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Formally verifying audio classification systems is essential to ensure accurate signal classification
across real-world applications like surveillance, automotive voice commands, and multimedia con-
tent management, preventing potential errors with serious consequences. Drawing from recent re-
search, this study advances the utilization of star-set-based formal verification, extended through
reachability analysis, tailored explicitly for Long Short-Term Memory architectures and their Con-
volutional variations within the audio classification domain. By conceptualizing the classification
process as a sequence of set operations, the star set-based reachability approach streamlines the
exploration of potential operational states attainable by the system. The paper serves as an encom-
passing case study, validating and verifying sequence audio classification analytics within real-world
contexts. It accentuates the necessity for robustness verification to ensure precise and dependable
predictions, particularly in light of the impact of noise on the accuracy of output classifications.

1 Introduction

Deep Neural Networks (DNNs) have demonstrated remarkable capabilities in addressing intricate tasks
like image classification, object detection, speech recognition, natural language processing, and docu-
ment analysis, at times even surpassing human performance [21,23,24]. This success has ignited a surge
in exploring the viability of DNNs across diverse real-world domains, including biometric authentica-
tion, mobile facial recognition for security, and malware detection. However, given the sensitive nature
of the data in these critical applications, incorporating safety, security, and robust verification into their
design has become paramount.

However, studies have revealed that even slight modifications in input data can effectively mislead
cutting-edge, well-trained networks, causing inaccuracies in their predictions [12, 32, 40]. The arena
of network verification has primarily concentrated on image inputs, particularly emphasizing the as-
surance of safety and robustness in various classification neural networks [2, 7, 19, 31, 43, 44]. Previ-
ous investigations have scrutinized a range of network architectures, encompassing feed-forward neural
networks (FFNNs [42]), convolutional neural networks (CNNs [44]), semantic segmentation networks
(SSNs [43]), and a few using Recurrent Neural Networks (RNNs [41]) employing diverse set-based
reachability tools such as Neural Network Verification (NNV [26,45]) and JuliaReach [6], among others.

Models utilizing NNs for audio classification have found application in diverse tasks, ranging from
Music Genre Classification [8,10,11] and Environmental Sound Classification [4,9,13] to Audio Gener-
ation [33,36]. Therefore, formal verification of audio classification systems holds paramount importance
in ensuring their reliability and safety, particularly in safety-critical applications such as autonomous
vehicles [35, 46], medical diagnosis [15, 30], and industrial monitoring [47].

This study introduces an extension, building upon the foundations laid by two recent studies [34,41]
in the domain of formal verification. The objective is to leverage set-based reachability techniques to
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verify audio classification models based on the Long Short Term Memory (LSTM) and CNN-LSTM
architectures. Drawing inspiration from [41], which highlights the star-based verification of basic vanilla
RNNs, and from [34], which demonstrates the formal verification of convolutional neural networks oper-
ating on time series data, work shown in this paper amalgamates both concepts. Specifically, it employs
two LSTM models and one CNN-LSTM model for these classifications, following the ones depicted
in [27–29].

Contributions.

1. This paper presents a thorough case study on the formal verification of audio classification models
using the LSTM and CNN-LSTM architectures with two different datasets. Our focus is to rig-
orously assess the robustness verification of these models within a formal verification framework,
analyzing their behavior and performance against input noises. We develop our work as an exten-
sion of the NNV tool1 to formally analyze and explore CNN-LSTM architecture verification for
audio data using sound and deterministic reachability methods.

2. Building on insights from existing research [34,41], this paper extends formal verification to more
complex RNN architectures. This involves addressing the challenges of the complex structure of
the LSTM layers, comprehensively evaluating their behavior, and ensuring robustness compliance
through formal verification. This study pushes formal verification’s boundaries, embracing design
complexities for heightened assurance and reliability.

3. In this assessment, we conduct a thorough and comprehensive evaluation of three distinct network
architectures across diverse audio classification scenarios.

4. Finally, we develop insights on evaluating the reachability analysis on those networks and possible
future direction.

Outline. The paper is organized as follows: Section 2 mentions the works already done in the literature
and the inspiration works for this paper; Section 3 provides the necessary context for the background,
and defines the verification properties for this work; Section 4 explains the reachability calculations for
the LSTM layer; and Section 5 describes the methodology, including dataset, network models, and input
perturbations. Section 6 presents the experimental results, evaluation metrics, and their implications.
Finally, Section 7 summarizes the main findings and suggests future research directions.

