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When solving combinatorial problems, pruning symmetric solution candidates from the search space

is essential. Most of the existing approaches are instance-specific and focus on the automatic com-

putation of Symmetry Breaking Constraints (SBCs) for each given problem instance. However, the

application of such approaches to large-scale instances or advanced problem encodings might be

problematic since the computed SBCs are propositional and, therefore, can neither be meaningfully

interpreted nor transferred to other instances. As a result, a time-consuming recomputation of SBCs

must be done before every invocation of a solver. To overcome these limitations, we introduce a new

model-oriented approach for Answer Set Programming that lifts the SBCs of small problem instances

into a set of interpretable first-order constraints using a form of machine learning called Inductive

Logic Programming. After targeting simple combinatorial problems, we aim to extend our method

to be applied also for advanced decision and optimization problems.

1 Introduction and Problem Description

A common approach for solving combinatorial problems is modelling them using declarative program-

ming paradigms, e.g., Answer Set Programming (ASP) [14, 15, 2]. In general, defining such models is

relatively simple, and the obtained encodings are easy to understand. However, although correct, a trivial

encoding might become useless because of its performance when solving non-trivial instances. Indeed,

the solving phase turns infeasible when the size of input instances and, correspondingly, the number of

possible solution candidates start to grow [10]. In many cases, these candidates are symmetric, i.e., one

candidate can easily be obtained from another by renaming constants. Therefore, the ability to encode

Symmetry Breaking Constraints (SBCs) in a program becomes an essential skill for programmers as they

prune a consistent part of the search space. Nevertheless, identifying symmetric solutions and formu-

lating constraints that remove only them might be a time-consuming and challenging task. As a result,

various tools emerged for avoiding the computation of symmetric solutions. A popular approach consists

in automatically detecting and introducing a set of SBCs using properties of permutation groups [24].

The system SBASS [11] implements this type of approach for ground ASP programs.

Unfortunately, the computational advantages derived from SBASS or, more generally, from any

instance-specific symmetry breaking approach, do not carry forward to large-scale instances or advanced

encodings. Indeed, instance-specific approaches often require as much time as it takes to solve the origi-

nal problem. Moreover, ground SBCs generated approaches are (i) not transferable, since the knowledge

obtained is limited to a single instance; (ii) usually hard to interpret and comprehend because they are

not expressed with a symbolic representation; (iii) derived from permutation group generators, whose

computation is itself a combinatorial problem; and (iv) often redundant and might result in a degrada-

tion of the solving performance. In particular, when solving instances sharing similar characteristics, the
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identified symmetries follow the same structure for the whole set. Thus, the instance-specific approaches

require extra computation time to identify the same symmetries applied to every single instance. Assum-

ing we consider a combinatorial ASP program and a distribution of similar problem instances, in our

work, we aim to overcome the limitations of instance-specific approaches by lifting ground symmetries

using a form of machine learning called Inductive Logic Programming (ILP) [6]. The resulting first-order

constraints can be applied to any instance drawn from the considered distribution, and they should speed

up the identification of satisfiable/unsatisfiable instances.

2 Background and Existing Literature

In this section, we will briefly introduce the concepts considered in our work, i.e., Answer Set Program-

ming, Inductive Logic Programming and Symmetry Breaking techniques.

2.1 Answer Set Programming

ASP is a declarative programming paradigm that applies non-monotonic reasoning and relies on the

stable model semantics [16]. Over the past decades, it has attracted considerable interest thanks to its

elegant syntax, expressiveness, and efficient system implementations. It showed promising results in

numerous domains, including industrial, robotics, or biomedical applications [12].

Syntax. An ASP program P is a set of rules r of the form:

a0← a1, . . . ,am,not am+1, . . . ,not an

where not stands for default negation and ai, for 0 ≤ i ≤ n, are atoms. An atom is an expression of the

form p(t), where p is a predicate, t is a possibly empty vector of terms, and the predicate ⊥ (with an

empty vector of terms) represents the constant false. Each term t in t is either a variable or a constant.

