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Abstract—In many applications, including location-based services, queries may not be precise. In this paper, we study the problem of

efficiently computing range aggregates in a multidimensional space when the query location is uncertain. Specifically, for a query point

Q whose location is uncertain and a set S of points in a multidimensional space, we want to calculate the aggregate (e.g., count,

average and sum) over the subset S0 of S such that for each p 2 S0, Q has at least probability � within the distance � to p. We propose

novel, efficient techniques to solve the problem following the filtering-and-verification paradigm. In particular, two novel filtering

techniques are proposed to effectively and efficiently remove data points from verification. Our comprehensive experiments based on

both real and synthetic data demonstrate the efficiency and scalability of our techniques.

Index Terms—Uncertainty, index, range aggregate query.

Ç

1 INTRODUCTION

QUERY imprecision or uncertainty may be often caused
by the nature of many applications, including location-

based services. The existing techniques for processing
location-based spatial queries regarding certain query
points and data points are not applicable or inefficient
when uncertain queries are involved. In this paper, we
investigate the problem of efficiently computing distance-
based range aggregates over certain data points and
uncertain query points as described in the abstract. In
general, an uncertain query Q is a multidimensional point
that might appear at any location x following a probabilistic
density function pdfðxÞ within a region Q:region. There is a
number of applications where a query point may be
uncertain. Below are two sample applications.

Motivating Application 1. A blast warhead carried by a
missile may destroy things by blast pressure waves in its
lethal area where the lethal area is typically a circular area
centered at the point of explosion (blast point) with radius �
[24] and � depends on the explosive used. While firing such
a missile, even the most advanced laser-guided missile
cannot exactly hit the aiming point with 100 percent
guarantee. The actual falling point (blast point) of a missile
blast warhead regarding a target point usually follows some
probability density functions (PDF s); different PDF s have
been studied in [24] where bivariate normal distribution is

the simplest and the most common one [24]. In military
applications, firing such a missile may not only destroy
military targets but may also damage civilian objects.
Therefore, it is important to avoid the civilian casualties
by estimating the likelihood of damaging civilian objects
once the aiming point of a blast missile is determined. As
depicted in Fig. 1, points fpig for 1 � i � 7 represent some
civilian objects (e.g., residential buildings, public facilities ).
If q1 in Fig. 1 is the actual falling point of the missile, then
objects p1 and p5 will be destroyed. Similarly, objects p2, p3,
and p6 will be destroyed if the actual falling point is q2. In
this application, the risk of civilian casualties may be
measured by the total number n of civilian objects which are
within � distance away from a possible blast point with at
least � probability. Note that the probabilistic threshold is
set by the commander based on the levels of tradeoff that
she wants to make between the risk of civilian damages and
the effectiveness of military attacks; for instance, it is
unlikely to cause civilian casualties if n ¼ 0 with a small �.
Moreover, different weight values may be assigned to these
target points and hence the aggregate can be conducted
based on the sum of the values.

Motivating Application 2. Similarly, we can also
estimate the effectiveness of a police vehicle patrol route
using range aggregate against uncertain location-based
query Q. For example, Q in Fig. 1 now corresponds to the
possible locations of a police patrol vehicle in a patrol
route. A spot (e.g., restaurant, hotel, residential property),
represented by a point in fp1; p2; . . . ; p7g in Fig. 1, is likely
under reliable police patrol coverage [11] if it has at least
� probability within � distance to a moving patrol vehicle,
where � and � are set by domain experts. The number of
spots under reliable police patrol coverage is often deployed
to evaluate the effectiveness of the police patrol route.

Motivated by the above applications, in the paper we
study the problem of aggregate computation against the
data points which have at least probability � to be within
distance � regarding an uncertain location-based query.