2 Related Work

In recent times, an upsurge of methodologies and tools have arisen to confront the verification com-
plexities inherent in intricate systems like Deep Neural Networks (DNNs), as evident from the litera-
ture [14, 17, 25, 44]. Correspondingly, tools have emerged to tackle the robustness challenges of Convo-
lutional Neural Networks (CNNs) [2, 19, 20, 37–39]. Earlier undertakings in the verification of Recur-
rent Neural Networks (RNNs) are showcased through projects like RnnVerify [18] and RNSVerify [1].
RNSVerify employs an unrolling technique to translate RNNs into extensive Feedforward Neural Net-
works (FFNNs), simplifying verification through Mixed-Integer Linear Program (MILP) approaches [1].
However, this unrolling method faces scalability constraints, particularly with bounded n-step RNNs, as

1The code for this paper is available at https://github.com/verivital/nnv/tree/master/code/nnv/examples/Submission/
FMAS2023

https://github.com/verivital/nnv/tree/master/code/nnv/examples/Submission/FMAS2023
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the verification complexity scales dramatically. Conversely, RnnVerify [18] employs invariant inference
for RNN verification, bypassing unrolling. Their strategy involves crafting an FFNN with matching di-
mensions to over-approximate the RNN, followed by verifying RNN properties over this approximation
using SMT-based methodologies. Our work gets inspiration from [41], where authors introduce a pio-
neering approach founded on star reachability for RNN verification, aiming to amplify the dependability
and safety of RNNs and show the results based on some vanilla RNN models.

Distinction from the previous works [34,41]. While both papers share the common goal of validating
the robustness of RNNs, the preceding study can be perceived as an initial step in that research trajectory.
In contrast, this paper represents a more comprehensive evolution of the concepts initially introduced.

1. The work in [41] focused on the Vanilla RNN, while this paper delves into models of significantly
greater intricacy, such as the LSTM and CNN-LSTM architectures. Vanilla RNNs and LSTMs
are both types of recurrent neural networks. However, Vanilla RNNs are simpler in terms of
architecture and have fewer parameters, whereas LSTMs are more complex due to their gated
units and larger parameters.

(a) Vanilla RNNs handle input sequences in a sequential manner, updating a hidden state at each
step. In contrast, LSTMs also maintain a hidden state, but their structure is more complex,
featuring multiple gates (input, forget, and output gates) that regulate the information flow.

(b) Vanilla RNNs face challenges capturing long-term dependencies within sequences due to the
vanishing gradient problem. This problem limits their ability to learn connections between
distant time steps. LSTMs, on the other hand, were specifically designed to tackle the vanish-
ing gradient problem and excel at capturing long-term dependencies, rendering them better
suited for tasks involving intricate temporal relationships.

(c) Vanilla RNNs possess a constrained memory capacity, often rapidly discarding information
from earlier time steps. This limitation can hinder their performance in tasks with extended
sequences. In contrast, LSTMs feature an improved memory mechanism that allows them to
retain or discard information from prior time steps selectively. This capability equips them
to handle longer sequences and capture complex patterns effectively.

2. The study conducted in [34] focused on examining time-series regression models in the Prognos-
tics and Health Management domain. Drawing inspiration from this work, our study extends the
investigation to encompass the time domain’s influence, specifically concerning sequential audio
noise and Japanese vowel audio samples. This basic experiment provides a foundation for under-
standing the robustness and reliability of audio classification systems. They offer insights that can
be directly applied to real-world scenarios, making them valuable for a broad audience in the field
of audio classification.

(a) Utilizing real-world datasets, this experiment can yield practical insights into audio classifi-
cation system performance, benefiting fields such as speech recognition, audio surveillance,
and multimedia content management by offering real-world applicability.

(b) This experiment can provide valuable insights into the robustness of audio classifiers when
exposed to different noise levels and perturbations, offering crucial implications for applica-
tions where audio data is frequently affected by a noise like voice commands in automobiles
or audio analysis in noisy settings.

