Andrea Agiollo, Andrea Rafanelli, Matteo Magnini, Giovanni Ciatto & Andrea Omicini (2023):
Symbolic knowledge injection meets intelligent agents: QoS metrics and experiments.
Autonomous Agents and Multi-Agent Systems 37(2),
pp. 27,
doi:10.1007/s10458-023-09609-6.
Andrea Agiollo, Andrea Rafanelli & Andrea Omicini (2022):
Towards Quality-of-Service Metrics for Symbolic Knowledge Injection.
In: Angelo Ferrando & Viviana Mascardi: WOA 2022 – 23rd Workshop ``From Objects to Agents'',
CEUR Workshop Proceedings 3261.
Sun SITE Central Europe, RWTH Aachen University,
pp. 30–47.
Available at http://ceur-ws.org/Vol-3261/paper3.pdf.
Sebastian Bader, Steffen Hölldobler & Nuno C. Marques (2008):
Guiding Backprop by Inserting Rules.
In: Artur S. d'Avila Garcez & Pascal Hitzler: Proceedings of the Fourth International Workshop on Neural-Symbolic Learning and Reasoning, NeSy 2008, Patras, Greece, July 21, 2008,
CEUR Workshop Proceedings 366.
CEUR-WS.org.
Available at https://ceur-ws.org/Vol-366/paper-5.pdf.
Samy Badreddine, Artur S. d'Avila Garcez, Luciano Serafini & Michael Spranger (2022):
Logic Tensor Networks.
Artif. Intell. 303,
pp. 103649,
doi:10.1016/j.artint.2021.103649.
Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston & Oksana Yakhnenko (2013):
Translating Embeddings for Modeling Multi-relational Data.
In: Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani & Kilian Q. Weinberger: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2,
NIPS'13,
pp. 2787–2795.
Available at https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html.
Roberta Calegari, Giovanni Ciatto & Andrea Omicini (2020):
On the integration of symbolic and sub-symbolic techniques for XAI: A survey 14,
pp. 7–32,
doi:10.3233/IA-190036.
Edward Choi, Mohammad Taha Bahadori, Le Song, Walter F. Stewart & Jimeng Sun (2017):
GRAM: Graph-based Attention Model for Healthcare Representation Learning.
In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, August 13 - 17, 2017.
ACM,
pp. 787–795,
doi:10.1145/3097983.3098126.
Stefania Costantini & Arianna Tocchio (2002):
A Logic Programming Language for Multi-agent Systems.
In: Sergio Flesca, Sergio Greco, Nicola Leone & Giovambattista Ianni: Logics in Artificial Intelligence, European Conference, JELIA 2002, Cosenza, Italy, September, 23-26, Proceedings,
Lecture Notes in Computer Science 2424.
Springer,
pp. 1–13,
doi:10.1007/3-540-45757-7_1.
Stefania Costantini & Arianna Tocchio (2004):
The DALI Logic Programming Agent-Oriented Language.
In: José Júlio Alferes & João Alexandre Leite: Logics in Artificial Intelligence, 9th European Conference, JELIA 2004, Lisbon, Portugal, September 27-30, 2004, Proceedings,
Lecture Notes in Computer Science 3229.
Springer,
pp. 685–688,
doi:10.1007/978-3-540-30227-8_57.
Wang-Zhou Dai & Stephen H. Muggleton (2021):
Abductive Knowledge Induction from Raw Data.
In: Zhi-Hua Zhou: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021.
ijcai.org,
pp. 1845–1851,
doi:10.24963/ijcai.2021/254.
Wang-Zhou Dai, Qiu-Ling Xu, Yang Yu & Zhi-Hua Zhou (2019):
Bridging Machine Learning and Logical Reasoning by Abductive Learning.
In: Hanna M. Wallach et. al.: Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pp. 2811–2822.
Available at https://proceedings.neurips.cc/paper/2019/hash/9c19a2aa1d84e04b0bd4bc888792bd1e-Abstract.html.
Tirtharaj Dash, Sharad Chitlangia, Aditya Ahuja & Ashwin Srinivasan (2022):
A review of some techniques for inclusion of domain-knowledge into deep neural networks.
Scientific Reports 12(1),
pp. 1040,
doi:10.1038/s41598-021-04590-0.
Michelangelo Diligenti, Soumali Roychowdhury & Marco Gori (2017):
Integrating Prior Knowledge into Deep Learning.
In: Xuewen Chen, Bo Luo, Feng Luo, Vasile Palade & M. Arif Wani: 16th IEEE International Conference on Machine Learning and Applications, ICMLA 2017, Cancun, Mexico, December 18-21, 2017.
IEEE,
pp. 920–923,
doi:10.1109/ICMLA.2017.00-37.