Challenges. A naive way to solve this problem is that for
each data point p 2 S, we calculate the probability, namely
falling probability, ofQwithin � distance to p, select p against a
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given probability threshold, and then conduct the aggregate.
This involves the calculation of an integral regarding each p
and Q:pdf for each p 2 S; unless Q:pdf has a very simple
distribution (e.g., uniform distributions), such a calculation
may often be very expensive and the naive method may be
computationally prohibitive when a large number of data
points is involved. In the paper, we target the problem of
efficiently computing range aggregates against an uncertain
Q for arbitraryQ:pdf andQ:region. Note that whenQ:pdf is a
uniform distribution within a circular region Q:region, a
circular “window” can be immediately obtained according to
� and Q:region so that the computation of range aggregates
can be conducted via the window aggregates [27] over S.

Contributions. Our techniques are developed based on
the standard filtering-and-verification paradigm. We first
discuss how to apply the existing probabilistically con-
strained regions (PCR) technique [26] to our problem. Then,
we propose two novel distance-based filtering techniques,
statistical filtering (STF) and anchor point filtering (APF),
respectively, to address the inherent limits of the PCR
technique. The basic idea of the STF technique is to bound
the falling probability of the points by applying some well-
known statistical inequalities where only a small amount of
statistic information about the uncertain location-based
query Q is required. The STF technique is simple and space
efficient (only dþ 2 float numbers required where d denotes
the dimensionality), and experiments show that it is
effective. For the scenarios where a considerable “large”
space is available, we propose a view-based filter which
consists of a set of anchor points. An anchor point may reside
at any location and its falling probability regarding Q is
precomputed for several � values. Then, many data points
might be effectively filtered based on their distances to the
anchor points. For a given space budget, we investigate how
to construct the anchor points and their accessing orders.

To the best of our knowledge, we are the first to identify
the problem of computing range aggregates against un-
certain location-based query. In this paper, we investigate
the problem regarding both continuous and discrete Q. Our
principle contributions can be summarized as follows:

. We propose two novel filtering techniques, STF and
APF, respectively. The STF technique has a decent
filtering power and only requires the storage of very
limited precomputed information. APF provides the
flexibility to significantly enhance the filtering power
by demanding more precomputed information to be
stored. Both of them can be applied to continuous case
and discrete case.

. Extensive experiments are conducted to demonstrate
the efficiency of our techniques.

. While we focus on the problem of range counting for
uncertain location-based queries in the paper, our
techniques can be immediately extended to other
range aggregates.

The remainder of the paper is organized as follows:
Section 2 formally defines the problem and presents
preliminaries. In Section 3, following the filtering-and-
verification framework, we propose three filtering techni-
ques. Section 4 evaluates the proposed techniques with
extensive experiments. Then, some possible extensions of
our techniques are discussed in Section 5. This is followed
by related work in Section 6. Section 7 concludes the paper.

2 BACKGROUND INFORMATION

We first formally define the problem in Section 2.1, then
Section 2.2 presents the PCR technique [26] which is
employed in the filtering technique proposed in Section 3.3.
Table 1 summarizes the notations used throughout the
paper.

2.1 Problem Definition

In the paper, S is a set of points in a d-dimensional
numerical space. The distance between two points x and y is
denoted by �ðx; yÞ. Note that techniques developed in the
paper can be applied to any distance metrics [5]. In the
examples and experiments, the euclidean distance is used.
For two rectangular regions r1 and r2, we have �maxðr1; r2Þ ¼
max8x2r1;y2r2

�ðx; yÞ and

�minðr1; r2Þ ¼
0 if r1 \ r2 6¼ ;
min8x2r1;y2r2

�ðx; yÞ otherwise:

�
ð1Þ
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Fig. 1. Missile example.

TABLE 1
The Summary of Notations



An uncertain (location based) query Q may be described
by a continuous or a discrete distribution as follows:

Definition 1 (Continuous Distribution). An uncertain query
Q is described by a probabilistic density function Q:pdf . Let
Q:region represent the region where Q might appear, thenR
x2Q:region Q:pdfðxÞdx ¼ 1;

Definition 2 (Discrete Distribution). An uncertain query Q
consists of a set of instances (points) fq1; q2; . . . ; qng in a d-
dimensional numerical space where qi appears with probability
Pqi , and

P
q2Q Pq ¼ 1;

Note that, in Section 5 we also cover the applications
where Q can have a nonzero probability to be absent; that
is,
R
x2Q:region Q:pdfðxÞdx ¼ c or

P
q2Q Pq ¼ c for a c < 1.