(c) While this work concentrates on two particular datasets, the verification methodologies show-
cased can be extended to diverse audio classification endeavors, allowing readers engaged in
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various audio classification challenges to customize and apply the methodologies to their
specific contexts.

(d) The metrics used in this paper can be potential for real-world applications to evaluate and
enhance the reliability and efficiency of audio classification systems.

3 Preliminaries

This section introduces some basic definitions and descriptions necessary to understand the progression
of this paper and the necessary evaluations on audio classification models.

3.1 Neural Network Verification Tool and Star Sets

The Neural Network Verification (NNV) tool constitutes a framework designed to verify the safety and
robustness of neural networks [26,45]. This tool meticulously scrutinizes neural network behavior across
diverse input conditions, warranting secure and accurate functionality across all scenarios. NNV employs
reachability algorithms, including the exact and over-approximate star set methodologies [42, 44], to
compute reachable sets for each neural network layer. These sets encapsulate all feasible network states
for a given input, thereby facilitating the verification of specific safety properties.

NNV holds particular significance in safety-critical domains like autonomous vehicles and medical
devices, where the trustworthiness and reliability of neural networks are paramount. NNV bolsters public
confidence in these applications by ensuring consistent performance across all conditions. In this paper,
we extend the capabilities of the NNV tool to implement our work, utilizing the star-based reachability
analysis to ascertain the reachable sets of neural networks at their outputs.

Figure 1: Star for a sequence input data with four Feature Values (rows) with four time-steps (columns)

Definition 3.1 A generalized star set (or simply star) Θ is a tuple ⟨c,V,P⟩ where c ∈ Rn is the center,
V = {v1,v2, · · · ,vm} is a set of m vectors in Rn called basis vectors, and P : Rm →{⊤,⊥} is a predicate.
The basis vectors are arranged to form the star’s n×m basis matrix. The set of states represented by the
star is given as:

JΘK = {x | x = c+Σ
m
i=1(αivi) and P(α1, · · · ,αm) =⊤}. (1)

In this work, we restrict the predicates to be a conjunction of linear constraints, P(α)≜Cα ≤ d where,
for p linear constraints, C ∈Rp×m, α is the vector of m-variables, i.e., α = [α1, · · · ,αm]

T , and d ∈Rp×1.
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3.2 Network Architecture Specifics

3.2.1 Long Short Term Memory (LSTM) Layer

An LSTM layer, a subtype of the Recurrent Neural Network (RNN) layer, excels at capturing long-term
dependencies in time series and sequential data [16]. It comprises two critical elements: the hidden state
(ht , also called the output state) and the cell state (ct). At each time step ‘t,’ the hidden state captures the
layer’s output for that instance, while the cell state accumulates insights from preceding time steps.

f g i o

ct-1

ht-1

ct

ht

xt

Forget Update Output

Figure 2: The flow of data at time step t in an LSTM layer

ct = ft ⊙ ct−1 + it ⊙gt

ht = ot ⊙σc(ct)
(2)

During each time step, the layer refines the cell state by incorporating or omitting information. This
process is steered by distinct gates that control these adjustments, as shown in Fig. 2.

it = σg(Wixt +Riht−1 +bi)

ft = σg(Wf xt +R f ht−1 +b f )

gt = σc(Wgxt +Rght−1 +bg)

ot = σg(Woxt +Roht−1 +bo)

(3)

In these equations, ⊙ represents the Hadamard product (element-wise multiplication), σc denotes the
activation function applied element-wise to the cell state ct and to the cell state gate gt ; σg denotes the
activation function applied element-wise to the hidden state gates. Here, W , R, and b are, respectively,
hidden state weights, recurrent weights, and biases for each of the gates.

3.2.2 Convolutional Neural Network + Long Short Term Memory (CNN+LSTM) Architecture

When processing sequences, a CNN uses sliding convolutional filters over the input, extracting infor-
mation from spatial and temporal dimensions. Conversely, an LSTM network progresses through time
steps, capturing lasting connections between them. The synergy of CNN and LSTM layers, as seen
in CNN+LSTM architectures [49], harnesses the strengths of both convolutional and LSTM units for
insightful data analysis.

