A Model-Oriented Approach for Lifting Symmetries in Answer Set Programming

Alice Tarzariol
(University of Klagenfurt)

When solving combinatorial problems, pruning symmetric solution candidates from the search space is essential. Most of the existing approaches are instance-specific and focus on the automatic computation of Symmetry Breaking Constraints (SBCs) for each given problem instance. However, the application of such approaches to large-scale instances or advanced problem encodings might be problematic since the computed SBCs are propositional and, therefore, can neither be meaningfully interpreted nor transferred to other instances. As a result, a time-consuming recomputation of SBCs must be done before every invocation of a solver. To overcome these limitations, we introduce a new model-oriented approach for Answer Set Programming that lifts the SBCs of small problem instances into a set of interpretable first-order constraints using a form of machine learning called Inductive Logic Programming. After targeting simple combinatorial problems, we aim to extend our method to be applied also for advanced decision and optimization problems.

In Yuliya Lierler, Jose F. Morales, Carmine Dodaro, Veronica Dahl, Martin Gebser and Tuncay Tekle: Proceedings 38th International Conference on Logic Programming (ICLP 2022), Haifa, Israel, 31st July 2022 - 6th August 2022, Electronic Proceedings in Theoretical Computer Science 364, pp. 200–210.
Published: 4th August 2022.

ArXived at: https://dx.doi.org/10.4204/EPTCS.364.35 bibtex PDF
References in reconstructed bibtex, XML and HTML format (approximated).
Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org