For a point p, we use PfallðQ; p; �Þ to represent the
probability of Q within � distance to p, called falling
probability of p regarding Q and �. It is formally defined
below.

For continuous cases

PfallðQ; p; �Þ ¼
Z
x2Q:region^�ðx;pÞ��

Q:pdfðxÞdx: ð2Þ

For discrete cases

PfallðQ; p; �Þ ¼
X

q2Q^�ðq;pÞ��
Pq: ð3Þ

In the paper hereafter, PfallðQ; p; �Þ is abbreviated to
Pfallðp; �Þ, and Q:region and Q:pdf are abbreviated to Q and
pdf , respectively, whenever there is no ambiguity. It is
immediate that Pfallðp; �Þ is a monotonically increasing
function with respect to distance �.

Problem Statement. In many applications, users are only
interested in the points with falling probabilities exceeding
a given probabilistic threshold regarding Q and �. In this
paper, we investigate the problem of probabilistic threshold
based uncertain location range aggregate query on points
data; it is formally defined below.

Definition 3 (Uncertain Range Aggregate Query). Given a
set S of points, an uncertain query Q, a query distance �, and a
probabilistic threshold �, we want to compute an aggregate
function (e.g., count, avg, and sum) against points
p 2 Q�;�ðSÞ, where Q�;�ðSÞ denotes a subset of points fpg �
S such that Pfallðp; �Þ � �.

In this paper, our techniques will be presented based on
the aggregate count. Nevertheless, they can be immediately
extended to cover other aggregates, such as min, max, sum,
avg, etc., over some nonlocational attributes (e.g., weight
value of the object in missile example).

Example 1. In Fig. 2, S ¼ fp1; p2; p3g and Q ¼ fq1; q2; q3g
where Pq1

¼ 0:4, Pq2
¼ 0:3, and Pq3

¼ 0:3. According to
Definition 3, for the given �, we have Pfallðp1; �Þ ¼ 0:4,
Pfallðp2; �Þ ¼ 1, and Pfallðp3; �Þ ¼ 0:6. Therefore,Q�;�ðSÞ ¼
fp2; p3g if � is set to 0.5, and hence jQ�;�ðSÞj ¼ 2.

2.2 Probabilistically Constrained Regions

In [26], Tao et al. study the problem of range query on
uncertain objects, in which the query is a rectangular window
and the location of each object is uncertain. Although the
problem studied in [26] is different with the one in this paper,
in Section 3.3 we show how to modify the techniques
developed in [26] to support uncertain location-based query.

In the following part, we briefly introduce the PCR
technique developed in [26]. Same as the uncertain loca-
tion-based query, an uncertain object U is modeled by a
probability density function U:pdfðxÞ and an uncertain
region U:region. The probability that the uncertain object U
falls in the rectangular window query rq, denoted by
PfallðU; rqÞ, is defined as

R
x2U:region\rq U:pdfðxÞdx. In [26], the

probabilistically constrained region of the uncertain object U
regarding probability � (0 � � � 0:5), denoted by U:pcrð�Þ, is
employed in the filtering technique. Particularly,U:pcrð�Þ is a
rectangular region constructed as follows:

