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Abstract The top-k similarity joins have been extensively studied and used in a wide
spectrum of applications such as information retrieval, decision making, spatial data
analysis and data mining. Given two sets of objects U and V , a top-k similarity join
returns k pairs of most similar objects from U × V . In the conventional model of
top-k similarity join processing, an object is usually regarded as a point in a multi-
dimensional space and the similarity is measured by some simple distance metrics
like Euclidean distance. However, in many applications an object may be described
by multiple values (instances) and the conventional model is not applicable since it
does not address the distributions of object instances. In this paper, we study top-k
similarity join over multi-valued objects. We apply two types of quantile based dis-
tance measures, φ-quantile distance and φ-quantile group-base distance, to explore
the relative instance distribution among the multiple instances of objects. Efficient
and effective techniques to process top-k similarity joins over multi-valued objects
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are developed following a filtering-refinement framework. Novel distance, statistic
and weight based pruning techniques are proposed. Comprehensive experiments on
both real and synthetic datasets demonstrate the efficiency and effectiveness of our
techniques.

Keywords Query processing · Joins · Multi-valued objects

1 Introduction

Given two sets of objects (points) U and V in a d-dimensional metric space, the top-k
similarity join query retrieves k pairs of objects P from U × V such that the distance
between any pair of objects in P is not greater than the distance of any object pairs
in U × V − P . Conventional similarity join query has been extensively studied in
various applications including data mining, information retrieval, and location based
services [2, 10, 11]. Top-k similarity join, also called closest pair queries, has also
attracted much research attention [6]. In many applications such as decision making
and e-business, an object may be represented by multiple points (instances) in the
d-dimensional space, namely multi-valued objects [7].

The need of similarity join over multi-valued objects stems from many important
applications. In geographic information system (GIS), a group of simple spatial
objects may be evaluated as a whole [12, 21]. For instance, to evaluate a community,
a real estate development company may model it as a multi-valued object and
each instance corresponds to a property with some feature values such as property
price, household income, distance to beach, distances to living facilities, etc. A top-
k similarity join may be issued to identify the most similar communities from two
large cities or from two countries, such that the price fluctuation of one community
could be used as a mirror to the management of another one. Similarly, in sports, the
performance of a player may be described by her game-to-game statistics in various
games. So each player could be represented by a multi-valued object where each
instance corresponds to her statistics, such as heights and number of trials in high-
jump, in a particular game she attended. A similarity join over two sets of players
may help to retrieve players with similar performances. Hence, the successful career
path of one player provides a prediction of the success of her counterpart in coming
competitions.

Similarity join is also a fundamental and crucial analyzing tool in internet and
web information systems. In online shopping systems, it is interesting to retrieve
similar pairs of shops or sellers where a shop or seller is modeled by a set of retail
items with various features including item type and price range. Here a shop or
seller could be modeled as a multi-valued object where each instance corresponds
to a retail item. Identifying similar communities from online social networks is
another important application of similarity join over multi-valued objects where
one community (modeled as a multi-valued object) consists a set of individuals
(instances) [19, 24].

While the similarity between two conventional d-dimensional objects only in-
volves two single points, identifying the most similar object pairs among multi-valued
object sets involves multiple instances per object. Therefore, it is highly desirable to
consider the relative instance distributions among multi-valued objects so that the
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similar pairs can be effectively retrieved. In this paper, we investigate the problem of
similarity join over multi-valued objects in a top-k fashion. That is, we aim to retrieve
k pairs of multi-valued objects with the highest level of similarity.

The existing model for handling similarity joins over objects with multiple in-
stances follows the probabilistic semantics on uncertain objects [4, 13, 16] and
aims to capture relative instance distribution among objects with multiple instances.
Nevertheless, uncertain objects are inherently different than multi-valued objects.
Instances of an uncertain object are mutually exclusive which means at most one
instance can appear at a particular time, while all the values/instances of a multi-
valued object must occur simultaneously at any time. Moreover, as shown in [26],
models based on uncertain semantics cannot always capture the relative distributions
of multi-valued objects. Take the example in Figure 1. For simplicity we assume
multi-valued object U1 has only one instance with the value (score) of 10, while
multi-valued objects V1 and V2 both have m instances spread between 9.0 to 9.99
as depicted in Figure 1a. Each instance from the same object takes the same weight.
Suppose we want to retrieve the top-1 similarity join result from {U1} and {V1, V2},
namely, retrieve the more similar one from V1 and V2 to U1. Following the possible
world semantics, it is easy to verify that both V1 and V2 have the same probability, 1

2 ,
to be the most similar one to U1 if Euclidean distance is used as the similarity metrics.
We permute the distribution in Figure 1a to the distribution in Figure 1b, V1 and
V2 still have the same probability. This example demonstrates that the probabilistic
approaches following the possible world semantics are not able to capture the relative
distributions of instances. Another direct solution is to utilize simple aggregates such
as average. Nevertheless, such a simple aggregate will have the same problem as
pointed above regarding Figure 1.

The example in Figure 1 demonstrates that the existing probabilistic model and
simple aggregates may be insensitive to relative distributions of object instances.
Quantiles [25] provide a succinct summary of data distributions and is less sensitive
to outliers. In this paper, we investigate the top-k similarity join problem over multi-
valued objects based on a φ-quantile distance (φ ∈ (0, 1]); for example, median is the
0.5-quantile, maximum is the 1-quantile, minimum is the smallest quantile (note a
quantile φ is in (0, 1] and cannot be 0). Regarding the above example, 0.5-quantile
is based on players’ median performance; 1-quantile is to retrieve the top-k similar
pairs based on players’ worst performance. φ-quantile group-base distance, on the
other hand, aims at the “best population” (specified by φ) regarding the distance of

Figure 1 Motivating example
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each object pair. Detailed definitions will be provided in Section 2. In this paper,
we study the problem of top-k similarity joins over multi-valued objects where the
input are two sets of multi-valued objects, and the two types of quantile distances are
applied respectively.

Challenges and contributions To the best of our knowledge, this is the first paper
to systematically study top-k similarity joins over multi-valued objects. φ-quantile
distance and φ-quantile group-base distance are first used for capturing instance
distributions of multi-valued objects in [26]. Zhang et al. [26] studies k-nearest
neighbors (KNN) queries over multi-valued objects. Given a multi-valued query
object Q and a set of multi-valued objects U , a KNN query retrieves k objects from U
with smallest quantile-based distance to Q. An immediate way to solve our problem
can be conducted as follows. For each object U ∈ U (or V ∈ V), we compute its KNN
in V (or U) using the techniques in [26], and then select k most similar pairs based
on the union of KNN results. Nevertheless, this involves the computation of KNN
for each object in U (or each object in V). Clearly, not every object in U (or V)
will be involved in the top-k pairs since k is usually much smaller than min{|U |, |V|}.
Motivated by this, in this paper, we present a set of novel, efficient, effective pruning
techniques to prevent such redundant computation. Our main contributions of the
paper can be summarized as follows.

