Formal Verification of Long Short-Term Memory based Audio Classifiers: A Star based Approach

Neelanjana Pal
(Institute for Software Integrated Systems, Vanderbilt University,)
Taylor T Johnson
(Institute for Software Integrated Systems, Vanderbilt University)

Formally verifying audio classification systems is essential to ensure accurate signal classification across real-world applications like surveillance, automotive voice commands, and multimedia content management, preventing potential errors with serious consequences. Drawing from recent research, this study advances the utilization of star-set-based formal verification, extended through reachability analysis, tailored explicitly for Long Short-Term Memory architectures and their Convolutional variations within the audio classification domain. By conceptualizing the classification process as a sequence of set operations, the star set-based reachability approach streamlines the exploration of potential operational states attainable by the system. The paper serves as an encompassing case study, validating and verifying sequence audio classification analytics within real-world contexts. It accentuates the necessity for robustness verification to ensure precise and dependable predictions, particularly in light of the impact of noise on the accuracy of output classifications.

In Marie Farrell, Matt Luckcuck, Mario Gleirscher and Maike Schwammberger: Proceedings Fifth International Workshop on Formal Methods for Autonomous Systems (FMAS 2023), Leiden, The Netherlands, 15th and 16th of November 2023, Electronic Proceedings in Theoretical Computer Science 395, pp. 162–179.
Published: 15th November 2023.

ArXived at: https://dx.doi.org/10.4204/EPTCS.395.12 bibtex PDF
References in reconstructed bibtex, XML and HTML format (approximated).
Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org