
1

Fast Incremental SimRank on Link-

Evolving Graphs

Weiren Yu 1,2, Xuemin Lin 1, Wenjie Zhang 1

1 University of New South Wales

2 Imperial College London,

• Overview

• Existing incremental method

• Our approaches

• express ∆S as a rank-one Sylvester equation:
O(Kn2)

• prune “unaffected areas” of ∆S:
O(K(nd+|AFF|)) with |AFF|< n2

• Empirical evaluations

• Conclusions

2

Outline

Overview

• Similarity Assessment plays a vital role in our lives.

3

Citation Graph Collaboration Network

Recommender
System

SimRank Overview

• SimRank

• An appealing link-based similarity measure (KDD ’02)

• Basic philosophy

Two vertices are similar if they are referenced by similar vertices.

• Two Forms
• Original form (KDD ’02)

• Matrix form (EDBT ’10)

4

damping factor

in-neighbor set of node b

similarity btw.
nodes a and b

• Batch Computations

• All Pairs s(*,*)

• Single Pair s(a,b)

• Single Source s(*,q)

• Similarity Join s(x,y) for all x in A, and y in B.

• Incremental Paradigms:

• link-evolving:
• Li et. al. [EDBT 2010] needs O(r4n2) time for approximation.

• node-evolving:
• He et al. [KDD 2010] --- GPU based

5

Existing SimRank Algorithms

6

Motivation

• Li et al. [EDBT 2010] using SVD for incremental SimRank is approximate.

• When ∆G is small, the “affected areas” of ∆S are also small.

Problem (INCREMENTAL SIMRANK COMPUTATION)

Given: G, S, ∆G, and C.

Compute: ∆S to S.

• For every edge update, ∆Q has a rank-one structure

• Characterize ∆S as

 , where M satisfies

 In comparison

7

Main Idea

=

compute M via mat-vec multiplication

compute S via mat-mat multiplication
~

• Based on

 we have

8

Mat-Mat  Mat-Vec Multiplication

… …

• Based on

 we have

9

Mat-Mat  Mat-Vec Multiplication

… …

.

• Based on

 we have

10

Mat-Mat  Mat-Vec Multiplication

… …

.

• Based on

 we have

11

Mat-Mat  Mat-Vec Multiplication

.

• Based on

 we have

12

Mat-Mat  Mat-Vec Multiplication

.

• Based on

 we have

13

Mat-Mat  Mat-Vec Multiplication

.

=

• For every edge update, ∆Q has a rank-one structure

• Characterize ∆S as

 , where M satisfies

14

Challenges

=

Finding u, v, w is challenging !!

~

15

Finding u, v

• For every edge update, ∆Q has a rank-one structure

 where

 (1) for edge (i, j) insertion,

 (2) for edge (i, j) deletion,

=

~

• Since the old ,

 after insertion: with

16

Example

• For every edge update, ∆Q has a rank-one structure

• Characterize ∆S as

 , where M satisfies

17

Finding w

=

Theorem There exists with

s.t. Eq.(1) is a rank-one Sylvester Equation w.r.t. M.

(1)

=

=

Step 1

Step 2

Step 3

• Time complexity: O(Kn2)

Step 1. Find u,v s.t.

Step 2. Find w s.t.

Step 3. Compute ∆S as

18

Complexity Analysis

No mat-mat multiplications

Can we further
improve it?

• Key observation:

• When link updates are small, “affected areas” in ∆S (or M)
are often small as well.

• Challenge:

• How to identify only “unaffected areas” in ∆S
to skip unnecessary recomputations for link update ?

19

Pruning

• counts # of length-k paths from node i to j.

• counts the weighted sum of paths:

20

Paths Aggregation

Q is the weighted (i.e., row-normalized) matrix of AT

• Expansion of M

• Three types of paths identified by M

• P1:

• P2:

• P3:

21

Paths captured by M

• Since M merely tallies these paths, node-pairs
without having such paths could be safely pruned.

• Iteratively Pruning:

 Let

 Then

• Complexity: O(K(nd+|AFF|)) with

22

Unaffected Areas

• Datasets
• Real: DBLP, CITH, YOUTU

• Synthetic: GraphGen generator

• Compared Algorithms
• Inc-SR : Our Incremental SimRank with Pruning

• Inc-uSR : Our Incremental SimRank without Pruning

• Inc-SVD [EDBT ’10]: the best known link-update algorithm

• Batch, the batch SimRank via fine-grained memoization

• Evaluations
• Time Efficiency

• Effectiveness of Pruning

• Intermediate Memory

• Exactness

23

Experimental Settings

24

Time Efficiency

25

Effectiveness of Pruning

26 Intermediate Memory & Exactness

• Two efficient methods are proposed to incrementally
compute SimRank on link-evolving graphs

• ∆S is characterized via a rank-one Sylvester equation,
improving the time to O(Kn2) for every link update.

• A pruning strategy skipping unnecessary recomputations,
which further reduces the time to O(K(nd + |AFF|)).

• Empirical evaluations to show the superiority of our
methods from several times to one order of magnitude.

27

Conclusions

28

Thank you!

Q/A