A literal l is an atom ai (positive) or its negation not ai (negative). The atom a0 is the head of a rule r,

denoted by H(r) = a0, and the body of r includes the positive or negative, respectively, body atoms

B+(r) = {a1, . . . ,am} and B−(r) = {am+1, . . . ,an}. A rule r is called a fact if B+(r)∪B−(r) = /0, and a

constraint if H(r) =⊥.

Semantics. The semantics of an ASP program P is given in terms of its ground instantiation Pgrd,

which is obtained by replacing each rule r ∈ P with its instances obtained by substituting the variables in

r by constants occurring in P. Then, an interpretation I is a set of (true) ground atoms occurring in Pgrd

that does not contain ⊥. An interpretation I satisfies a rule r ∈ Pgrd if B+(r) ⊆I and B−(r)∩I = /0

imply H(r) ∈I , and I is a model of P if it satisfies all rules r ∈ Pgrd. A model I of P is stable if it is

a subset-minimal model of the reduct {H(r)← B+(r) | r ∈ Pgrd,B
−(r)∩I = /0}, and we denote the set

of all stable models, also called answer sets, of P by AS(P).

2.2 Inductive Logic Programming

ILP is a form of machine learning whose goal is to learn a logic program that explains a set of obser-

vations in the context of some pre-existing knowledge. The most expressive ILP system for ASP is

Inductive Learning of Answer Set Programs (ILASP) [20, 21], which can be used to solve a variety of

ILP tasks. A learning task 〈B,E+
,E−,HM〉 is defined by four elements: a background knowledge B, a
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set of positive and negative examples, respectively E+ and E−, and lastly a hypothesis space HM, which

defines the rules that can be learned. Each example e ∈ E+ ∪E− is a pair 〈epi,C〉 called Context De-

pendent Partial Interpretation, where (i) epi is a Partial Interpretation defined as pair of sets of atoms

〈T,F〉, called inclusions (T ) and exclusions (F), respectively, and (ii) C is an ASP program defining the

context of epi. Given a (total) interpretation I of a program P and a partial interpretation epi, we say that

I extends epi if T ⊆I and F ∩I = /0. Given an ASP program P, an interpretation I , and an example

e = 〈epi,C〉, we say that I is an accepting answer set of e with respect to P if I ∈ AS(P∪C) such that

I extends epi.

Each hypothesis H ⊆ HM learned by ILASP must respect the following criteria: (i) for each positive

example e ∈ E+, there is some accepting answer set of e with respect to B∪H; and (ii) for any negative

example e ∈ E−, there is no accepting answer set of e with respect to B∪H . If multiple hypotheses

satisfy the conditions, the system returns one of those with the lowest cost. By default, the cost cr of

each rule r ∈HM corresponds to its number of literals [18]; however, the user can define a custom scoring

function for defining the rule costs. ILASP allows to define learning tasks with noisy examples [19]. With

this setting, if an example e is not covered, i.e., there is an accepting answer set for e if it is negative, or

none if e is positive, the corresponding weight is counted as a penalty. If no dedicated weight is specified,

the example’s weight is infinite, thus forcing the system to cover the example. Therefore, the learning

task becomes an optimization problem with two goals: minimize the cost of H and minimize the total

penalties for the uncovered examples. In our work, we use the most recent version of ILASP (v4.1.2),

which implements the search approach Conflict Driven ILP [17].

2.3 Symmetry Breaking

Modern symmetry breaking approaches can be split into two families: instance-specific and model-

oriented approaches [24, 30]. The former identify symmetries for a particular instance at hand by ob-

taining a ground program, computing ground SBCs, composing a new extended program, and solving

it [23, 4, 11]. The system SBASS [11] implements this type of approach for ground ASP programs.

As mentioned in Section 1, when applied to large-scale instances or advanced encodings, the instance-

specific symmetry breaking approaches may struggle to compute the symmetries in a reasonable time, or

the resulting SBCs are redundant, leading to more drawbacks than benefits for the solver. Moreover, the

ground SBCs are often difficult to understand as they are not expressed in symbolic representation; e.g.,

the SBCs produced by SBASS are represented in SMODELS format [25].