For each dimension i, the projection of U:pcrð�Þ is
denoted by ½U:pcri�ð�Þ; U:pcriþð�Þ� whereZ

x2U:region&xi�U:pcri�ð�Þ
U:pdfðxÞdx ¼ �

and
R
x2U:region&xi�U:pcriþð�Þ U:pdfðxÞdx ¼ �. Note that xi re-

presents the coordinate value of the point x on ith
dimension. Then, U:pcrð�Þ corresponds to a rectangular
region ½U:pcr�ð�Þ; U:pcrþð�Þ� where U:pcr�ð�Þ (U:pcrþð�Þ) is
the lower (upper) corner and the coordinate value of
U:pcr�ð�Þ (U:pcrþð�Þ) on ith dimension is U:pcri�ð�Þ
(U:pcriþð�Þ). Fig. 3a illustrates the U:pcrð0:2Þ of the uncertain
object U in 2D space. Therefore, the probability mass of U on
the left (right) side of l1� (l1þ) is 0.2 and the probability mass
of U below (above) the l2� (l2þ) is 0.2 as well. Following is a
motivating example of how to derive the lower and upper
bounds of the falling probability based on PCR.

Example 2. According to the definition of PCR, in Fig. 3b the
probabilistic mass of U in the shaded area is 0.2, i.e.,R
x2U:region&x1�U:pcr1þð�Þ U:pdfðxÞdx ¼ 0:2. Then, it is im-

mediate that PfallðU; rq1
Þ < 0:2 because rq1

does not
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Fig. 2. Example of PfallðQ; p; �Þ.

Fig. 3. A 2d probabilistically constrained region (PCR (0.2)).



intersect U:pcrð0:2Þ. Similarly, we have PfallðU; rq2
Þ � 0:2

because the shaded area is enclosed by rq2
.

The following theorem [26] formally introduces how to

prune or validate an uncertain object U based on U:pcrð�Þ or

U:pcrð1� �Þ. Note that we say an uncertain object is pruned

(validated) if we can claim PfallðU; rqÞ < � (PfallðU; rqÞ � �)
based on the PCR.

Theorem 1. Given an uncertain object U , a range query rq (rq is

a rectangular window) and a probabilistic threshold �.

1. For � > 0:5, U can be pruned if rq does not fully
contain U:pcrð1� �Þ;

2. For � � 0:5, the pruning condition is that rq does not
intersect U:pcrð�Þ;

3. For � > 0:5, the validating criterion is that rq
completely contains the part of Umbb on the right (left)
of plane U:pcri�ð1� �Þ (U:pcriþð1� �Þ) for some
i 2 ½1; d�, where Umbb is the minimal bounding box of
uncertain region U:region;

4. For � � 0:5 the validating criterion is that rq
completely contains the part of Umbb on the left (right)
of plane U:pcri�ð�Þ (U:pcriþð�Þ) for some i 2 ½1; d�.

3 FILTERING-AND-VERIFICATION ALGORITHM

According to the definition of falling probability (i.e.,

Pfallðp; �Þ) in (2), the computation involves integral calcula-

tion, which may be expensive in terms of CPU cost. Based

on Definition 3, we only need to know whether or not the

falling probability of a particular point regarding Q and �

exceeds the probabilistic threshold for the uncertain

aggregate range query. This motivates us to follow the

filtering-and-verification paradigm for the uncertain aggre-

gate query computation. Particularly, in the filtering phase,

effective and efficient filtering techniques will be applied to

prune or validate the points. We say a point p is pruned

(validated) regarding the uncertain query Q, distance � and

probabilistic threshold � if we can claim that Pfallðp; �Þ < �

(Pfallðp; �Þ � �) based on the filtering techniques without

explicitly computing the Pfallðp; �Þ. The points that cannot

be pruned or validated will be verified in the verification phase

in which their falling probabilities are calculated. Therefore, it

is desirable to develop effective and efficient filtering

techniques to prune or validate points such that the number

of points being verified can be significantly reduced.
In this section, we first present a general framework for

the filtering-and-verification Algorithm based on filtering

techniques in Section 3.1. Then, a set of filtering techniques

are proposed. Particularly, Section 3.2 proposes the statis-

tical filtering technique. Then, we investigate how to apply

the PCR-based filtering technique in Section 3.3. Section 3.4

presents the anchor point-based filtering technique.
For presentation simplicity, we consider the continuous

case of the uncertain query in this section. Section 3.5 shows

that techniques proposed in this section can be immediately

applied to the discrete case.

