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Introduction 

 Objects with multiple instances are widely used.  
 Uncertain object (instances are exclusive), e.g., uncertain spatial objects. 

 Multi-valued object (instances are co-occurrence), e.g., NBA player records. 
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Introduction 

 Nearest Neighbour (NN) search: 
 Given a query object Q, return the nearest object to the query. 

 

 Easy for objects with single instance when distance metric is 
given. 
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 Nearest Neighbour (NN) search: 
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 There are a lot of NN ranking functions for objects with multiple 
instances. 
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Introduction 

 Nearest Neighbour (NN) search: 
 Given a query object Q, return the nearest object to the query. 

 

 There are a lot of NN ranking functions for objects with multiple 
instances. 
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Introduction 

 There are a lot of NN ranking functions for objects with multiple 
instances. 

 The parameters in NN function can be set to infinite value, e.g., 
quantile distance.  
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Introduction 

 There are a lot of NN ranking functions for objects with multiple 
instances. 

 The parameters in NN function can be set to infinite value, e.g., 
quantile distance.  

 

 Motivation 
 A user may not have a specific NN function in mind,  it is desirable to provide 

her with a set of NN candidates. 
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Introduction 

 A spatial dominate (SD) operator is used to define the partial 

order between objects regarding a query Q, i.e., SD(A, B, Q) 

means A dominates B, otherwise 
¬

SD(A, B, Q). 

 

 Given a SD operator, the NN candidate set consists of the objects 

that are not dominated by any other objects. 

 

 Optimal SD operator w.r.t a family F of NN functions 

 Correctness:  SD(A, B, Q) ⇒ ∀𝑓 ∈ 𝐹 , that f (A) ≤ f (B) 

 Completeness: 
¬

SD(A, B, Q) ⇒ ∃ 𝑓 ∈ 𝐹, that f (A) > f (B) 
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Related Work 

 Full dominance operator (F-SD) 

Object B 

 We have FSD(A,B,Q),  if and only if ∀𝑞 ∈ 𝑄,max 𝐴, 𝑞 ≤ min(𝐵, 𝑞)  
     (SIGMOD10, SIGMOD14) 
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Related Work 

 NN Core (TKDE10) 
 A → B: if A has higher chance to be closer to the query than B; 

 NN candidates : Minimal set of objects, each of which beats any 
object not in the NN candidates. 
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Related Work 

  Stochastic order has been widely used in various domains to compare the 
“goodness” of two random variables distributions. 

Stochastic Order.  Given two independent random variables X and Y , we say X is 
smaller than Y in usual stochastic order, denoted by 𝑋 ≼ 𝑠𝑡𝑌, if 𝑃𝑟(𝑋 ≤ 𝜆) ≥
𝑃𝑟(𝑌 ≤ 𝜆) for every 𝜆 ∈ 𝑅. 
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Problem Definition 

 Objects with multiple instances  

 An object U consists of a set {ui} of instances, and a discrete probability 

mass function assigns each instance 𝑢𝑖a probability value, denoted by 

𝑝(𝑢i), where  𝑝 𝑢𝑖 = 1. 

 The multi-valued objects are treated as discrete random variable if their 

weight can be normalized.  

 

 Problem statement 

 Devise spatial dominance (SD) operators by carefully considering various 

NN function families. 
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Classify NN Functions 

 N1: all pairs based NN 

 Aggregation over pair-wise distances g(AQ), e.g., Min/Max, Expected 

distance, Quantile. 

 N2: possible world based NN  

 Aggregation over score on each possible world g(AW), e.g., NN probability, 

Expected rank. 

 N3: selected pairs based NN 

 Aggregation over selected pairs g(S(AQ)), e.g., Earth Mover’s distance, 

Netflow distance. 
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SD Operator 

 Stochastic-SD (S-SD, opt. w.r.t N1 ) 
 Given two objects U and V, and the query Q, we have SSD(U,V,Q) if 

and only if 𝑈𝑄 ≼ 𝑠𝑡𝑉𝑄 and 𝑈𝑄 ≠VQ . 
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SD Operator 

 Strict Stochastic-SD (SS-SD, opt. w.r.t N1,2 ) 
 Given two objects U and V, and the query Q, we have SSSD(U,V,Q) if 

and only if 𝑈𝑞 ≼ 𝑠𝑡Vq  for ∀𝑞 ∈ 𝑄and 𝑈𝑄 ≠VQ. 
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SD Operator 
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SD Operator 

 Peer-SD (P-SD, opt. w.r.t N1,2,3 ) 
 Given two objects U and V, and the query Q, we have PSD(U,V,Q) if 

there is a mapping between U and V, for each pair <u,v>, u is always 
closer to Q than v with same weight. 
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SD Operator 
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SD Operator 
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P-SD Check 

 P-SD check 
 Naively have to check all the mapping. 

 The P-SD check between U and V can be reduced to compute the 
network flow problem, PSD(U,V,Q) iff the network flow is 1 
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SD Operator Properties 

 SD operator containment 

 

 

 

 

 

 NN candidate search 
 Based on branch and bound framework like skyline search 
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Experiments 

 Compare Algorithm 

 SSD, SSSD, PSD, FSD and F+SD 

 Datasets: 

 real dataset: NBA, Gowalla; 

 semi-real dataset: House, CA, USA; 

 synthetic dataset. 

Evaluation parameter  Values 

dimensionality d  2, 3, 4, 5 

# of objects n  100k, 200k, 400k, 600k, 1M 

# of object instances md 20, 40, 60, 80, 100 

edge length of object hd  100, 200, 300, 400, 500 

object center distribution anti (A), indep (E) 

# of query instances mq 10, 20, 30, 40, 50 

edge length of query hq 100, 200, 300, 400, 500 
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Experiments 

(a) Candidate Size of Different Datasets (b) Response Time of Different Datasets 
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Experiments 

(a) Varying n 

(b) Varying hd 

(c) Varying n 

(d) Varying hd 
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Conclusion 

 Formalize three families of NN functions that cover popular NN 
ranking mechanisms. 

 

 Advocate three SD operator that are optimal to different family 
of NN functions. 

 

 Propose efficient NN candidate search algorithm for three SD 
operators. 
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Thanks!  
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