In contrast, model-oriented approaches aim to find general SBCs that depend less on a particular

instance. The method presented in [9] uses local domain symmetries of a given first-order theory. SBCs

are generated by identifying argument positions in atoms of a formula that comprise object variables de-

fined over the same subset of a domain given in the input. As a result, the computation of lexicographical

SBCs is very fast. However, the method considers each first-order formula separately and cannot reli-

ably remove symmetric solutions, as it requires the analysis of several formulas at once. The method of

[22] computes SBCs by generating small instances of parametrized constraint programs, and then finds

candidate symmetries using SAUCY [3, 8] – a graph automorphism detection tool. Next, the algorithm

removes all candidate symmetries that are valid only for some of the generated examples as well as those

that cannot be proven to be parametrized symmetries using heuristic graph-based techniques. This ap-

proach can be seen as a simplified learning procedure that utilizes only negative examples represented

by the generated SBCs.
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3 Current Research

This section describes the research goals targeted for my PhD, and the current state of my work.

3.1 Goal of the Research

To the best of our knowledge, currently there are no model-oriented systems that lift ground SBCs

for ASP programs. Therefore, we aim to introduce a novel model-oriented method that generalizes the

process of discarding redundant solution candidates for ASP instances of a target domain using ILP. More

precisely, we identify and lift SBCs of small problem-instances, obtaining a set of interpretable first-

order constraints. Such constraints cut the search space while preserving the satisfiability of a problem

for the considered instance distribution, which improves the solving performance, especially in the case

of unsatisfiability. After targeting simple combinatorial problems, we aim to extend our method to be

applied also for advanced decision and optimization problems.

The research goals of this work are the following:

RG 1 Given an ASP combinatorial program and a target instances distribution, define a learning frame-

work capable of obtaining first-order constraints that speed up the solving of satisfiable and unsat-

isfiable instances.

RG 2 Develop an approach capable of applying the learning framework iteratively.

RG 3 Investigate how the framework can be extended to enable learning first-order constraints for ad-

vanced combinatorial problems.

RG 4 Design and implement systems that automate parameter selection for the framework for guiding

the learning of first-order constraints that speed up solving.

RG 5 Extend the expressiveness of the learning framework to analyse the symmetries on optimization

problems.

For the research goal RG 1, we assume that the instances analyzed for a given ASP combinatorial

problem P follow a specific distribution. Moreover, we can easily provide a set of simple instances

(i.e., such that the total number of solutions can be managed by SBASS, CLINGO
1 and ILASP) that entail

the symmetries of the whole target distribution. Our framework defines the set of examples of an ILP

task such that ILASP learns first-order constraints that remove symmetric solutions while preserving the

satisfiability of the instances in the considered distribution. To do so, the framework relies on SBASS

to compute the SBCs of a set of small, satisfiable, and representative problem-instances, identified with

S. More precisely, for each instance i ∈ S, we find its symmetries expressed as a set of irredundant

generators, IG(i), and we enumerate the set of its answer sets, AS(i). Then, for each interpretation I ∈
AS(i), we define an example where IG(i)∩I and IG(i)\I are the inclusions and exclusions of a partial

interpretation and using i as context. If I is dominated, i.e., I can be mapped to a lexicographically

smaller, symmetric answer set by means of some irredundant generator in IG(i), the example is labelled

as negative, otherwise, positive. Together with S, we use another set of instances Gen, where each

g ∈ Gen defines a single positive example with empty inclusions and exclusions and g as context. These

examples guarantee that the learned constraints generalize for the target distribution since they force

the constraints to preserve some solution for each g ∈ Gen. The two sets of instances, S and Gen, and

the language bias for the ILP task are defined by the user, while P is used as background knowledge.