– We formalize the problem of top-k similarity join over multi-valued objects,
regarding two types of quantile-based distance metrics.

– Efficient and effective algorithms are developed to compute the top-k similarity
join results over two sets of multi-valued objects based on quantile-based dis-
tance metrics. Particularly, we propose novel and efficient distance, statistic and
weight based pruning techniques to significantly speed up the computation.

– Comprehensive experiments are conducted on both real and synthetic data to
demonstrate the efficiency and effectiveness of our techniques. It also demon-
strates that the techniques developed in this paper are up to 2 orders of
magnitude more efficient than naively applying KNN techniques in [26].

Organization of the paper The rest of the paper is organized as follows. Section 2
formally defines the problem of top-k similarity join over multi-valued objects
regarding two types of quantile distance measures, φ-quantile distance and φ-
quantile group-base distance, and provide some necessary background information.
In Section 3, we introduce the filtering-refinement framework, as well as the data
structures utilized in the paper. Sections 4 and 5 present techniques for top-k
similarity join based on φ-quantile distance and φ-quantile group-base distance,
respectively. In Section 6, we report our experiment results. Some extension of the
proposed techniques are discussed in Section 7. Related work is summarized in
Section 8 in which we present a comprehensive review of techniques on querying
multi-valued objects. The is followed by conclusion and future work in Section 9.

2 Background

We present problem definition and necessary preliminaries in this section. For
references, notations frequently used in the paper are summarized in Table 1.
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Table 1 The summary
of notations

Notation Definition

U , V Two sets of objects in the join query
U (V) Multi-valued object
E Entry of R-tree
u (v) Instance of U (V)—a point in d-dimensional space
w(u) (w(S)) (total) weight of u (the set S)
d(u, v) Euclidean distance between u and v

dlo(E, E′) Distance lower-bound between E and E′
dφ(U, V) φ-quantile distance of U and V
gbdφ(U, V) φ-quantile group-base distance of U and V
U × V Cartesian product of instances from U to V

2.1 Problem definition

Multi-valued object In our problem definition, an instance of an object U is
weighted—weight gives the representativeness of an instance in U . For instance, in
the examples in Section 1, a game statistic of a player may appear multiple times;
consequently a normalized weight (the occurrence of an instance over the total
occurrences of all instances) may be used to indicate the representativeness of an
instance. Note that the total of such weights in U equals 1.

A multi-valued object U is represented as {(ui, w(ui))|1 ≤ i ≤ m} where ui is a
point in a d-dimensional space, 0 < w(ui) ≤ 1 (1 ≤ i ≤ m), and

∑m
i=1 w(ui) = 1. We

use U and V to denote two sets of multi-valued objects involved in the join query.
Below we define the φ-quantile distance and φ-quantile group-base distance

between two multi-valued objects.

Quantile Given a collection S of m elements, each element si has a weight w(si)

where 0 < w(si) ≤ 1 and
∑m

i=1 w(si) = 1. Let S be sorted increasingly on a search key
f —a function; that is, f (si) ≤ f (s j) if i < j.

Definition 1 (φ-quantile of S) Given a φ (0 < φ ≤ 1), the φ-quantile Sφ of S is the
first element si in the sorted S on the search key such that

∑i
j=1 w(s j) ≥ φ.

φ-quantile distance For two given objects U and V, there are totally (|U | × |V|)
pairs of instances in U × V where each pair (ui, v j) (ui ∈ U and v j ∈ V) has the
weight w(ui) × w(v j), namely w(ui, v j). Clearly,

∑
ui∈U,v j∈V w(ui) × w(v j) = 1. The

Euclidean distance d(ui, v j)
1 between ui and v j is called the distance of (ui, v j). Let

U × V = {((ui, v j), w(ui, v j)) | ui ∈ U & v j ∈ V}.

Definition 2 (φ-quantile distance of U and V) Given a φ ∈ (0, 1], let U × V be sorted
increasingly on the search key—the distance d(ui, v j) of each element (ui, v j). Then,
the distance of the φ-quantile of U × V is called the φ-quantile distance of U × V,
denoted by dφ(U, V).

1Note that our techniques developed in this paper are based on Euclidean distance; nevertheless they
can be immediately extended to cover other distance metrics.
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Definition 2 states that if (u, v) is the φ-quantile of U × V (i.e., (U × V)φ = (u, v))
then d(u, v) is dφ(U, V).

Example 1 Regarding the example in Figure 2, |U | = 3 and |V| = 2. Assume that
w(u1) = 1

2 , w(u2) = w(u3) = 1
4 ; w(v1) = w(v2) = 1

2 . Consequently, U × V consists of
the following six pairs sorted on their distances increasingly:

U ×V =
{(

(u2,v1),
1
8

)

,

(

(u3,v1),
1
8

)

,

(

(u3,v2),
1
8

)

,

(

(u1,v1),
1
4

)

,

(

(u2,v2),
1
8

)

,

(

(u1,v2),
1
4

)}

.

The 0.2-quantile distance d0.2(U, V) of U and V is d(u3, v1), d0.5(U, V) is d(u1, v1),
d0.6(U, V) is also d(u1, v1).

Below we introduce φ-quantile group-base distance measure, which is defined
based on the top/best quantile-population of S.

Definition 3 (φ-quantile population of S) Given a S and a φ ∈ (0, 1], a φ-quantile
population Sφ,P of S is a sub-collection S′ of S such that the total weights of the
elements in S′ is not smaller than φ and removing any element from S′ makes the
total weights in the remaining sub-collection smaller than φ.

Definition 4 (φ-quantile group-base distance) Given a φ ∈ (0, 1], the φ-quantile
group-base distance of U and V is the minimum total weighted distance
among φ-quantile populations of U × V; that is, the minimum value of∑

(u,v)∈S′ w(u)w(v)d(u, v) with the constraint that S′ is a φ-quantile population of
U × V.

The φ-quantile group-base distance between U and V is denoted as gbdφ(U, V).

Example 2 Regarding Example 1, let φ=0.5. gbd0.5(U,V)= 1
8 d(u2,v1)+ 1

8 d(u3,v1) +
1
8 d(u3, v2) + 1

8 d(u2, v2) instead of 1
8 d(u2, v1) + 1

8 d(u3, v1) + 1
8 d(u3, v2) + 1

4 d(u1, v1).
In fact, there are several 0.5-quantile populations of U × V, including

{((u3, v1),
1
8 ), ((u2, v2),

1
8 ), ((u1, v1),

1
4 )}, {((u2,v1),

1
8 ), ((u2,v2),

1
8 ), ((u1,v1),

1
4 )}, etc.