3.1 A Framework for Filtering-and-Verification
Algorithm

In this section, following the filtering-and-verification para-
digm we present a general framework to support uncertain
range aggregate query based on the filtering technique. To
facilitate the aggregate query computation, we assume a set
S of points is organized by an aggregateR-Tree [22], denoted
by RS . Note that an entry e of RS might be a data entry or an
intermediate entry where a data entry corresponds to a point
in S and an intermediate entry groups a set of data entries or
child intermediate entries. Assume a filter, denoted by F , is
available to prune or validate a data entry (i.e., a point) or an
intermediate entry (i.e., a set of points).

Algorithm 1 illustrates the framework of the filtering-and-
verification Algorithm. Note that details of the filtering
techniques will be introduced in the following sections.
The algorithm consists of two phases. In the filtering phase
(Line 3-16), for each entry e of RS to be processed, we do not
need to further process e if it is pruned or validated by the filter
F . We say an entry e is pruned (validated) if the filter can claim
Pfallðp; �Þ < � (Pfallðp; �Þ � �) for any point pwithin embb. The
counter cn is increased by jej (Line 6) if e is validated where jej
denotes the aggregate value of e (i.e., the number of data
points in e). Otherwise, the point p associated with e is a
candidate point if e corresponds to a data entry (Line 10), and
all child entries of e are put into the queue for further
processing if e is an intermediate entry (Line 12). The filtering
phase terminates when the queue is empty. In the verification
phase (Line 17-21), candidate points are verified by the
integral calculations according to (2).

Algorithm 1. Filtering-and-Verification(RS , Q, F , �, �)

Input: RS : an aggregate R tree on data set S,

Q: uncertain query, F : Filter, �: query distance,

�: probabilistic threshold.

Output: jQ�;�ðSÞj
Description:

1: Queue :¼ ;; cn :¼ 0; C :¼ ;;
2: Insert root of RS into Queue;
3: while Queue 6¼ � do

4: e dequeue from the Queue;

5: if e is validated by the filter F then

6: cn :¼ cnþ jej;
7: else

8: if e is not pruned by the filter F then

9: if e is data entry then

10: C :¼ C [ p where p is the data point e
represented;

11: else

12: put all child entries of e into Queue;

13: end if

14: end if

15: end if

16: end while

17: for each point p 2 C do

18: if PfallðQ; p; �Þ � � then

19: cn :¼ cnþ 1;

20: end if

21: end for

22: Return cn
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Cost Analysis. The total time cost of Algorithm 1 is as follows:

Cost ¼ Nf � Cf þNio � Cio þNca � Cvf : ð4Þ

Particularly, Nf represents the number of entries being
tested by the filter on Line 5 and Cf is the time cost for each
test. Nio denotes the number of nodes (pages) accessed
(Line 13) and Cio corresponds to the delay of each node
(page) access of RS . Nca represents the size of candidate set
C and Cvf is the computation cost for each verification
(Line 15) in which numerical integral computation is
required. With a reasonable filtering time cost (i.e., Cvf ),
the dominant cost of Algorithm 1 is determined by Nio and
Nca because Cio and Cvf might be expensive. Therefore, in
the paper we aim to develop effective and efficient filtering
techniques to reduce Nca and Nio.

Filtering. Suppose there is no filter F in Algorithm 1, all
points in S will be verified. Regarding the example in Fig. 4,
5 points p1, p2, p3, p4, and p5 will be verified. A straightforward
filtering technique is based on the minimal and maximal
distances between the minimal bounding boxes(MBBs) of an
entry and the uncertain query. Clearly, for any � we can
safely prune an entry if �minðQmbb; embbÞ > � or validate it if
�maxðQmbb; embbÞ � �. We refer this as maximal/minimal dis-
tance-based filtering technique, namely MMD. MMD tech-
nique is time efficient as it takes only OðdÞ time to compute
the minimal and maximal distances between Qmbb and embb.
Recall that Qmbb is the minimal bounding box of Q:region.

