References

  1. Andrea Agiollo, Andrea Rafanelli, Matteo Magnini, Giovanni Ciatto & Andrea Omicini (2023): Symbolic knowledge injection meets intelligent agents: QoS metrics and experiments. Autonomous Agents and Multi-Agent Systems 37(2), pp. 27, doi:10.1007/s10458-023-09609-6.
  2. Andrea Agiollo, Andrea Rafanelli & Andrea Omicini (2022): Towards Quality-of-Service Metrics for Symbolic Knowledge Injection. In: Angelo Ferrando & Viviana Mascardi: WOA 2022 – 23rd Workshop ``From Objects to Agents'', CEUR Workshop Proceedings 3261. Sun SITE Central Europe, RWTH Aachen University, pp. 30–47. Available at http://ceur-ws.org/Vol-3261/paper3.pdf.
  3. Sebastian Bader, Steffen Hölldobler & Nuno C. Marques (2008): Guiding Backprop by Inserting Rules. In: Artur S. d'Avila Garcez & Pascal Hitzler: Proceedings of the Fourth International Workshop on Neural-Symbolic Learning and Reasoning, NeSy 2008, Patras, Greece, July 21, 2008, CEUR Workshop Proceedings 366. CEUR-WS.org. Available at https://ceur-ws.org/Vol-366/paper-5.pdf.
  4. Samy Badreddine, Artur S. d'Avila Garcez, Luciano Serafini & Michael Spranger (2022): Logic Tensor Networks. Artif. Intell. 303, pp. 103649, doi:10.1016/j.artint.2021.103649.
  5. Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston & Oksana Yakhnenko (2013): Translating Embeddings for Modeling Multi-relational Data. In: Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani & Kilian Q. Weinberger: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2, NIPS'13, pp. 2787–2795. Available at https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html.
  6. Roberta Calegari, Giovanni Ciatto & Andrea Omicini (2020): On the integration of symbolic and sub-symbolic techniques for XAI: A survey 14, pp. 7–32, doi:10.3233/IA-190036.
  7. Edward Choi, Mohammad Taha Bahadori, Le Song, Walter F. Stewart & Jimeng Sun (2017): GRAM: Graph-based Attention Model for Healthcare Representation Learning. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, August 13 - 17, 2017. ACM, pp. 787–795, doi:10.1145/3097983.3098126.
  8. Stefania Costantini & Arianna Tocchio (2002): A Logic Programming Language for Multi-agent Systems. In: Sergio Flesca, Sergio Greco, Nicola Leone & Giovambattista Ianni: Logics in Artificial Intelligence, European Conference, JELIA 2002, Cosenza, Italy, September, 23-26, Proceedings, Lecture Notes in Computer Science 2424. Springer, pp. 1–13, doi:10.1007/3-540-45757-7_1.
  9. Stefania Costantini & Arianna Tocchio (2004): The DALI Logic Programming Agent-Oriented Language. In: José Júlio Alferes & João Alexandre Leite: Logics in Artificial Intelligence, 9th European Conference, JELIA 2004, Lisbon, Portugal, September 27-30, 2004, Proceedings, Lecture Notes in Computer Science 3229. Springer, pp. 685–688, doi:10.1007/978-3-540-30227-8_57.
  10. Wang-Zhou Dai & Stephen H. Muggleton (2021): Abductive Knowledge Induction from Raw Data. In: Zhi-Hua Zhou: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021. ijcai.org, pp. 1845–1851, doi:10.24963/ijcai.2021/254.
  11. Wang-Zhou Dai, Qiu-Ling Xu, Yang Yu & Zhi-Hua Zhou (2019): Bridging Machine Learning and Logical Reasoning by Abductive Learning. In: Hanna M. Wallach et. al.: Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp. 2811–2822. Available at https://proceedings.neurips.cc/paper/2019/hash/9c19a2aa1d84e04b0bd4bc888792bd1e-Abstract.html.
  12. Tirtharaj Dash, Sharad Chitlangia, Aditya Ahuja & Ashwin Srinivasan (2022): A review of some techniques for inclusion of domain-knowledge into deep neural networks. Scientific Reports 12(1), pp. 1040, doi:10.1038/s41598-021-04590-0.
  13. Michelangelo Diligenti, Soumali Roychowdhury & Marco Gori (2017): Integrating Prior Knowledge into Deep Learning. In: Xuewen Chen, Bo Luo, Feng Luo, Vasile Palade & M. Arif Wani: 16th IEEE International Conference on Machine Learning and Applications, ICMLA 2017, Cancun, Mexico, December 18-21, 2017. IEEE, pp. 920–923, doi:10.1109/ICMLA.2017.00-37.