Note that for a φ ∈ (0, 1], Example 2 shows that gbdφ(Q, U) is not always defined
on the set of the “consecutive” smallest distances. In Example 2, {((u2, v1),

1
8 ),

((u3, v1),
1
8 ), ((u3, v2),

1
8 ), ((u1, v1),

1
4 )} is not even a 0.5-quantile population of U × V.

In fact, we will show in Section 5 that the computation of gbdφ(Q, U) is NP-hard.

Figure 2 Distances between
two multi-valued objects

U

V

u1

u2

u3

v1

v2
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2.1.1 Problem statement

φ-quantile top-k similarity join Given a φ ∈ (0, 1], two sets of multi-valued objects
U and V in the d-dimensional space, a φ-quantile top-k similarity join retrieves k
pairs of objects P from U × V such that for each object pair (U, V) from P , its φ-
quantile distance dφ(U, V) is no greater than the φ-quantile distance of object pairs
from U × V − P .

φ-quantile group-base Top-k similarity join Given a φ ∈ (0, 1], two sets of multi-
valued objects U and V in the d-dimensional space, a φ-quantile group-base top-k
similarity join retrieves k pairs of objects P from U × V such that for each object
pair (U, V) ∈ P , its φ-quantile group-base distance gbdφ(U, V) is no greater than
the φ-quantile group-base distance of object pairs from U × V − P .

2.2 Preliminaries

φ-quantile distance computation Given a collection S of m elements, each element si

has a weight w(si) where 0 < w(si) ≤ 1 and
∑m

i=1 w(si) ≤ 1. A naive way to compute
the φ-quantile is to firstly sort S regarding a given search key f , and then scan
the sorted list to obtain the φ-quantile of S. Clearly, the naive algorithm runs in
O(m log m).

In [5], an efficient and effective partitioning technique PARTITIONING (S) is
proposed to find an element s ∈ S to divide S into two sub-collections S1 and S2 with
the following properties:

1. for each s′ ∈ S1, f (s′) ≤ f (s); and for each s′ ∈ S2, f (s′) ≥ f (s).
2. |S1| ≥ 3

10 m − 6 and |S2| ≥ 3
10 m − 6.

Using the partitioning technique, in Algorithm 1 we present an iteration-based
algorithm to compute a φ-quantile when S is not sorted.

In Algorithm 1, w(S1) denotes the total weights of the elements in S1. When
S has only one element, S1 = S2 = ∅. It is shown in [5] that the time complexity
of PARTITIONING (S) is linear—O(|S|). Consequently, each iteration runs in
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linear time regarding the current sub-collection size. Recall the property 2 above in
PARTITIONING (S). It is immediate that the sizes of sub-collections involved in the
iterations in Algorithm 1 are exponentially reduced—at the ith iteration bounded by
(( 7

10 )i−1m + c) where c is a constant; consequently, the time complexity of Algorithm
1 is linear—O(m). The correctness of Algorithm 1 immediately follows from the
property 1 of PARTITIONING (S).

Regarding two multi-valued objects U and V, there are totally |U | × |V| instance
pairs. Directly applying the partition based algorithm, computing φ-quantile distance
between U and V takes O(|U | × |V|). In [26], instances inside one multi-valued
object are indexed by an R-tree. Based on the R-tree, pruning techniques are
proposed to discard instance pairs which are guaranteed not to be the φ-quantile of
U × V. In this paper, we use the pruning techniques enhanced, partition based, linear
time complexity algorithm in [26] as a black box in computing φ-quantile distance
between two multi-valued objects.

φ-quantile group-base distance computation It is proved in [26] that φ-quantile
group-base distance computation is an NP-hard problem. We adopt the approximate
algorithm in [8] while applying it to computing φ-quantile group-base distance.
Let approxgbdφ(U, V) denote the group distance output by the approximation
algorithm, the following theorem is shown in [8].

Theorem 1 1 ≤ approxgbdφ(U,V)

gbdphi(U,V)
≤ 2

The approximation algorithm runs in O(m log m) where m is number of instance
pairs in U × V. In our experiment, it shows that the approximation algorithm is very
accurate in practice.

Conventional Top-k similarity joins As the quantile distance computation between
two objects is very expensive with the presence of multiple instances, in this paper,
we will apply an R-tree index based top-k similarity join algorithm to facilitate the
prevention of computing quantile distances between unpromising pairs of multi-
valued objects. In [6], several algorithms are proposed using R-tree based indexes
including exhaustive algorithm, recursive algorithm and Heap algorithm. Among all
the techniques presented in [6], Heap algorithm demonstrates a better performance
in most experiment settings. The priority query based algorithm in [10] is quite
similar to Heap algorithm except that Heap algorithm performs a simple pruning
before inserting an entry pair into the heap. We adopt the Heap algorithm and
develop novel pruning techniques to speed up the computation. Note that our
pruning techniques are general enough to be plugged into any R-tree based algorithm
for computing conventional top-k similarity joins.

3 Framework

Our techniques for solving the top-k similarity join based on both φ-quantile distance
and φ-quantile group-base distance follow a standard seeding-filtering-refinement
framework outlined in Algorithm 2.
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In the seeding phase, we choose k object pairs and compute their φ-quantile
distances (φ-quantile group-base distances), using the techniques introduced in
Section 2.2. Let λk be the maximal of these k φ-quantile distances (φ-quantile group-
base distances), in the filtering phase, λk could be used to prune unpromising object
pairs and iteratively updated if necessary. Any k object pairs from U × V could be
chosen to compute the φ-quantile distance (φ-quantile group-base distances) in the
seeding phase. Obviously, similar object pairs will lead to smaller λk values; and
hence better pruning power in the filtering phase. In our framework, to select k
object pairs, we first use the mean μ(U) of the multiple instances for each multi-
valued object U from the two given datasets to represent U . μ(U) = ∑m

i=1 w(ui) × ui

where m is the number of instances in U . Clearly μ(U) is also in the d-dimensional
space. Thus the top-k similarity join is converted to join over conventional datasets
where each object is a single point in the multi-dimensional space, and we could apply
the existing algorithms [6] to obtain the k most similar pairs from the two (single-
valued) datasets. The corresponding k multi-valued object pairs from U and V are
then chosen to compute the φ-quantile distances (φ-quantile group-base distances).
At this point, we obtain a distance threshold λk which will be used in the filtering
phase.

3.1 Data structures

In our techniques, we use aggregate R-trees [20] to index the local instances of each
multi-valued object in U ∪ V , and use two statistic information enhanced R-trees
(named sR-trees) to globally index the minimum bounding boxes (MBBs) of objects
in U and V , respectively. The local aR-trees and global sR-trees are built to facilitate
our filtering techniques.

Local aR-trees For each multi-valued object U ∈ U ∪ V , a local aR-tree [20] is
built to organize its multiple instances. The aggregate information kept on each
intermediate entry is the sum of weights of instances indexed by the entry. Namely,
for every intermediate entry E in the local aR-tree, we record the weight of E as the
sum of weights (total weights) of instances having E as an ancestor.