1In our work, to find the solutions of ASP programs, we use the system CLINGO, consisting of the grounding and solving

components GRINGO and CLASP.
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After the learning phase, a validation set of satisfiable instances, V , is used to check whether the learn

constraints in ABK are correct. If there is a satisfiable instance v ∈V for which no solution is found, we

discard the learned constraints and add v in Gen. Subsequently, we rerun our framework and repeat the

procedure until all the instances in the validation set are satisfiable.

The research goal RG 2 consists of identifying techniques that can speed up the learning phase for

the tasks analysed in RG 1 as the learning time represent a critical aspect on ILP [7]. To do so, we

define a procedure that applies our framework iteratively to learn the first-order constraints incremen-

tally. More precisely, we outline a criterion for splitting the framework inputs to create sub-learning

tasks. This approach speeds up the computation of first-order constraints, especially when the program

contains symmetries independent from each others. To do so, we introduce an auxiliary ASP file called

Active Background Knowledge or ABK, containing the constraints learned so far. By including ABK in

the background knowledge, we can rerun our framework taking into account the constraints previously

learned.

The current definition of our framework yields a number of examples proportional to the number of

solutions for each problem-instance in S. Therefore, if it gets difficult to compute all the solutions for

an instance in S to analyze, the resulting formulation of the ILP task to learn constraints can become

prohibitive. The research goal RG 3 consists of overcoming the limitations of the current framework, in

order to apply it to advanced combinatorial problems. With the term “advanced”, we refer to problems

whose solutions rely on atoms of multi-dimensional instead of just unary predicates, so that there might

be no trivial instances to analyse. An example of this kind of problems is the Partner Units Problem

(PUP) [1, 29], which is an abstract representation of configuration problems occurring in railway safety

or building security systems. Considering the smallest PUP instance representing a class of building

security systems named double by [1], CLINGO finds 145368 solutions, 98.9% of which can be identified

as symmetric by SBASS (for instance, by renaming the units of a solution). Thus, the enumeration of

symmetries for PUP instances is problematic, even for the smallest and simplest ones. To overcome this

problem, we need to revise the framework’s approach such that it manages to cope with any number of

solutions of the analyzed instances, for example, by sampling a subset of answer sets. To be effective,

the sample size must be small while containing an adequate number of positive and negative examples.

Besides, two further limitations need to be addressed concerning ILASP’s searching technique. The

former is the inefficiency of the default ILASP’s conflict analysis techniques2 when applied to positive

examples producing many solutions (i.e., the examples generated from the PUP instances in Gen). The

second issues concerns the optimal criterion for the learned hypothesis, which considers only the length

of the constraints and not the nature of the predicates. To overcome both issues, we aim to devise

a specific conflict analysis technique that exploit the nature of the learning task (namely, constraints

learning) and a custom scoring function for ILASP that provides further information for learning efficient3

constraints.

For the research goal RG 4, we aim to identify appropriate inputs to our framework automatically. So

far the inputs must be chosen by the user, however, we would like to provide guidelines or automate the

process of selecting the framework inputs. First, the selection method of our framework needs to assess

the properties of candidate inputs. Then, the method should determine parameters leading to correct and

performant first-order constraints. That is, it aims to find constraints preserving at least one solution for

satisfiable instances and cutting down the solving time for unsatisfiable instances.

2A key component of Conflict-Driven ILP.
3Namely, constraints with a limited number of variables and, possibly, containing some predicates that are simplified during

grounding.
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Lastly, the research goal RG 5 is to extend the applicability of our framework to optimization prob-

lems. The tool SBASS, used in our framework, can analyse most of the ASP rules as normal rules, choice

rules, aggregates, and hard constraints; however, it does not support weak constraints. Therefore, we aim

to define a reduction from programs with weak constraints to an equivalent representation that can be

processed by SBASS. More specifically, we aim to introduce new (normal) rules that respect the symme-

tries of the optimisation rules. As a consequence, when running SBASS on the extended program, we get

a finer partition of the solutions. Namely, it could be that two solutions, which were considered symmet-

ric from the analysis of the original program, can be identified as non-symmetric after the introduction

of the new rules.