The convolutional component forms the foundation for acquiring local feature modules that grasp
both local and hierarchical correlations. This fusion enables the identification of intricate data rela-
tionships. Additionally, the inclusion of an LSTM layer enhances the network’s capacity to capture
prolonged dependencies by leveraging information from these localized features.
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Figure 3: Layers of a demo CNN+LSTM Architecture model

3.3 Reachability Analysis Computation

This section describes how the reachability of an NN layer and the NN as a whole is computed for this
study.

In this context, we adopt an alternative technique for defining a Star set. This method involves
utilizing the input’s upper and lower bounds with noise, subsequently aligning them around the original
input. We establish a comprehensive array of constraints by incorporating these bounds for each input
parameter alongside predicates. These constraints are then presented to the optimizer for a solution,
ultimately yielding the initial set of states.

Definition 3.2 A layer L of a NN is a function h : u ∈ R j → v ∈ Rp, defined as follows

v = h(u) (4)

where the function h is determined by parameters θ , typically defined as a tuple θ = ⟨σ ,W,b⟩ for fully-
connected and convolutional layers, where W is the weight matrix, b is the bias vector, and activation
function is σ . For CNN layers, θ may include parameters like the filter size, padding, or dilation factor.

Definition 3.3 Let h : u ∈ R j → v ∈ Rp, be an NN layer as described in Eq. 4. The reachable set Rh,
with input, I ∈ Rn is defined as

Rh ≜ {v | v = h(u), u ∈ I } (5)

Reachability analysis (or, shortly, reach) of an NN f on Star input set I is similar to the reachable set
calculations for CNN [44] or FFNN [42].

Reach( f ,I ) : I → Rts (6)

We call Rts(I) the output reachable set of the NN corresponding to the input set I .
For an NN, the output reachable set can be calculated as a step-by-step process of constructing the

reachable sets for each network layer.

RL1 ≜ {v1 | v1 = h1(x), x ∈ I },
RL2 ≜ {v2 | v2 = h2(v1), v1 ∈ RL1},

...

Rts = RLk ≜ {vk | vk = hk(vk−1), vk−1 ∈ RLk−1},

(7)
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where hk is the function represented by the kth layer Lk. The reachable set RLk contains all outputs of the
neural network corresponding to all input vectors x in the input set I .

3.4 Adversarial Perturbation

An audio classification system may face real-world scenarios involving elements like background noise,
interference, or distortions. While potentially perceptible, these factors remain within the scope of chal-
lenges that practical systems are designed to address. However, this paper exclusively used l-infinity
perturbations, focusing on assessing how audio classification models respond to variations within spe-
cific constraints.

Considering an input sequence characterized by ts time instances and n f features, various pertur-
bation types (l∞ norm) [34] arise based on their distribution across the sequence. These adversarial
perturbation categories can be delineated as follows:

1. Single Feature Single-instance (SFSI): This entails perturbing the value of a specific feature
solely at a particular instance (t), deviating by a certain percentage from the actual value:

sperturb = gε,sperturb(s) = s+ εt · sperturb
t (8)

2. Single Feature All-instances (SFAI): In this scenario, a particular feature across all time instances
undergoes perturbation by a certain percentage relative to its original values:

sperturb = gε,sperturb(s) = s+
n

∑
i=1

εi · sperturb
i (9)

3. Multifeature Single-instance (MFSI): All feature values experience perturbation, but solely at a
specific instance (t), following the principle outlined in Eq. 8 for each feature.

4. Multifeature All-instance (MFAI): Perturbation affects all feature values across all instances,
aligning with the approach delineated in Eq. 9 for every feature.