Global sR-trees We maintain two R-trees on the MBBs of multiple instances of
objects in U and V , respectively. That is, for each object in U , we first obtain the
MBB of its multiple instances. Then we build an R-tree on these MBBs. This R-tree
is called the global R-tree of U . Similarly we build the global R-tree for V . Note in a
global R-tree, each leaf (data) entry is an MBB of an object.

Suppose an object U has m instances in the d-dimensional space, u1, u2, ..., um with
the weights w(u1), w(u2), ..., w(um), respectively.

Definition 5 (Mean μ) The mean of U , denoted by μ(U), is
∑m

i=1 w(ui) × ui.
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Note that μ(U) is in the d-dimensional space. For 1 ≤ i ≤ d, μi(U) denotes the i-th
coordinate of μ(U).

Definition 6 (Variance σ 2) For 1 ≤ i ≤ d, σ 2(U) = ∑m
j=1 w(u j)(u j,i − μi(U))2 where

each u j,i denotes the i-th coordinate value of u j.

In each of the leaf (data) entry of the global R-tree, besides the MBB information
of each object, we also keep the above statistic information. And the global R-tree
is called a statistic R-tree, denoted by sR-tree. Remind that two sR-tree are built for
the multi-valued object sets U and V , respectively.

4 φ-quantile top-k similarity join

We present our techniques for φ-quantile top-k similarity join for a given φ ∈ (0, 1]
in this section. We first present novel distance, statistic and weight based pruning
techniques. Then, we integrate the proposed pruning techniques into the overall join
algorithm based on the Heap Algorithm in [6].

4.1 Pruning techniques

When introducing the pruning techniques, we assume that we have an entry pair
(EU , EV) from the join processing where EU (EV) is an entry from the global sR-
tree of U (V). EU (EV) could be either intermediate or leaf (data) entry. The way to
access entries from the two global sR-trees will be introduced in Section 4.2.

Distance based pruning The first pruning rule is based on the distance between two
entries in the join processing obtained from intermediate or leaf entries of two global
sR-trees.

Pruning Rule 1 Let dlo(EU , EV) denote the minimum distance between the MBBs
of two entries EU and EV . If dlo(EU , EV) ≥ λk, then (EU , EV) can be pruned,
namely, all entry pairs in EU × EV can be pruned.

Complexity Computing the minimum distance between two MBBs takes O(d) time.
The complexity of Pruning Rule 1 is constant once d is fixed.

Statistic based pruning The second pruning technique utilizes the statistic informa-
tion kept in the global sR-tree, as introduced in Section 3. The main idea is based
on the current distance threshold λk, to derive a value α such that the α-quantile
distance between an object pair (U, V) is not smaller than λk. If α < φ, we can safely
prune (U, V). We first introduce the Cantelli’s inequality [18] which is employed in
Pruning Rule 2.

Let δ(x, y) be 1
1+ x2

y2

if y �= 0, 1 if x = 0 and y = 0, and 0 if x �= 0 and y = 0.

Theorem 2 (Cantelli’s Inequality [18]) Suppose that t is a random variable in 1-
dimensional space with mean μ(t) and variance σ 2(t), Prob(t − μ(t) ≥ a) ≤ δ(a, σ (t))
for any a ≥ 0, where Prob(t − μ(t) ≥ a) denotes the probability of t − μ(t) ≥ a.
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Note that Theorem 2 extends the original Cantelli’s Inequality [18] to cover the
case when σ = 0 and/or a = 0. The following theorem is proved in [15] and provides
an upper-bound for Prob(t ≤ b) when b ≤ μ .

Theorem 3 Assume that 0 ≤ b ≤ μ(t). Then, Prob(t ≤ b) ≤ δ(μ(t) − b , σ (t)).

Proof Let t′ = 2μ(t) − t. It can be immediately verified that σ 2(t′) = σ 2(t) and μ(t) =
μ(t′). Applying Cantelli’s Inequality on t′, the theorem holds. 	


Now we generalize the above observations into our statistic based pruning rule.
As shown in Figure 3, for two object entries (U, V) stored in the leaf/data entries of
global sR-tree of U and V , along the i-th dimension (1 ≤ i ≤ d), e.g., the horizontal
dimension in Figure 3, we locate two lines m and n vertical to the i-th dimension
and with distance λk between m and n. Denote Ui (Vi) as the coordinate value of U
(V) along the i-th dimension. The line Ui = m (Vi = n) divides the MBB of U (V)
into two parts, denoted as U1 and U2 (V1 and V2), as shown in Figure 3. Assume
μi(U) < μi(V). Remind that λk is the current distance threshold.

The intuition of the statistic based pruning technique is as follows: along each
dimension i, based on Theorem 3, we derive an upper bound of the sum of weights
in the shaded areas of the MBBs of U1 and V1, respectively, denoted as Wup

i (U1)

and Wup
i (V1). Clearly, we can claim that instance pairs from U2 × V2 can not have

distance smaller than λk. Denote the sum of weights in U2 and V2 as Wi(U2) and
Wi(V2), respectively. Obviously, Wi(U2) ≥ 1 − Wup

i (U1), and Wi(V2) ≥ 1 − Wup
i (V1).

Thus, using Wup
i (U1) and Wup

i (V1), we can identify a value α such that the α-quantile
distance between U and V is not smaller than λk. Next we present the monotonic
property of quantile distance.

Theorem 4 (Monotonicity of quantile distance) Given two multi-valued objects U
and V, α, φ ∈ (0, 1], if α < φ, then dα(U, V) ≤ dφ(U, V).

Proof The theorem immediately holds based on the definition of quantile distance
in Definition 2.

Based on Theorem 4, once we identify the value α such that the α-quantile
distance between U and V is larger than λk, if α < φ, then we can claim the φ-
quantile distance between U and V cannot be smaller than λk. In this way (U, V) can

Figure 3 Statistic based
pruning

U V

m n

U1U2
V1 V2
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be pruned based on the statistic information kept in the global sR-tree only without
accessing the local aR-trees of U and V.

Pruning Rule 2 Given an object pair (U, V) (U ∈ U , V ∈ V). For a dimension i
(1 ≤ i ≤ d), without lose of generality, assume μi(U) < μi(V). If 1 − (1 − δ(m −
μi(U), σi(U))) × (1 − δ(μi(V) − n, σi(U))) < φ, (U, V) can be pruned.