  14. Michael Gelfond & Vladimir Lifschitz (1988): The Stable Model Semantics for Logic Programming. In: Robert A. Kowalski & Kenneth A. Bowen: Logic Programming, Proceedings of the Fifth International Conference and Symposium, Seattle, Washington, USA, August 15-19, 1988 (2 Volumes). MIT Press, pp. 1070–1080.
  15. Hao & Basura Fernando (2023): Fine-Grained Regional Prompt Tuning for Visual Abductive Reasoning. CoRR abs/2303.10428, doi:10.48550/arXiv.2303.10428. ArXiv:2303.10428.
  16. Antonis C. Kakas, Robert A. Kowalski & Francesca Toni (1992): Abductive Logic Programming. J. Log. Comput. 2(6), pp. 719–770, doi:10.1093/logcom/2.6.719.
  17. Antonis C. Kakas & Paolo Mancarella (1990): Generalized Stable Models: A Semantics for Abduction. In: 9th European Conference on Artificial Intelligence, ECAI 1990, Stockholm, Sweden, 1990, pp. 385–391.
  18. Tomis Kapitan (1992): Peirce and the Autonomy of Abductive Reasoning. Erkenntnis (1975-) 37(1), pp. 1–26, doi:10.1007/BF00220630.
  19. Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester & Luc De Raedt (2021): Neural probabilistic logic programming in DeepProbLog. Artif. Intell. 298, pp. 103504, doi:10.1016/j.artint.2021.103504.
  20. Raymond J Mooney (2000): Integrating abduction and induction in machine learning. Abduction and Induction: essays on their relation and integration, pp. 181–191, doi:10.1007/978-94-017-0606-3.
  21. Luc De Raedt, Sebastijan Dumancic, Robin Manhaeve & Giuseppe Marra (2020): From Statistical Relational to Neuro-Symbolic Artificial Intelligence. In: Christian Bessiere: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020. ijcai.org, pp. 4943–4950, doi:10.24963/ijcai.2020/688.
  22. Andrea Rafanelli, Stefania Costantini & Giovanni De Gasperis (2022): A Multi-Agent-System framework for flooding events. In: Angelo Ferrando & Viviana Mascardi: WOA 2022 – 23rd Workshop ``From Objects to Agents'', CEUR Workshop Proceedings 3261. Sun SITE Central Europe, RWTH Aachen University, pp. 30–47. Available at http://ceur-ws.org/Vol-3261/paper11.pdf.
  23. Andrea Rafanelli, Stefania Costantini & Giovanni De Gasperis (2023): Neural-logic multi-agent system for flood event detection. Intelligenza Artificiale 17, pp. 19–35, doi:10.3233/IA-230004.
  24. Andrea Rafanelli, Stefania Costantini & Andrea Omicini (2022): Position paper: On the role of abductive reasoning in semantic image segmentation. In: Agostino Dovier, Angelo Montanari & Andrea Orlandini: 22nd International Conference of the Italian Association for Artificial Intelligence (AIxIA 2022), Udine, Italy, November 28-December 2, 2022, CEUR Workshop Proceedings 3419. CEUR-WS.org. Available at https://ceur-ws.org/Vol-3419/paper9.pdf.
  25. Andrea Rafanelli, Matteo Magnini, Andrea Agiollo, Giovanni Ciatto & Andrea Omicini (under revision): Are Symbolic Knowledge Injection Techniques Robust Against Data Quality Degradation?.
  26. Efthymia Tsamoura, Timothy M. Hospedales & Loizos Michael (2021): Neural-Symbolic Integration: A Compositional Perspective. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021. AAAI Press, pp. 5051–5060, doi:10.1609/aaai.v35i6.16639.
  27. Quan Wang, Bin Wang & Li Guo (2015): Knowledge Base Completion Using Embeddings and Rules. In: Qiang Yang & Michael J. Wooldridge: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015. AAAI Press, pp. 1859–1866. Available at http://ijcai.org/Abstract/15/264.
  28. Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang & Guy Van den Broeck (2018): A Semantic Loss Function for Deep Learning with Symbolic Knowledge. In: Jennifer G. Dy & Andreas Krause: Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, Proceedings of Machine Learning Research 80. PMLR, pp. 5498–5507. Available at http://proceedings.mlr.press/v80/xu18h.html.
  29. Jianbo Yu & Guoliang Liu (2021): Extracting and inserting knowledge into stacked denoising auto-encoders. Neural Networks 137, pp. 31–42, doi:10.1016/j.neunet.2021.01.010.
  30. Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht & Oriol Vinyals (2021): Understanding deep learning (still) requires rethinking generalization. Commun. ACM 64(3), pp. 107–115, doi:10.1145/3446776.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org