3.5 Robustness Verification Properties

Robustness. Robustness pertains to the capacity of a system or model to sustain its performance and
functionality amid diverse challenging conditions, uncertainties, or perturbations. This highly desirable
trait ensures the system’s dependability, resilience, and adaptability in the presence of altering or un-
favorable circumstances. To formally articulate the concept of robustness for quantifying the desired
classification task, the following formulation can be employed:

||x′− x||∞ < δ =⇒ f (x′) == f (x) (10)

Here, x signifies the original input from the input space Rn f ×ts , x′ represents the perturbed input, f (x′)
and f (x) correspond to the classifiers’ outputs for x′ and x, respectively. δ stands for the maximum
magnitude of the introduced perturbation (δ ∈ R > 0). By disregarding the softmax and classification
layers within the models and focusing on the output of the layer immediately preceding the softmax, the
formulation for robustness simplifies as follows:

||x′− x||∞ < δ =⇒ maxID(g(x′)) == maxID(g(x)) (11)

In this context, the function g symbolizes the operation performed by the neural network classifier model
until the softmax layer, and maxID denotes the function responsible for identifying the class with the
highest value in the output.
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Verification Properties. Verification properties can be broadly classified into two distinct categories:
local and global. A local property must be valid for specific predefined inputs, while a global property
[48] is established across the entire input space Rn f ×ts of the network model, holding true for all inputs
without exceptions.

Local Robustness. Given a sequence classifier f and an input sequence S, the network is called locally
robust to any perturbation A if and only if: reachable bounds of the desired class will be max compared
to the bounds of the other classes, even in the presence of any perturbation.

Robustness Value (RV) of a sequence S is a binary variable, which indicates the local robustness of
the system. RV is 1 when the reachable output range of the desired class is greater than the reachable
bounds of other classes, making it locally robust; otherwise, RV is 0.

RV = 1 ⇐⇒ LBdesired ≥UBother else, RV = 0
where LBdesired and UBother are the lower reachable bound of the desired class and UBother are the

upper bounds of all other classes.

Percentage Robustness (PR). We apply the concept of Percentage Robustness (PR), previously uti-
lized in image-based classification or segmentation neural networks [43], to the context of sequence
audio inputs. The PR for a sequence classifier, corresponding to any adversarial perturbation, is defined
as:

PR =
Nrobust

Ntotal
×100 (12)

where Nrobust represents the total number of robust sequences, and Ntotal is the overall count of sequences
in the test dataset. Percentage robustness can be used as an indicator of global robustness [48] with
respect to various types of perturbations.

4 Reachability of a Long Short Term Memory Layer

To compute the reachability of an LSTM layer in relation to a star input set St , a series of stepwise
reachability computations are necessary to ultimately determine the reachable set of the LSTM layer’s
output, as depicted in Eq. 2-3. Ensuring accurate results relies on verifying the validity of specific
conditions, which are crucial for this process to be sound and accurate:

1. Affine Mapping Validity. The transformation of a star set through an affine mapping using a
given weight and bias must result in another valid star set [42].

2. Star Set Summation. Combining two star sets through Minkowski summation should lead to the
formation of yet another valid star set [5].

3. Activation Function Application. Upon applying the activation function to a star set, the output
should also result in a star set(s). The outcome could manifest as a single star set or a composi-
tion of multiple star sets, contingent on factors such as the activation functions employed and the
specific reachability technique utilized [42–45].

4. Hadamard Product Validity. The Hadamard Product of two star sets should yield another valid
star set.

While the validity of the first three conditions for star sets has been established in prior research, this
current study aims to extend that validation to include the fourth condition as well.
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Definition 4.1 (Hadamard product of two star sets) Given two star-sets Θ1 = ⟨c1,V1,P1⟩ and Θ2 =
⟨c2,V2,P2⟩, the Hadamard product of them Θ̄ = Θ1⊙Θ2 = {y | y = x1⊙x2, x1 ∈ Θ1, x2 ∈ Θ2} is another
star with the following characteristics.

Θ̄ = ⟨c̄,V̄ , P̄⟩, c̄ = c1 ⊙ c2, V̄ =

[
V1 0
0 V2

]
, P̄ ≡

[
P1 0
0 P2

]
Therefore we can conclude that for a given input set St and an LSTM layer, the output is also a star

set.

5 Experimental Setup

5.1 Hardware Used:

The actual experimental results shown in this paper are conducted in a Windows-10 computer with the
64-bit operating system, Intel(R) Core(TM) i7-8850H processor, and 16 GB RAM.

5.2 Dataset Description

For evaluation, we consider two different audio datasets for noise classification and Japanese vowel
classification.

