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Introduction 

 Objects with multiple instances are widely used.  
 Uncertain object (instances are exclusive), e.g., uncertain spatial objects. 

 Multi-valued object (instances are co-occurrence), e.g., NBA player records. 
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Introduction 

 Nearest Neighbour (NN) search: 
 Given a query object Q, return the nearest object to the query. 

 

 Easy for objects with single instance when distance metric is 
given. 

 Object A 
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Introduction 

 Nearest Neighbour (NN) search: 
 Given a query object Q, return the nearest object to the query. 

 

 There are a lot of NN ranking functions for objects with multiple 
instances. 
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Introduction 

 There are a lot of NN ranking functions for objects with multiple 
instances. 

 The parameters in NN function can be set to infinite value, e.g., 
quantile distance.  
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Introduction 

 There are a lot of NN ranking functions for objects with multiple 
instances. 

 The parameters in NN function can be set to infinite value, e.g., 
quantile distance.  

 

 Motivation 
 A user may not have a specific NN function in mind,  it is desirable to provide 

her with a set of NN candidates. 
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Introduction 

 A spatial dominate (SD) operator is used to define the partial 

order between objects regarding a query Q, i.e., SD(A, B, Q) 

means A dominates B, otherwise 
¬

SD(A, B, Q). 

 

 Given a SD operator, the NN candidate set consists of the objects 

that are not dominated by any other objects. 

 

 Optimal SD operator w.r.t a family F of NN functions 

 Correctness:  SD(A, B, Q) ⇒ ∀𝑓 ∈ 𝐹 , that f (A) ≤ f (B) 

 Completeness: 
¬

SD(A, B, Q) ⇒ ∃ 𝑓 ∈ 𝐹, that f (A) > f (B) 
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Related Work 

 Full dominance operator (F-SD) 

Object B 
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     (SIGMOD10, SIGMOD14) 
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Related Work 

 NN Core (TKDE10) 
 A → B: if A has higher chance to be closer to the query than B; 

 NN candidates : Minimal set of objects, each of which beats any 
object not in the NN candidates. 
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Related Work 

  Stochastic order has been widely used in various domains to compare the 
“goodness” of two random variables distributions. 

Stochastic Order.  Given two independent random variables X and Y , we say X is 
smaller than Y in usual stochastic order, denoted by 𝑋 ≼ 𝑠𝑡⁡𝑌, if 𝑃𝑟(𝑋⁡ ≤ ⁡𝜆) ⁡≥
⁡𝑃𝑟(𝑌⁡ ≤ ⁡𝜆) for every 𝜆⁡ ∈ ⁡𝑅. 

distance 

a1q1 a1q2 a2q1 a2q2 

1 4 7 9 

AQ 

distance 

b1q1 b1q2 b2q1 b2q2 

2 6 
8 

11 

BQ 

Pr 𝐴𝑄 ≤ 1.5 = 0.25; Pr 𝐵𝑄 ≤ 1.5 = 0 Pr 𝐴𝑄 ≤ 10 = 1; Pr 𝐵𝑄 ≤ 10 = 0.75 

22 



Problem Definition 

 Objects with multiple instances  

 An object U consists of a set {ui} of instances, and a discrete probability 

mass function assigns each instance 𝑢𝑖⁡a probability value, denoted by 

𝑝(𝑢i), where  𝑝 𝑢𝑖 = 1. 

 The multi-valued objects are treated as discrete random variable if their 

weight can be normalized.  

 

 Problem statement 

 Devise spatial dominance (SD) operators by carefully considering various 

NN function families. 
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Classify NN Functions 

 N1: all pairs based NN 

 Aggregation over pair-wise distances g(AQ), e.g., Min/Max, Expected 

distance, Quantile. 

 N2: possible world based NN  

 Aggregation over score on each possible world g(AW), e.g., NN probability, 

Expected rank. 

 N3: selected pairs based NN 

 Aggregation over selected pairs g(S(AQ)), e.g., Earth Mover’s distance, 

Netflow distance. 
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SD Operator 

 Stochastic-SD (S-SD, opt. w.r.t N1 ) 
 Given two objects U and V, and the query Q, we have SSD(U,V,Q) if 

and only if 𝑈𝑄 ≼ 𝑠𝑡⁡𝑉𝑄 and 𝑈𝑄 ≠⁡VQ . 
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SD Operator 

 Strict Stochastic-SD (SS-SD, opt. w.r.t N1,2 ) 
 Given two objects U and V, and the query Q, we have SSSD(U,V,Q) if 

and only if 𝑈𝑞 ≼ 𝑠𝑡⁡Vq  for ∀𝑞 ∈ 𝑄⁡and 𝑈𝑄 ≠⁡VQ. 
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SD Operator 
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SD Operator 

 Peer-SD (P-SD, opt. w.r.t N1,2,3 ) 
 Given two objects U and V, and the query Q, we have PSD(U,V,Q) if 

there is a mapping between U and V, for each pair <u,v>, u is always 
closer to Q than v with same weight. 
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SD Operator 
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SD Operator 
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P-SD Check 

 P-SD check 
 Naively have to check all the mapping. 

 The P-SD check between U and V can be reduced to compute the 
network flow problem, PSD(U,V,Q) iff the network flow is 1 

Object B 

Object A 

a2 0.5 

a1 0.5 

b2 0.5 

b1 0.5 
Query Q 

q1 0.5 

q2 0.5 

s t 

a1 

a2 

b1 

b2 

34 



P-SD Check 

 P-SD check 
 Naively have to check all the mapping. 

 The P-SD check between U and V can be reduced to compute the 
network flow problem, PSD(U,V,Q) iff the network flow is 1 

Object B 

Object A 

a2 0.5 

a1 0.5 

b2 0.5 

b1 0.5 
Query Q 

q1 0.5 

q2 0.5 

s t 

a1 

a2 

b1 

b2 

35 



SD Operator Properties 

 SD operator containment 

 

 

 

 

 

 NN candidate search 
 Based on branch and bound framework like skyline search 
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Experiments 

 Compare Algorithm 

 SSD, SSSD, PSD, FSD and F+SD 

 Datasets: 

 real dataset: NBA, Gowalla; 

 semi-real dataset: House, CA, USA; 

 synthetic dataset. 

Evaluation parameter  Values 

dimensionality d  2, 3, 4, 5 

# of objects n  100k, 200k, 400k, 600k, 1M 

# of object instances md 20, 40, 60, 80, 100 

edge length of object hd  100, 200, 300, 400, 500 

object center distribution anti (A), indep (E) 

# of query instances mq 10, 20, 30, 40, 50 

edge length of query hq 100, 200, 300, 400, 500 
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Experiments 

(a) Candidate Size of Different Datasets (b) Response Time of Different Datasets 
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Experiments 

(a) Varying n 

(b) Varying hd 

(c) Varying n 

(d) Varying hd 
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Conclusion 

 Formalize three families of NN functions that cover popular NN 
ranking mechanisms. 

 

 Advocate three SD operator that are optimal to different family 
of NN functions. 

 

 Propose efficient NN candidate search algorithm for three SD 
operators. 
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