3.2 Results Accomplished

We devised and implemented the learning framework of RG 1 and a rough idea of RG 2 in a conference

paper [27]; subsequently, we formalised the method to split the learning task in a journal paper [28]. We

applied the framework to simple ASP programs, namely, the pigeon-hole problem and two its extensions

that consider also the assignments of colors and owners. Moreover, we tested the house-configuration

problem [13]. For all the addressed problems, we suggested some guidelines to define the framework

inputs, S, Gen, HM, and ABK. Table 1 contains the solving times for the house-configuration problem;

the satisfiable instances are shown in grey rows, while the white rows contain unsatisfiable instances.

The column BASE refers to CLINGO (v5.5.0) run on the original encoding, while ABK reports results

for the original encoding augmented with first-order constraints learned with our framework. The time

required by SBASS to compute ground SBCs is given in the corresponding column, and CLASP
π provides

the solving time obtained with these ground SBCs. Therefore, the total time required for the online usage

of SBASS is the sum of BASE and CLASP
π . Runs that did not finish within the time limit of 900 seconds

are indicated by TO entries.

The running times in the table show the limits of SBASS both in the pre-solving phase, when com-

puting the symmetries (obtaining a timeout for all the satisfiable instances), and when solving a pro-

gram extended with redundant constraints (the performance degradation is visible with the instance

p5-c6-t13). The BASE encoding is quicker than SBASS+CLASP
π to solve satisfiable instances, al-

though it takes considerably longer for unsatisfiable ones. On the other hand, the first-order constraints

learned with our framework helped the search for satisfiable and, especially, unsatisfiable instances. Sim-

ilar results have also been observed for the pigeon-hole problems analysed. The repository containing

the implementation and complete experiments can be found at the following link: https://github.

com/prosysscience/Symmetry_Breaking_with_ILP/tree/extended

We addressed the extension mentioned in RG 3 in a paper presented at ICLP 2022 [26]. In this paper,

we revised several parts of our framework in order to target PUP instances supplied by [1], studying the

double, doublev, and triple instance collections. Instances of the same type represent buildings of similar

topology with scaling parameters that follow a common distribution. Although the benchmark instances

are synthetic, they represent a relevant configuration problem concerning safety and security issues in

public buildings, like administration offices or museums. In addition, the scalable synthetic benchmarks

are easy to generate and analyze.

Table 2 contains the solving time for the PUP instances in double, and the table follows the same

structure as the previous, but with a timeout of 600 seconds. Moreover, it also considers the computa-

tional time obtained by running CLINGO on the advanced encoding SYMM
4 which incorporates hand-

crafted static symmetry breaking as well as an ordered representation [5] of assigned units. From the

4The encoding used for SYMM is taken from the paper [10], where it is called ENC2. From the same paper, we also take

https://github.com/prosysscience/Symmetry_Breaking_with_ILP/tree/extended
https://github.com/prosysscience/Symmetry_Breaking_with_ILP/tree/extended
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ABK BASE SBASS CLASPπ

p2-c6-t13 0.329 219.753 0.095 12.951

p2-c80-t160 5.024 6.583 TO –

p3-c6-t13 0.424 254.065 0.242 73.041

p3-c80-t160 14.110 20.724 TO –

p4-c6-t13 0.349 221.784 0.453 105.145

p4-c80-t160 27.299 40.121 TO –

p5-c6-t13 0.397 236.961 0.890 405.461

p5-c80-t160 49.645 68.167 TO –

p4-c7-t15 14.229 TO 0.729 TO

p15-c15-t30 2.525 4.155 TO –

Table 1: Runtime in seconds for house-configuration problem.

