Deep Learning (DL) models have become popular for solving complex problems, but they have limitations such as the need for high-quality training data, lack of transparency, and robustness issues. Neuro-Symbolic AI has emerged as a promising approach combining the strengths of neural networks and symbolic reasoning. Symbolic knowledge injection (SKI) techniques are a popular method to incorporate symbolic knowledge into sub-symbolic systems. This work proposes solutions to improve the knowledge injection process and integrate elements of ML and logic into multi-agent systems (MAS). |