Audio Noise Data: To curate this dataset, we generated a collection of 1000 white noise signals, 1000
brown noise signals, and 1000 pink noise signals using MATLAB. Each signal corresponds to a 0.5-
second duration and adheres to a 44.1 kHz sample rate. From this pool of 1000 signals, a training set
is fashioned, comprising 800 white noise signals, 800 brown noise signals, and 800 pink noise signals.
Given the multidimensionality inherent in audio data, often containing redundant information, a dimen-
sionality reduction strategy is employed. We begin by extracting features and subsequently training the
model using only two extracted features. These features are generated from the centroid and slope of the
mel spectrum over time.

Japanese Vowel [3, 22]: This dataset is collected from [3] from the University of Irvine Machine
Learning Repository. Two Japanese vowels were sequentially pronounced by nine male speakers. A 12-
degree linear prediction analysis was subjected to each instance of utterances. Each speaker’s utterance
constitutes a time series ranging from 7 to 29 points in length, with each point featuring 12 coefficients.
For 9 classes (i.e., vowels), the dataset has a total of 640 time series. Among these, 270 time series were
designated for training purposes, while the remaining 370 were allocated for testing.

5.3 Network Description

Audio Noise Data: The network architecture used for training the audio noise dataset, partially adopted
from [27], is an LSTM network. The network has two input features which correspond to one noise type
at the output. Following 11, the network for this dataset can be represented as:

f : x ∈ R2×ls → y ∈ R3

ˆnoiseClass = maxID(g(x))
(13)
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Japanese Vowel: Here we have trained two different classifiers for the Japanese Vowel dataset. The
LSTM architecture is partially adopted from [28] and the CNN+LSTM is partially adopted from [29].
Both the networks have twelve input features which correspond to one vowel at the output. Therefore,
the networks for this dataset can be represented as:

f : x ∈ R12×ls → y ∈ R9

ˆvowelClass = maxID(g(x))
(14)

Here ls is the audio sequence length and the function maxID provides the class with the maximum
value.

Table 1: Performances of different networks used in this paper

Networks Accuracy(%)

audio_noise_lstm 100
japanese_vowel_lstm 93.51

japanese_vowel_cnnlstm 96.49

6 Evaluation

6.1 Robustness Verification of Audio Noise Classifier

To conduct robustness verification on the audio noise dataset, we encompass all four categories of per-
turbations, following [34]. First, we curate 100 sequences each of white, brown, and pink noise as test
datasets. Then, we generate adversarial sequences centered around the original ones by applying l∞
norms. This involves utilizing 5 distinct percentage values for perturbation (ε), specifically 50%, 60%,
70%, 80%, and 90% of the mean (µ) value. These newly created adversarial inputs are subjected to as-
sessment through the exact-star reachability analysis [Sec. 4] to determine their robustness. Notably, in
the case of Single Feature Single-instance Noise (SFSI) and Single Feature All-instances Noise (SFAI),
we opt for random selection of feature 1 for input perturbation.

Table 2: Global Robustness: percentage robustness (PR) and total verification runtime (sumRT in sec-
onds) for 100 test audio noise sequences

noise PRSFSI PRSFAI PRMFSI PRMFAI sumRTSFSI sumRTSFAI sumRTMFSI sumRTMFAI

50 98 80.33 98 80.33 0.3071 0.2626 0.3018 0.2625
60 96 71.67 96 71.67 0.3034 0.2571 0.3018 0.2578
70 94 25.67 94 25.67 0.3039 0.2637 0.3070 0.2663
80 85.33 12.33 85.33 12.33 0.3073 0.2559 0.3111 0.2556
90 63.33 8.33 63.33 8.33 0.3060 0.2504 0.3093 0.2537

Observations and Analysis. Table 2 and Fig. 4 present the network’s overall performance, i.e., the
percentage robustness measures, PR [Sec. 3.5], and total verification runtime (sumRT) in seconds, with
respect to each adversarial perturbation. The observations derived from both the table and the figure
provide the following insights:
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Figure 4: Percentage Robustness and Runtime plots w.r.t increasing perturbations

1. Trend of Percentage Robustness (PR). As the adversary level increases from 50 to 90, we observe
a consistent decrease in PR values for all perturbation scenarios (SFSI, SFAI, MFSI, MFAI), which
aligns with the concept of the robustness verification property. This decrease in PR signifies a
reduction in the system’s ability to maintain its classification accuracy in the presence of higher
adversary levels.