ABK SYMM BASE SBASS CLASPπ

dbl-10 0.01 0.01 0.02 0.04 0.02

un-dbl-10 0.01 0.16 505.91 0.03 TO

dbl-20 0.08 0.53 1.06 0.31 1.40

un-dbl-20 0.34 TO TO 0.28 TO

dbl-30 0.46 2.21 1.70 3.12 0.91

un-dbl-30 19.97 TO TO 3.19 TO

dbl-40 5.50 11.50 TO 14.58 482.17

un-dbl-40 65.54 TO TO 9.52 TO

dbl-50 54.89 542.09 TO 57.91 TO

un-dbl-50 61.27 TO TO 48.63 TO

Table 2: Runtimes for PUP double

table, we can observe that SYMM leads to more robust CLINGO performance than the simpler BASE

encoding, and the ground SBCs computed from SBASS (obtained by summing the time in SBASS with

CLASP
π ). Moreover, when comparing SYMM to ABK, we observe further significant performance im-

provements thanks to our approach, particularly on the unsatisfiable instances. That is, the learned ABK

enables CLINGO to solve the considered PUP instances and efficiently prunes the search space, which

must be fully explored in case of unsatisfiability. Similar results have been observed also for the other two

type of instances, doublev and triple. The repository containing the implementation and complete experi-

ments can be found at the following link: https://github.com/prosysscience/Symmetry_

Breaking_with_ILP/tree/pup

3.3 Open Issues and Expected Achievements

The research goals that we still need to tackle are RG 4 and RG 5. For the former, we would like to

help the user on deciding the elements in S and Gen, and automatically identify a set of constraints which

performs relatively fast, while preserving the satisfiability of the target instances. A more ambitious target

that can be developed for this research goal is the identification of predicates to use in the language bias

to learn the constraints. Moreover, from the experiments with the PUP instances, we observed that the

labelling instance impacted the symmetries identified by SBASS. Thus, we hope to introduce automatic

the basic encoding ENC1 and use it as BASE.

https://github.com/prosysscience/Symmetry_Breaking_with_ILP/tree/pup
https://github.com/prosysscience/Symmetry_Breaking_with_ILP/tree/pup
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(re-)labeling schemes for constants appearing in instances to exploit common problem structure in a less

input-specific way. For RG 5 we aim to extend the applicability of our framework to programs containing

weak constraints. Targeting optimization problems can lead to relevant results as optimization involves

solving unsatisfiable subproblem(s) on attempting (and failing) to improve an optimal answer set, where

symmetry breaking is particularly crucial for the performance.
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[6] A. Cropper, S. Dumančić & S. Muggleton (2020): Turning 30: New Ideas in Inductive Logic Program-

ming. In C. Bessiere, editor: Proceedings of the Twenty-Ninth International Joint Conference on Artificial

Intelligence (IJCAI’20), ijcai.org, pp. 4833–4839, doi:10.24963/ijcai.2020/673.
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Appendix A Inductive Learning from Symmetries - Example

Here we will illustrate an example of our ILP framework; for more details, see [28]. Let us consider the

pigeon-hole problem, which is about checking whether p pigeons can be placed into h holes such that

each hole contains at most one pigeon. An encoding in ASP of this problem is:

pigeon(X-1) :- pigeon(X), X > 1.

hole(X-1) :- hole(X), X > 1.

{p2h(P,H) : hole(H)} = 1 :- pigeon(P).

:- p2h(P1,H), p2h(P2,H), P1 != P2.

It takes as input the ground facts pigeon(p). and hole(h). For example, solving the instance with

p = 3 and h = 3 leads to six answer sets:

AS1 = {p2h(1,1), p2h(2,2), p2h(3,3)} = 100010001

AS2 = {p2h(1,1), p2h(2,3), p2h(3,2)} = 010100001

AS3 = {p2h(1,2), p2h(2,1), p2h(3,3)} = 100001010

AS4 = {p2h(1,2), p2h(2,3), p2h(3,1)} = 001100010

AS5 = {p2h(1,3), p2h(2,1), p2h(3,2)} = 010001100

AS6 = {p2h(1,3), p2h(2,2), p2h(3,1)} = 001010100

where the binary integer given on the right corresponds to the value that will be considered for the

lexicographic order. Using SBASS with this instance produces the following set of generators:

π1 =
(

p2h(3,2) p2h(3,3)
) (

p2h(2,2) p2h(2,3)
) (

p2h(1,2) p2h(1,3)
)