Michael Gelfond & Vladimir Lifschitz (1988):
The Stable Model Semantics for Logic Programming.
In: Robert A. Kowalski & Kenneth A. Bowen: Logic Programming, Proceedings of the Fifth International Conference and Symposium, Seattle, Washington, USA, August 15-19, 1988 (2 Volumes).
MIT Press,
pp. 1070–1080.
Hao & Basura Fernando (2023):
Fine-Grained Regional Prompt Tuning for Visual Abductive Reasoning.
CoRR abs/2303.10428,
doi:10.48550/arXiv.2303.10428.
ArXiv:2303.10428.
Antonis C. Kakas, Robert A. Kowalski & Francesca Toni (1992):
Abductive Logic Programming.
J. Log. Comput. 2(6),
pp. 719–770,
doi:10.1093/logcom/2.6.719.
Antonis C. Kakas & Paolo Mancarella (1990):
Generalized Stable Models: A Semantics for Abduction.
In: 9th European Conference on Artificial Intelligence, ECAI 1990, Stockholm, Sweden, 1990,
pp. 385–391.
Tomis Kapitan (1992):
Peirce and the Autonomy of Abductive Reasoning.
Erkenntnis (1975-) 37(1),
pp. 1–26,
doi:10.1007/BF00220630.
Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester & Luc De Raedt (2021):
Neural probabilistic logic programming in DeepProbLog.
Artif. Intell. 298,
pp. 103504,
doi:10.1016/j.artint.2021.103504.
Raymond J Mooney (2000):
Integrating abduction and induction in machine learning.
Abduction and Induction: essays on their relation and integration,
pp. 181–191,
doi:10.1007/978-94-017-0606-3.
Luc De Raedt, Sebastijan Dumancic, Robin Manhaeve & Giuseppe Marra (2020):
From Statistical Relational to Neuro-Symbolic Artificial Intelligence.
In: Christian Bessiere: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020.
ijcai.org,
pp. 4943–4950,
doi:10.24963/ijcai.2020/688.
Andrea Rafanelli, Stefania Costantini & Giovanni De Gasperis (2022):
A Multi-Agent-System framework for flooding events.
In: Angelo Ferrando & Viviana Mascardi: WOA 2022 – 23rd Workshop ``From Objects to Agents'',
CEUR Workshop Proceedings 3261.
Sun SITE Central Europe, RWTH Aachen University,
pp. 30–47.
Available at http://ceur-ws.org/Vol-3261/paper11.pdf.
Andrea Rafanelli, Stefania Costantini & Giovanni De Gasperis (2023):
Neural-logic multi-agent system for flood event detection.
Intelligenza Artificiale 17,
pp. 19–35,
doi:10.3233/IA-230004.
Andrea Rafanelli, Stefania Costantini & Andrea Omicini (2022):
Position paper: On the role of abductive reasoning in semantic image segmentation.
In: Agostino Dovier, Angelo Montanari & Andrea Orlandini: 22nd International Conference of the Italian Association for Artificial Intelligence (AIxIA 2022), Udine, Italy, November 28-December 2, 2022,
CEUR Workshop Proceedings 3419.
CEUR-WS.org.
Available at https://ceur-ws.org/Vol-3419/paper9.pdf.
Andrea Rafanelli, Matteo Magnini, Andrea Agiollo, Giovanni Ciatto & Andrea Omicini (under revision):
Are Symbolic Knowledge Injection Techniques Robust Against Data Quality Degradation?.
Efthymia Tsamoura, Timothy M. Hospedales & Loizos Michael (2021):
Neural-Symbolic Integration: A Compositional Perspective.
In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021.
AAAI Press,
pp. 5051–5060,
doi:10.1609/aaai.v35i6.16639.
Quan Wang, Bin Wang & Li Guo (2015):
Knowledge Base Completion Using Embeddings and Rules.
In: Qiang Yang & Michael J. Wooldridge: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015.
AAAI Press,
pp. 1859–1866.
Available at http://ijcai.org/Abstract/15/264.
Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang & Guy Van den Broeck (2018):
A Semantic Loss Function for Deep Learning with Symbolic Knowledge.
In: Jennifer G. Dy & Andreas Krause: Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
Proceedings of Machine Learning Research 80.
PMLR,
pp. 5498–5507.
Available at http://proceedings.mlr.press/v80/xu18h.html.
Jianbo Yu & Guoliang Liu (2021):
Extracting and inserting knowledge into stacked denoising auto-encoders.
Neural Networks 137,
pp. 31–42,
doi:10.1016/j.neunet.2021.01.010.
Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht & Oriol Vinyals (2021):
Understanding deep learning (still) requires rethinking generalization.
Commun. ACM 64(3),
pp. 107–115,
doi:10.1145/3446776.