Proof For the i-th (1 ≤ i ≤ d) dimension, based on Theorem 3, we obtain the upper
bound of the sum of weight of instances in the shaded area U1 of the MBB of
U as Wup

i (U1) = Prob(Ui ≥ m) ≤ δ(m − μi(U), σi(U)). Similarly we get Wup
i (V1) =

Prob(Vi ≤ n) ≤ δ(μi(V) − n, σi(V)). Since the instance pairs from U2 × V2 cannot
have distance smaller than λk, we have α ≤ 1 − (1 − Wup

i (U1)) × (1 − Wup
i (V1)) ≤

1 − (1 − δ(m − μi(U), σi(U))) × (1 − δ(μi(V) − n, σi(U))). Together with Theorem
4, the pruning rule is correct. 	


Once we obtain an object pair (U, V) from the join processing, we apply Pruning
Rule 2 based on the statistic information kept in the global sR-trees before accessing
the local aR-trees of U and V. If we encounter a dimension i such that 1 − (1 −
Wup

i (U1)) × (1 − Wup
i (V1)) < φ, the pruning stops and the object pair (U, V) is

discarded. As shown in Figure 3, after selecting line m along the i-th dimension of
U , line n for V is also fixed regarding the current λk. We apply the equality principle
in determining the position of m and n; namely, the center of m and n is the same as
the center of μi(U) and μi(V). Based on Theorem 3, we obtain Wup

i (U1) and Wup
i (V1)

in constant time.

Complexity If Wup
i (U1) and Wup

i (V1) are derived based on Theorem 3, the time
complexity of Pruning Rule 2 is O(d).

Weight based pruning The following pruning rule incorporates both weight and
distance information. The instances of a multi-valued object are investigated by
accessing the local aR-trees. Consider an object entry pair (U, V). If (U, V) is not
pruned by Pruning Rule 1 and 2, we explore the instances information of the objects
by accessing their local aR-trees. We traverse the local aR-trees of two objects U and
V synchronously. At level i, we trim object V using the current distance threshold λk,
and retain only the entries in V with minimum distance to U not larger than λk. We
record the entries as γV,i. Formally, γV,i = {E ∈ Li(V), dlo(U, E) ≤ λk}, where Li(V)

denotes all remaining entries (i.e., not trimed in higher levels) in the local aR-tree
of V at the i-th level. Similarly, we obtain γU,i. If the multiplication of the weights of
γV,i and γU,i is smaller than φ, the object pair (U, V) can be pruned as the φ-quantile
distance between U and V must be larger than λk.

Pruning Rule 3 If
∑

e∈γU,i
W(e) × ∑

e∈γV,i
W(e) < φ, the object pair (U, V) can be

discarded.

Proof From the definition of φ-quantile distance, it is immediate that if∑
e∈γU,i

W(e) × ∑
e∈γV,i

W(e) < φ, then dφ(U, V) > λk. 	


Example 3 As shown in Figure 4, at the i-th level, the local aR-tree of object U has
two entries U1 and U2, local aR-tree of V also has two entries V1 and V2. The current
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Figure 4 Weight based
pruning
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threshold λk is as illustrated. Using λk, we trim the MBB of V and only entry V1 has
minimum distance to U smaller than λk; thus, γV,i = {V1}. Similarly, γU,i = {U2}. If
W(U2) × W(V1) < φ, the object pair (U, V) could be pruned.

By applying Pruning Rule 3, we can avoid accessing all instance pairs of U × V,
and seek to stop on intermediate levels of the local aR-trees of U and V. Note the
traversal of two aR-trees is in a synchronous fashion and level-by-level from the root
node. If one aR-tree reaches leaf nodes first, it stays in leaf level while the other one
keeps traversing till its leaf level. As a by-product, if (U, V) cannot be pruned using
Pruning Rule 3, we call the φ-quantile distance computation algorithm in [26] with
the instance pairs from γU,i × γV,i only where i is the leaf (instance) level. Clearly,
the algorithm still outputs correct φ-quantile distance as the distance of the pruned
instance pairs are larger than λk based on the definition of γU,i and γV,i for level i.

An exceptional case of Pruning Rule 3 is that we obtain an entry pair (EU , EV)

from the join processing, one is an object entry while the other is an intermediate
entry. Assume EU is the object entry of U and EV is the intermediate entry. Pruning
Rule 3 could still be applied to (U, EV) with the following modifications: 1) We access
the local aR-tree of U only and at each level i, record γU,i as the entries in U with
minimum distance to EV not larger than λk; 2) if

∑
e∈γU,i

W(e) < φ, the entry pair
(U, EV) could be pruned. Namely, the object pair of U and any object indexed in EV

must have a φ-quantile distance greater than λk.

Complexity Assume the average number of entries at level i of the local aR-trees
of multi-valued objects is Ni, then clearly the complexity of Pruning Rule 3 is O(Ni)

at each level. The worst case complexity of using Pruning Rule 3 is O(|U | × |V|),
namely no entries are pruned at intermediate entries and we need to access all
instance pairs. However, in practice, as shown in Section 6, Pruning Rule 3 is very
effective and saves CPU costs significantly. Note that in Pruning Rule 3 we trim the
entries at each level of local aR-trees of U and V using λk instead of considering the
combination of all pairs of entries at each level. This is because trim based pruning is
more efficient compared with combining all pairs (time complexity O(N2

i )) and also
trim based pruning is very effective in practice.

4.2 Overall join algorithm

The join algorithm used in this paper is adopted from the Heap Algorithm in [6] as it
is both efficient and easy to implement in real applications. We adjust the algorithm
to deal with multi-valued objects. Given φ ∈ (0, 1], two multi-valued objects sets U
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and V , Algorithm 3 illustrates the top-k similarity join processing. A minheap H is
maintained according to the minimum distance between two entry pairs of the two
global R-trees RU and RV indexing U and V , respectively. H is initialized with the
pair of root nodes of RU and RV .

The algorithm differentiates three cases based on whether the entries are object
entries or not. If both are intermediate entries (Line 5), we expand all the children
pairs and insert into heap H the pairs which survive from Pruning Rule 1 (Line 7). If
one of the entries is an intermediate entry and the other is an object entry (Line 12),
Pruning Rule 1 and 3 will be applied first (Line 13) before expanding the children
pairs. We apply all 3 Pruning Rules on object pairs (Line 18), and if an object pair
is survived from pruning, the φ-quantile distance is computed; the top-k results and
λk are updated if necessary. Note that even from the root node pair we only insert
entry pairs into H if they are not pruned by Pruning Rule 1, it is still necessary to
check Pruning Rule 1 (Lines 13 and 18) since the distance threshold λk dynamically
changes.

Correctness Based on the correctness of the 3 pruning rules, it can be immediately
shown that Algorithm 3 is correct.

Discussions The techniques proposed in this paper could be immediately extended
to support self-join (i.e., we compute top-k similar pairs from one data set U) and
threshold base similarity join over multi-valued objects. We omit the details due to
space limits.
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5 φ-quantile group-base top-k similarity join

Our techniques for join processing based on φ-quantile group-base distance also
follow the seeding-filtering-refinement framework in Algorithm 2. In the seeding
phase, k object pairs are selected based on the distance between weighted centroid,
then corresponding φ-quantile group-base distances are computed using the approx-
imation algorithm in [8]. The largest among these k distance values is thus utilized as
the distance threshold γk.