π2 =
(

p2h(3,1) p2h(3,3)
) (

p2h(2,1) p2h(2,3)
) (

p2h(1,1) p2h(1,3)
)

π3 =
(

p2h(2,3) p2h(3,3)
) (

p2h(2,2) p2h(3,2)
) (

p2h(2,1) p2h(3,1)
)

π4 =
(

p2h(1,1) p2h(3,3)
) (

p2h(2,1) p2h(2,3)
) (

p2h(1,3) p2h(3,1)
)

(

p2h(1,2) p2h(3,2)
)

Applying a generator to an answer set returns a symmetric solution. For example, π1(AS6) = AS4. For

each answer set ASi, we apply all the generators to it and check whether there is a generator π j such that

ASi ≥ π j(ASi). If there exists such π j, then ASi will define a negative example, otherwise a positive one.

As a result, we create one positive example with AS6 (since it is the only answer set that is not mapped

into a smaller interpretation) and five negative examples with the other answer sets. The resulting ILP

task is as follows:

%% Input encoding

pigeon(X-1) :- pigeon(X), X > 1.

hole(X-1) :- hole(X), X > 1.

{p2h(P,H) : hole(H)} = 1 :- pigeon(P).

:- p2h(P1,H), p2h(P2,H), P1 != P2.

%% Active Background Knowledge

lessThan(X,Y) :- pigeon(X), pigeon(Y), X < Y.

lessThan(X,Y) :- hole(X), hole(Y), X < Y.

maxpigeon(X) :- pigeon(X), not pigeon(X+1).

maxhole(X) :- hole(X), not hole(X+1).

%% Negative examples

#neg(id1@100, {p2h(2,3), p2h(1,2), p2h(3,1)},

{p2h(2,1), p2h(1,1), p2h(3,3), p2h(1,3), p2h(3,2), p2h(2,2)},

{pigeon(3). hole(3).}).

#neg(id3@100, {p2h(2,1), p2h(3,2), p2h(1,3)},
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{p2h(1,1), p2h(3,3), p2h(3,1), p2h(2,2), p2h(2,3), p2h(1,2)},

{pigeon(3). hole(3).}).

#neg(id4@100, {p2h(2,3), p2h(1,1), p2h(3,2)},

{p2h(2,1), p2h(3,3), p2h(3,1), p2h(1,3), p2h(2,2), p2h(1,2)},

{pigeon(3). hole(3).}).

#neg(id5@100, {p2h(2,1), p2h(3,3), p2h(1,2)},

{p2h(1,1), p2h(3,1), p2h(1,3), p2h(3,2), p2h(2,3), p2h(2,2)},

{pigeon(3). hole(3).}).

#neg(id6@100, {p2h(1,1), p2h(3,3), p2h(2,2)},

{p2h(2,1), p2h(3,1), p2h(1,3), p2h(3,2), p2h(2,3), p2h(1,2)},

{pigeon(3). hole(3).}).

%% Positive example

#pos(id2, {p2h(3,1), p2h(2,2), p2h(1,3)}, {},

{pigeon(3). hole(3).}).

%% Language bias

#modeb(2,p2h(var(pigeon),var(hole))).

#modeb(2,pigeon(var(pigeon))).

#modeb(2,hole(var(hole))).

#modeb(1,maxhole(var(hole))).

#modeb(1,maxpigeon(var(pigeon))).

#modeb(2,lessThan(var(hole),var(hole)),(anti_reflexive)).

#modeb(2,lessThan(var(pigeon),var(pigeon)),(anti_reflexive)).

#modeb(2,lessThan(var(hole),var(pigeon))).

#modeb(2,lessThan(var(pigeon),var(hole))).

After running ILASP, the learned first-order constraints are:

:- p2h(X,Y), lessThan(Z,Y), maxpigeon(X).

% do not assign the pigeon with the max label to a hole

% other than the first one

:- p2h(X,Y), lessThan(X,Y), lessThan(Y,Z).

% for all but the last hole, do not assign a pigeon with

% a smaller label to the hole
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