2. Comparative Analysis of Perturbation Scenarios. Within each noise level, comparing PR values
across different perturbation scenarios (SFSI, SFAI, MFSI, MFAI), it’s evident that PR values for
SFSI and MFSI are generally higher than those for SFAI and MFAI. This finding indicates that
perturbing features at a single instance or all features at a single instance generally leads to better
robustness against varying noise levels.

3. Similar PR Values for Different Perturbation Scenarios. Another notable observation is the
similarity in robustness matrices between SFSI and MFSI scenarios, accompanied by closely com-
parable computation times for their respective verification processes. This parallelism is also ev-
ident for SFAI and MFAI perturbations as well. This pattern could be ascribed to the dataset’s
limited feature set of only two dimensions, where the foremost feature likely holds paramount
importance in influencing the class determination in the presence of noise. Consequently, when
single-instance perturbations target the first feature, perturbing both features results in an effect
akin to perturbing the first feature alone. This interpretation is applicable to both MFAI and SFAI
scenarios as well.

6.2 Robustness Verification of Japanese Vowel Classifiers

To verify the robustness of both the LSTM and the CNN+LSTM models in the context of the Japanese
vowel classifier, we extend the evaluation to encompass all four perturbation categories, mirroring the
approach undertaken for the audio noise classifier. During this procedure, we focus on the complete
set of correctly classified test sequences. Subsequently, we create adversarial inputs centered around
the original sequences by applying l∞ norms to evaluate their robustness. This perturbation process
involves applying 5 distinct percentage values (ε) for perturbation: specifically, 50%, 60%, 70%, 80%,
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and 90% of the mean (µ) value. The resulting set of adversarial inputs is then assessed using the exact-
star reachability analysis for both the classifiers to ascertain their robustness. Like the earlier scenario,
for SFSI and SFAI, feature 1 is chosen for perturbation.

Table 3: Global Robustness: percentage robustness (PR) and total verification runtime (sumRT in sec-
onds) for all test Japanese Vowel audio sequences

noise PRSFSI PRSFAI PRMFSI PRMFAI sumRTSFSI sumRTSFAI sumRTMFSI sumRTMFAI

50 100 68.21 100 74.86 1.1502 1.0398 1.0392 1.0442
60 100 60.40 100 50.29 0.9989 0.9992 0.9970 0.9966
70 100 50.29 100 27.17 0.9981 0.9968 0.9965 0.9952
80 100 43.93 100 13.01 0.9920 0.9930 0.9978 0.9882
90 100 39.02 100 8.38 1.0044 1.0083 1.004 0.9985
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Figure 5: Percentage Robustness and Runtime plots w.r.t increasing perturbations, for LSTM architecture

Observations and Analysis: LSTM Model Table 3 and Fig. 5 present the LSTM network’s over-
all performance, i.e., the percentage robustness measures, PR [Sec. 3.5], and total verification runtime
(sumRT), with respect to each adversarial perturbation. The notable findings are outlined as follows

1. Trend of Percentage Robustness (PR). Similar to the audio noise classifier, the trends in PR
values here also suggest that as noise levels increase, the percentage robustness tends to decrease
across all scenarios. This aligns with the intuitive expectation that higher adversary levels lead to
increased challenges in maintaining robustness.
The PRSFSI and PRMFSI values remain consistently at 100% across all noise levels, indicating that
perturbing either a single feature or all features at a specific instance does not significantly affect
the robustness of the audio sequences. On the other hand, PRSFAI and PRMFAI show distinct trends.
As adversary levels increase, PRSFAI gradually decreases, suggesting that perturbing all instances
but only a single feature starts impacting the robustness. Similarly, PRMFAI also experiences a
decline with increasing noise levels, reflecting that perturbing all instances and features has an
impact on the sequences’ robustness.
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2. Comparative Analysis of Perturbation Scenarios. The comparison between single-instance per-
turbation scenarios (SFSI and SFAI) and multifeature perturbation scenarios (MFSI and MFAI)
reveals a pattern. The former scenarios (single-instance) generally maintain higher robustness
compared to the latter (multifeature) scenarios. This suggests that perturbing all features has a
larger impact on robustness than perturbing just a single feature.
The interrelation between PRSFSI and PRMFSI is also notable. Both scenarios exhibit identical
trends, regardless of the noise level. Similarly, PRSFAI and PRMFAI also demonstrate similar be-
haviors, with both scenarios showing a decline in robustness as noise increases.