Below we first present the novel and efficient pruning techniques, followed by the
overall join processing algorithm based on φ-quantile group-base distance metrics.

5.1 Pruning techniques

We assume that we have an entry pair (EU , EV) from the join processing where EU

(EV) could be either an intermediate entry from the global R-tree of U (V), or a
data entry from the local aR-tree of U (V). The following pruning rule is immediate
based on the definition of φ-quantile group-base distance between two multi-valued
objects.

Pruning Rule 4 If φ × dlo(EU , EV) ≥ γk, then (EU , EV) can be pruned, namely, all
entry pairs in EU × EV can be pruned.

Proof For each object pair (U, V) where EU is an ancestor of U and EV is an
ancestor of V, the total weight for any φ-quantile population S of U × V is not
smaller than φ and the distances of all instances pairs in S are not smaller than γk.
Thus the pruning condition holds. 	


Complexity Computing the minimum distances between EU and EV takes O(d)

time, thus the complexity of Pruning Rule 4 is constant once d is fixed.
Note that given U and V, the instance group with the total weighted distance

gbdφ(U, V) may spread in many different entries of U and V, it is not always possible
to trim many entries from the local aR-trees as we do for φ-quantile similarity join
processing in Pruning Rule 2 and Pruning Rule 3 . The next pruning rule further
explores the instances distribution information inside multi-valued objects using the
local aR-trees. Before presenting the next pruning technique, we differentiate two
cases, 1) both EU and EV are data entries, i.e., pointing to a multi-valued object; and
2) one of them is an intermediate entry in the global sR-tree and the other is a data
entry. Note that Case 2) occurs when the two global sR-trees are of different heights.

Considering Case 1) first. Since both EU and EV are data entries, we load the
corresponding local aR-trees, respectively. The pruning rule is conducted in a level-
by-level fashion between the two local aR-trees starting from the root node pairs.
Let LU,k and LV,k denote all entries at level k of the local aR-tree of U and V,
respectively. Clearly there are overall |LU,k| × |LV,k| entry pairs. We denote these
entry pairs as Lk = {(EU , EV)1, ... (EU , EV)|LU,k|×|LV,k|}. Without lose of generality, we
assume these entry pairs are sorted in decreasing order based on the minimal distance
between the corresponding two MBRs, namely, dL(EU , EV)i1 ≤ dL(EU , EV)i2 if
i1 < i2. Let (EU , EV) j denote the φ-quantile of Lk where the search key is the
minimum distance of two MBRs in each entry pair and the weight of each pair is
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the multiplication of the weights of the two entries involved in the pair. The intuition
of the following pruning rule is to relax the φ-quantile distance between U and V to
obtain a lower bound of gbdφ(U, V).

Pruning Rule 5 (Case 1) Two Multi-valued objects U and V can be pruned if at a
level k of the local aR-trees of U and V,

(

φ −
j−1∑

i=1

w((EU , EV)i)

)

dL(EU , EV) j +
j−1∑

i=1

(w((EU , EV))i × dL(EU , EV)i) ≤ γK

Notice that in Pruning Rule 5 (Case 1), if the numbers of instances of U and V
are different, it is possible that the two local aR-trees are of different hight. In such
scenarios, if one aR-tree reaches the leaf (instance) level first, then the other tree
keeps traversing until it also reaches the leaf level.

In Case 2), one of the entry is an intermediate entry from the global sR-tree while
the other is a data entry. Without loss of generality, we assume E is an intermediate
entry from the sR-tree of object U , the pruning rule is conducted by accessing the
local aR-tree of object V. Suppose that Lk = {Ei|1 ≤ i ≤ l} consists of all entries
at the level k of the local aR-tree of object V and assume that Lk is sorted in the
increasing order based on dL(E, Ei); namely, dL(E, Ei1) ≤ dL(E, Ei2) if i1 < i2. Let
E j denote the φ-quantile of Lk according to the search key dL(E, Ei) and the weight
w(Ei) of each entry Ei ∈ Lk.

Pruning Rule 5 (Case 2) The object pairs E × V = {(U, V)|E is the ancestor of U}
could be pruned if at a level k of the local aR-tree of V,

(

φ −
j−1∑

i=1

w(Ei)

)

dL(E, E j) +
j−1∑

i=1

(w(Ei) × dL(E, Ei)) ≤ γK

Proof We prove Case 1) first and Case 2) could be proved in a similar way.
Remind that Lk denotes the sorted entry pairs from U and V at k-th level of the
corresponding aR-trees where the sorting is conducted according to the minimal
distance of MBRs of entry pairs, and (EU , EV) j denotes the φ-quantile of Lk. For
entry pairs before (EU , EV) j in Lk, we obtain the weighted distance of minimal
MBR distances,

∑ j−1
i=1 (w((EU , EV))i × dL(EU , EV)i). Deducting this part of weights

in φ (i.e., φ − ∑ j−1
i=1 w((EU , EV)i)), the remaining part is weighted by the minimal

distance of the φ-quantile entry pair (EU , EV) j. The sum of these two parts is not
smaller than the weighted distance in any φ-quantile population of U × V. 	


Complexity Remind that |LU,k| and |LV,k| denote the number of entries in the
k-th level of the local aR-tree of U and V, respectively. The time complexity for
Pruning Rule 5 Case 1) is O(|LU,k| × |LV,k| × log(|LU,k| × |LV,k|)) since we need to
sort the entry pairs first. Similarly, the time complexity for Pruning Rule 5 Case 2)
is O(|Lk|log|Lk|) where |Lk| refers the number of entries at the k-th level of local
aR-tree of V.
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5.2 Overall join algorithm

Join processing based on group-base φ-quantile distance metrics also follows the
Heap Algorithm in [6]. Based on Algorithm 3, the following changes are made.

– Output object pairs with smallest approximate φ-quantile group-base distance.
– In Line 7, PRUNED1 is changed to PRUNED4.
– In Line 13, PRUNED 1 and PRUNED 3 are changed to PRUNED 4 and

PRUNED 5.
– In Line 18, PRUNED 1 PRUNED 2 and PRUNED 3 are changed to PRUNED

4 and PRUNED 5.
– In Line 19, compute approxgbdφ(EU , EV).
– In Line 20, dφ(EU , EV) is changed to approxgbdφ(EU , EV).

Accuracy guarantee Due to the hardness of computing φ-quantile group based
distance, our techniques for φ-quantile group-base similarity join yield approximate
results with the following accuracy guarantee.

