubs simp add: some_lub_conv) (*>*) subsection{*An executable lub-finder*} constdefs exec_lub :: "('a * 'a) set => ('a => 'a) => 'a binop" "exec_lub r f x y ≡ while (λz. (x,z) ∉ r*) f y" lemma acyclic_single_valued_finite: "[|acyclic r; single_valued r; (x,y) ∈ r*|] ==> finite (r ∩ {a. (x, a) ∈ r*} × {b. (b, y) ∈ r*})" (*<*) apply(erule converse_rtrancl_induct) apply(rule_tac B = "{}" in finite_subset) apply(simp only:acyclic_def) apply(blast intro:rtrancl_into_trancl2 rtrancl_trancl_trancl) apply simp apply(rename_tac x x') apply(subgoal_tac "r ∩ {a. (x,a) ∈ r*} × {b. (b,y) ∈ r*} = insert (x,x') (r ∩ {a. (x', a) ∈ r*} × {b. (b, y) ∈ r*})") apply simp apply(blast intro:converse_rtrancl_into_rtrancl elim:converse_rtranclE dest:single_valuedD) done (*>*) lemma exec_lub_conv: "[| acyclic r; ∀x y. (x,y) ∈ r --> f x = y; is_lub (r*) x y u |] ==> exec_lub r f x y = u"; (*<*) apply(unfold exec_lub_def) apply(rule_tac P = "λz. (y,z) ∈ r* ∧ (z,u) ∈ r*" and r = "(r ∩ {(a,b). (y,a) ∈ r* ∧ (b,u) ∈ r*})^-1" in while_rule) apply(blast dest: is_lubD is_ubD) apply(erule conjE) apply(erule_tac z = u in converse_rtranclE) apply(blast dest: is_lubD is_ubD) apply(blast dest:rtrancl_into_rtrancl) apply(rename_tac s) apply(subgoal_tac "is_ub (r*) x y s") prefer 2; apply(simp add:is_ub_def) apply(subgoal_tac "(u, s) ∈ r*") prefer 2; apply(blast dest:is_lubD) apply(erule converse_rtranclE) apply blast apply(simp only:acyclic_def) apply(blast intro:rtrancl_into_trancl2 rtrancl_trancl_trancl) apply(rule finite_acyclic_wf) apply simp apply(erule acyclic_single_valued_finite) apply(blast intro:single_valuedI) apply(simp add:is_lub_def is_ub_def) apply simp apply(erule acyclic_subset) apply blast apply simp apply(erule conjE) apply(erule_tac z = u in converse_rtranclE) apply(blast dest: is_lubD is_ubD) apply(blast dest:rtrancl_into_rtrancl) done (*>*) lemma is_lub_exec_lub: "[| single_valued r; acyclic r; (x,u):r^*; (y,u):r^*; ∀x y. (x,y) ∈ r --> f x = y |] ==> is_lub (r^* ) x y (exec_lub r f x y)" (*<*) by (fastsimp dest: single_valued_has_lubs simp add: exec_lub_conv) (*>*) end
lemma order_refl:
order r ==> x <=_r x
lemma order_antisym:
[| order r; x <=_r y; y <=_r x |] ==> x = y
lemma order_trans:
[| order r; x <=_r y; y <=_r z |] ==> x <=_r z
lemma order_less_irrefl:
order r ==> ¬ x <_r x
lemma order_less_trans:
[| order r; x <_r y; y <_r z |] ==> x <_r z
lemma topD:
top r T ==> x <=_r T
lemma top_le_conv:
[| order r; top r T |] ==> (T <=_r x) = (x = T)
lemma semilat_Def:
semilat (A, r, f) == order r & closed A f & (ALL x:A. ALL y:A. x <=_r x +_f y) & (ALL x:A. ALL y:A. y <=_r x +_f y) & (ALL x:A. ALL y:A. ALL z:A. x <=_r z & y <=_r z --> x +_f y <=_r z)
lemma orderI:
semilat (A, r, f) ==> order r
lemma closedI:
semilat (A, r, f) ==> closed A f
lemma closedD:
[| closed A f; x : A; y : A |] ==> x +_f y : A
lemma closed_UNIV:
closed UNIV f
lemma closed_f:
[| semilat (A, r, f); x : A; y : A |] ==> x +_f y : A
lemma refl_r:
semilat (A, r, f) ==> x <=_r x
lemma antisym_r:
[| semilat (A, r, f); x <=_r y; y <=_r x |] ==> x = y
lemma trans_r:
[| semilat (A, r, f); x <=_r y; y <=_r z |] ==> x <=_r z
lemma ub1:
[| semilat (A, r, f); x : A; y : A |] ==> x <=_r x +_f y
lemma ub2:
[| semilat (A, r, f); x : A; y : A |] ==> y <=_r x +_f y
lemma lub:
[| semilat (A, r, f); x <=_r z; y <=_r z; x : A; y : A; z : A |] ==> x +_f y <=_r z
lemma plus_le_conv:
[| semilat (A, r, f); x : A; y : A; z : A |] ==> (x +_f y <=_r z) = (x <=_r z & y <=_r z)
lemma le_iff_plus_unchanged:
[| semilat (A, r, f); x : A; y : A |] ==> (x <=_r y) = (x +_f y = y)
lemma le_iff_plus_unchanged2:
[| semilat (A, r, f); x : A; y : A |] ==> (x <=_r y) = (y +_f x = y)
lemma
[| semilat (A, r, f); a : A; b : A; c : A |] ==> a +_f (b +_f c) = a +_f b +_f c
lemma plus_com_lemma:
[| semilat (A, r, f); a : A; b : A |] ==> a +_f b <=_r b +_f a
lemma plus_commutative:
[| semilat (A, r, f); a : A; b : A |] ==> a +_f b = b +_f a
lemma is_lubD:
is_lub r x y u ==> is_ub r x y u & (ALL z. is_ub r x y z --> (u, z) : r)
lemma is_ubI:
[| (x, u) : r; (y, u) : r |] ==> is_ub r x y u
lemma is_ubD:
is_ub r x y u ==> (x, u) : r & (y, u) : r
lemma is_lub_bigger1:
is_lub (r^*) x y y = ((x, y) : r^*)
lemma is_lub_bigger2:
is_lub (r^*) x y x = ((y, x) : r^*)
lemma extend_lub:
[| single_valued r; is_lub (r^*) x y u; (x', x) : r |] ==> EX v. is_lub (r^*) x' y v
lemma single_valued_has_lubs:
[| single_valued r; (x, u) : r^*; (y, u) : r^* |] ==> Ex (is_lub (r^*) x y)
lemma some_lub_conv:
[| acyclic r; is_lub (r^*) x y u |] ==> some_lub (r^*) x y = u
lemma is_lub_some_lub:
[| single_valued r; acyclic r; (x, u) : r^*; (y, u) : r^* |] ==> is_lub (r^*) x y (some_lub (r^*) x y)
lemma acyclic_single_valued_finite:
[| acyclic r; single_valued r; (x, y) : r^* |] ==> finite (r Int {a. (x, a) : r^*} <*> {b. (b, y) : r^*})
lemma exec_lub_conv:
[| acyclic r; ALL x y. (x, y) : r --> f x = y; is_lub (r^*) x y u |] ==> exec_lub r f x y = u
lemma is_lub_exec_lub:
[| single_valued r; acyclic r; (x, u) : r^*; (y, u) : r^*; ALL x y. (x, y) : r --> f x = y |] ==> is_lub (r^*) x y (exec_lub r f x y)