Observations and Analysis: CNN+LSTM Model Table 4 and Fig. 6 present the CNN+LSTM net-
work’s overall performance.

Table 4: Global Robustness: percentage robustness (PR) and total verification runtime (sumRT in sec-
onds) for all correctly-classified test Japanese Vowel audio sequences

noise PRSFSI PRSFAI PRMFSI PRMFAI sumRTSFSI sumRTSFAI sumRTMFSI sumRTMFAI

50 96.82 49.13 97.39 65.89 5.5019 4.2007 4.2197 4.1148
60 96.82 40.75 97.39 43.64 4.5148 3.9238 3.9123 3.9200
70 96.82 34.68 97.10 18.78 4.6223 4.0966 4.0778 4.0626
80 96.82 30.63 97.10 3.17 4.5658 4.0998 4.0550 4.0714
90 96.82 26.58 97.10 0 4.5773 4.0785 4.0715 4.0605
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Figure 6: Percentage Robustness and Runtime plots w.r.t increasing perturbations, for LSTM architecture

Key insights gleaned from both the table and the plot include:

1. Trend of Percentage Robustness (PR). Across all perturbation levels, the PRSFSI remain con-
sistently at around 96% and the PRMFSI at around 97%, indicating that the perturbations applied
in these scenarios do not significantly affect the robustness of the audio sequences. For SFAI and
MFAI perturbations, PR also decreases with rising noise levels, although the decline is more pro-
nounced. PR values for SFSI and MFSI perturbations are significantly higher compared to SFAI
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and MFAI perturbations at all noise levels, indicating that sequences with perturbations at a single
instance are more robust to noise.

2. Trend of Verification Runtimes (sumRT ). Verification runtimes tend to rise with elevated noise
levels across all perturbation scenarios. However, in the case of the Japanese Vowel dataset, an
initial decrease is observed in the runtime trend, followed by an increase at perturbation level 70%
and then again decreases at 80%, followed by another increase at 90%. It’s also worth noting
that contrary to the expected trend, sumRTSFSI exhibits a higher runtime value in comparison to
sumRTSFAI and sumRTMFAI .

Overall, the above tables demonstrate how different perturbation scenarios and adversary levels impact
the percentage robustness of the audio noise and Japanese Vowel audio classifiers. The trends and inter-
relations provide insights into the varying effects of perturbations on different scenarios and noise levels,
helping to understand the robustness behavior of the neural network models under different conditions.

7 Conclusion and Future Directions

This study delves into formal method-based reachability analysis for various LSTM-based neural net-
works (NNs) using exact and approximate Star methods, specifically in the context of audio sequence
classification – a critical aspect for safety-critical applications. The investigation encompasses four dis-
tinct adversarial perturbation types, as introduced in the existing literature. The evaluation occurs across
two audio sequence datasets: audio noise sequences and Japanese vowel audio sequences. The unified
reachability analysis accommodates shifting features within time sequences while scrutinizing the output
against the desired audio class. Robustness properties are verified for both datasets. Although real-world
datasets are employed, further research is essential to strengthen the connection between practical issues
and performance metrics. The evaluation can also be conducted with multiple repetitions to ensure that
the reported results are not dependent on specific instances or random fluctuations, thus enhancing the
overall validity and reliability of the findings. Exploring real-world scenarios encompassing a wider ar-
ray of perturbation types and magnitudes will also be fascinating, potentially yielding diverse effects on
system behavior. The study paves the way for exploring the impact of perturbations on the output and
expanding reachability analysis to three-dimensional sequence data like videos. An intriguing direction
for exploration can involve analyzing the peculiar runtime patterns observed in the plots for the Japanese
Vowel audio dataset. Potential future applications can also encompass medical video analysis. Notably,
this work concentrates on offline data analysis, omitting considerations for real-time stream processing
and memory limitations, which offers intriguing prospects for future investigation.
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