Theorem 5 For 1 ≤ i ≤ k, assume that (Ui, Vi) denotes the ith most similar ob-
ject pair in the exact φ-quantile group-base similarity join, (U ′

i , V ′
i) denotes the

top-ith most similar object pair returned by our algorithms. Then, gbdφ(Ui, Vi) ≤
approxgbdφ(U ′

i , V ′
i) ≤ 2gbdφ(Ui, Vi). Namely, our algorithm has an approximation

ratio of 2.

Proof Following the proof of Pruning Rule 4 and 5, it is immediate that if an
object pair (U, V) is pruned by these two pruning rules, then gbdφ(U, V) ≥ γk. From
Theorem 1, it follows that gbdφ(Ui, Vi) ≤ approxgbdφ(U ′

i , V ′
i) ≤ 2gbdφ(Ui, Vi). 	


Theorem 5 states that the i-th φ-quantile group-base distance output by our
algorithm is bounded by gbdφ(U ′

i , V ′
i) and 2gbdφ(U ′

i , V ′
i). Our experimental results

show that the algorithm is quite accurate in practice and the error is much smaller.

6 Experiment

We report a thorough performance evaluation on the efficiency of proposed tech-
niques and effectiveness of pruning rules. In particular, we implement and evaluate
the following techniques.

Join : Techniques presented in Section 4 to compute the top-k similarity join
based on φ-quantile distance (φ ∈ (0, 1]), with Pruning Rule 1, 2 and 3
applied.

P12 : Join algorithm but with Pruning Rule 1 and 2 only.
P1 : Join algorithm but with Pruning Rule 1 only.
KNN : Baseline algorithm for Join by using KNN processing over multi-valued

objects in [26]. For each object U ∈ U , we compute its KNN in V based
on φ-quantile distance, and then select k most similar pairs based on the
union of KNN results.
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G-Join : Techniques presented in Section 5 to compute the top-k similarity join
based on group-base φ-quantile distance (φ ∈ (0, 1]), with Pruning Rule 4
and 5 applied.

P4 : G-Join algorithm but with Pruning Rule 4 only.
G-KNN : Baseline algorithm for G-Join by using group-base quantile KNN

processing over multi-valued objects in [26]. For each object U ∈ U , we
compute its KNN in V based on φ-quantile group-base distance, and then
select k most similar pairs based on the union of KNN results.

All algorithms are implemented in C++ and compiled by GNU GCC. Experi-
ments are conducted on PCs with Intel Xeon 2.4 GHz dual CPU and 4 G memory
under Debian Linux. Our experiments are conducted on both real and synthetic
datasets.

Real dataset is extracted from NBA players’ game-by-game statistics (http://
www.nba.com), containing 339,721 records of 1,313 players. Each player is treated
as a multi-valued object where the statistics (score, assistance, rebound) of a player
per game is treated as an instance with the equal weight (normalized).

Synthetic datasets are generated using the methodologies in [1] regarding the
following parameters. Dimensionality d varies from 2 to 5 with default value 3.
Data domain in each dimension is [0, 1]. Number n of objects varies from 5,000 to
15,000 with default value 5,000. Number m of instances per object follows a uniform
distribution in [1, M] where M varies from 100 to 800 with the default value 200.
The value K varies among 5, 10, 15, 20 and 25 with default value 10. The average
length of object MBBs follows a uniform distribution spreading over [0, h] where h
varies from 0.02 to 0.10 with default value 0.02 (i.e., 2 % of the edge length of the
whole data space).

Centers of objects (objects’ MBBs) follow either uniform, normal or anti-
correlated distribution. Locations of instances in an object follow uniform or normal
distribution. Weights assigned to each instance follow uniform or normal distribu-
tion. Table 2 summarizes the parameters used in our experiment where the default
values are in bold font.

6.1 Overall performance

Figure 5 reports the results of the evaluation on processing time on Join, G-Join and
their corresponding baseline algorithms KNN, G-KNN on both synthetic and real
data. As shown, Join and G-Join are up to 3 orders of magnitude more efficient than

Table 2 Parameter values Dimensionality d 2, 3, 4, 5
Number of objects n 5k, 7.5k, 10k, 12.5k, 15k
Edge length h 0.02, 0.04, 0.06, 0.08, 0.10
Number of instances m 100, 200, 400, 600, 800
K 5, 10, 15, 20, 25
φ 0.1, 0.3, 0.5, 0.7, 0.9
Object location Uniform, normal, anti-correlated
Weight distribution Uniform, normal

http://www.nba.com
http://www.nba.com


World Wide Web

(a) Synthetic Data (b) NBA Data

Figure 5 Compare with baseline algorithms

their baseline versions on synthetic data. The improvement is less significant on NBA
data because in NBA dataset, objects’ MBBs largely overlap so that it is very hard
to prune an object. In the rest of the experiments we no longer evaluate the baseline
algorithms since their performance is much worse than the techniques proposed in
this paper.

6.2 Accuracy

We evaluate the accuracy of G-Join in this part. As the φ-quantile group-base
similarity join is NP-hard and no efficient algorithm exists, we produce the exact
solution using exhaustive search which is exponential to the number of instances
and very slow. So we conduct a very small scale experiment as follows. Each dataset
contains 500 multi-valued objects and each object consists of 4 instances. Other
parameters use the default setting in Table 2.

To evaluate the accuracy of G-Join, we use two error metrics. The first is the
average distance error ratio. For 1 ≤ i ≤ K, approx(i) denotes the group-base φ-
quantile distance of the top-i-th object pair output by G-Join, and exact(i) denotes
the group-base distance of the top-i-th object pair in the exact solution.

err_ratio =
∑K

i=1
|approx(i)−exact(i)|

exact(i)

K

The second measure records the “missed” object pairs, namely the object pairs
that are missed in the approximate results output by G-Join. Let approx denote
the K object pairs output by G-Join, exact denotes the K object pairs in the exact
solution.

miss_ratio = 1 − |approx ∩ exact|
K

Table 3 Vary objects
distribution

err_ratio miss_ratio

anti 0.037 0.03
unif 0.029 0.02
norm 0.036 0.02
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Table 4 Vary weight
distribution

err_ratio miss_ratio

unif 0 0
norm 0.037 0.03

We report the results in Table 3 where the object distribution varies, and in Table 4
where the distribution of weights varies. Both demonstrate that G-Join is highly
accurate and more accurate than the theoretical guarantee in Theorem 5.

6.3 Evaluating effects by different settings

We study the scalability of our algorithms regarding different φ values, number of
objects, number of instances (M), lengths of MBB edges (h), K, and the dimension-
ality d.

Figure 6 reports the scalability of Join regarding various parameters. It shows
that Join is not very sensitive to different φ and K values, while quite sensitive to
other parameters. With a larger number of objects and instances, more objects and
instances are involved in the computation, thus incurring higher computation cost.
With large h values, the MBBs of objects are more likely to overlap with each other
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and hence the pruning power is impaired. With the increase of dimensionality d,
when the MBB edge length is fixed, the average area of MBBs gets smaller compared
to the whole data space; consequently, the power of the pruning rules becomes more
significant. The comparison with P1 and P12 illustrates the efficiency of the Pruning
Rule 2 and Pruning Rule 3 developed in Join. Note that we do not evaluate the
performance of Join after all three pruning rules are excluded, since Pruning Rule
1 is simple yet very effective. After removing Pruning Rule 1 Join algorithm fails to
terminate in a reasonable time.

Figure 7 reports the scalability of G-Join regarding various parameters compared
with P4 in which only Pruning Rule 4 is applied. As illustrated in the figure, G-Join
substantially outperforms P4 in all parameter settings, leading to the conclusion that
Pruning Rule 5 is very efficient in practice. The trends observed are similar to those in
Figure 6. G-Join is not very sensitive to different φ and K values. The performance of
G-Join degrades with larger number of objects and number of instances since more
instances are involved in the computations. With a larger average MBB length, G-
Join requires more computation time since the higher degree of overlapping leads
to weaker pruning ability. G-Join performs better when the dimensionality increases
because once the MBB edge length is fixed, in higher dimensions the average area of
an MBB gets smaller so that an object has a larger to be pruned.
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7 Extensions

Techniques proposed in this paper can also be applied to other variations of similarity
joins over multi-valued objects. In this section, we define several variations and
briefly discuss the techniques.

7.1 Distance threshold based similarity join on multi-valued objects

Top-k and threshold based approaches are two typical mechanism to select a limited
number of results which are of most interest to the users. In distance threshold based
similarity join on multi-valued objects, a distance threshold γ is pregiven by users
according to their preference and domain knowledge, only object pairs with quantile
distance not larger than γ will be retrieved.

Problem def inition Given a φ ∈ (0, 1], a distance threshold γ , two sets of multi-
valued objects U and V in the d-dimensional space, a threshold based similarity join
retrieves pairs of objects from U × V with quantile distance not over γ , namely,
{(U, V)|U ∈ U , V ∈ V, dist(U, V) ≤ γ }. Here the distance metrics dist could be either
φ-quantile distance or φ-quantile group base distance.

In Algorithm 2, the Seeding phase is no longer required since a distance threshold
is pregiven. Similarity join processing algorithms in Sections 4.2 and 5.2 can be
directly applied to solving distance threshold based similarity join on multi-valued
objects.

7.2 Multi-way distance threshold based similarity join on multi-valued objects

We study pairwise similarity join in this paper where two multi-valued objects sets are
combined together to retrieve the most similar object pairs. Multiway spatial joins,
on the other hand, involve an arbitrary number of datasets where the join condition is
specified over any two datasets. Next we discuss multi-way distance threshold based
similarity join on multi-valued objects.

Problem def inition Given n multi-valued datasets U1, ..., Un, a distance threshold γij

is specified between two datasets Ui and U j, retrieve all n-objects that respects the
distance thresholds, {(U1, ..., Un)|1 ≤ k ≤ n, Uk ∈ Uk & ∀ij, dist(Ui, U j) ≤ γij}. Here
the distance threshold dist could be either φ-quantile distance or φ-quantile group-
base distance.

Note that the distance constraint could be applied to any pair of datasets.
Mamoulis and Papadias [17] studies multi-way join on spatial data where a synchro-
nous traversal paradigm is applied to process the indexes (e.g., R-trees) of all joined
datasets. Our filtering techniques could be directly plugged into the framework in
[17] to facilitate pruning based on the given pairwise distance constraints.

7.3 Bichromatic and homochromatic top-k similarity join on multi-valued objects

Consider that each object is assigned either blue or red color. A chromatic query
adds an additional constraint compared to its nonchromatic version; that is, only the
results that meet the color requirement are considered. A bichromatic (homochro-
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matic) top-k similarity join retrieves k most similar object pairs with different (the
same) colors.

A straightforward solution for bichromatic and homochromatic top-k similarity
join on multi-valued objects based on φ-quantile distance or φ-quantile group-
base distance is to construct two indexes for each color for each dataset involved.
Consider the problem definitions in Section 2.1, for the dataset U we build two
R-tree based indexes, RU ,red and RU ,blue, for the color red and blue respectively.
Similarly, we build RV,red and RV,blue for dataset V . Bichromatic top-k similarity join
will be conducted between the indexes with different colors, i.e., RU ,red × RV,blue

and RU ,blue × RV,red, while homochromatic top-k similarity join will be conducted
between the indexes with the same color. The pruning techniques developed in our
paper could be plugged in to speed up the query processing.

8 Related work

Conventional join queries over two multi-dimensional datasets are fundamental in
data analysis and information retrieval. Most existing techniques for join queries
have been developed based on popular spatial access methods such as R-trees. For
threshold based joins, there are three main stream spatial join algorithms using
R∗-tree [9]. They are the depth-first-join (DFJ) algorithm [2], the breadth-first-
join (BFJ) algorithm [11], and transformation-view-join (TVJ) algorithm [14]. Tech-
niques for top-k spatial/similarity queries are studied in [6, 10]. Various algorithms,
such as exhaustive algorithm, recursive algorithm, Heap algorithm, and priority
queue based algorithms are proposed. The most recent technique proposes to build
an index on the fly [3]. Nevertheless, this technique cannot be used to prune a group
of object pairs. That is, every object has to participate in the distance computation.
Many variations of join queries over multi-dimensional space have been studied
in different contexts, including road networks [22], moving objects [27] and data
streams [23].

Spatial queries such as nearest neighbor queries and its variants over fuzzy objects
have been studied in [28]. Fuzzy objects possess similar semantics as uncertain objects
(e.g., instances are mutually exclusive). The techniques in [28] are not applicable to
the problem studied in our paper due to the different semantics as well as inherent
difference in query types.

Join queries over uncertain objects are inherently different than conventional
joins where each uncertain object takes a set of mutually exclusive instances/points
in a multi-dimensional space. It is extensively studied in [4, 13, 16]. Note that all
instances in a multi-valued object exist simultaneously instead of mutually exclusive
in an uncertain object. Due to such inherent differences in semantics, join techniques
over uncertain objects cannot be directly applied to similarity joins over multi-valued
objects.

9 Conclusion and future work

We study the problem of top-k similarity join over multi-valued objects. The dis-
tance/similarity between two multi-valued objects is measured using quantile based
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distance to capture the relative instance distribution. A filtering-refinement frame-
work is developed, along with novel, efficient and effective distance, statistic and
weight based pruning techniques. Comprehensive experimental study over both real
and synthetic datasets demonstrates the efficiency and scalability of our techniques.
Possible future directions include identifying the representative φ values (i.e., the φ

values which lead to different query results), and applying other mechanisms such as
Borda Count to interpret the semantics of multi-valued objects.
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