Example 3. As shown in Fig. 4, suppose the MMD filtering
technique is applied in Algorithm 1, then p1 is pruned and
the other four points p2, p3, p4, and p5 will be verified.

Although the MMD technique is very time efficient, its
filtering capacity is limited because it does not make use of
the distribution information of the uncertain query Q and
the probabilistic threshold �. This motivates us to develop
more effective filtering techniques based on some precom-
putations on the uncertain query Q such that the number of
entries (i.e., points) being pruned or validated in Algorithm 1
is significantly increased. In the following sections, we
present three filtering techniques, named STF, PCR, and
APF, respectively, which can significantly enhance the
filtering capability of the filter.

3.2 Statistical Filter

In this section, we propose a statistical filtering technique,
namely STF. After introducing the motivation of the
technique, we present some important statistic information
of the uncertain query and then show how to derive the
lower and upper bounds of the falling probability of a point

regarding an uncertain query Q, distance �, and probabil-
istic threshold �.

Motivation. As shown in Fig. 5, given an uncertain query

Q1 and � we cannot prune point p based on the MMD

technique, regardless of the value of �, although intuitively

the falling probability of p regarding Q1 is likely to be small.

Similarly, we cannot validate p for Q2. This motivates us to

develop a new filtering technique which is as simple as

MMD, but can exploit � to enhance the filtering capability.

In the following part, we show that lower and upper

bounds of Pfallðp; �Þ can be derived based on some statistics

of the uncertain query. Then, a point may be immediately

pruned (validated) based on the upper(lower) bound of

Pfallðp; �Þ, denoted by UPfallðp; �Þ (LPfallðp; �Þ).
Example 4. In Fig. 5 suppose � ¼ 0:5 and we have
UPfallðQ1; p; �Þ ¼ 0:4 (LPfallðQ2; p; �Þ ¼ 0:6) based on the
statistical bounds, then p can be safely pruned (validated)
without explicitly computing its falling probability
regarding Q1 (Q2). Regarding the running example in
Fig. 4, suppose � ¼ 0:2 and we have UPfallðp2; �Þ ¼ 0:15
while UPfallðpi; �Þ � 0:2 for 3 � i � 5, then p2 is pruned.
Therefore, three points (p3, p4, and p5) are verified in
Algorithm 1 when MMD and statistical filtering techni-
ques are applied.

Statistics of the uncertain query. To apply the statistical
filtering technique, the following statistics of the uncertain
query Q are precomputed.

Definition 4 (mean (gQ)). gQ ¼
R
x2Q x�Q:pdfðxÞdx.

Definition 5 (weighted average distance (�Q)). �Q equalsR
x2Q �ðx; gQÞ �Q:pdfðxÞdx.

Definition 6 (variance (�Q)). �Q equals
R
x2Q �ðx; gQÞ

2 �
Q:pdfðxÞdx.

Derive lower and upper bounds of Pfallðp; �Þ. For a point
p 2 S, the following theorem shows how to derive the lower
and upper bounds of Pfallðp; �Þ based on above statistics of
Q. Then, without explicitly computing Pfallðp; �Þ, we may
prune or validate the point p based on UPfallðp; �Þ and
LPfallðp; �Þ derived based on the statistics of Q.

Theorem 2. Given an uncertain query Q and a distance �, and
suppose the mean gQ, weighted average distance �Q, and
variance �Q of Q are available. Then, for a point p, we have

1. If � > �1, Pfallðp; �Þ � 1� 1

1þð���1Þ2

�2
1

, where �1 ¼
�ðgQ; pÞ þ �Q and

�2
1 ¼ �Q � �2

Q þ 4�Q � �ðgQ; pÞ:
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2. If � < �ðgQ; pÞ � �Q � �, Pfallðp; �Þ � 1

1þð�
0��2Þ2

�2
2

, where

�2
2 ¼ �þ �Q; �2

2 ¼ �Q � �2
Q þ 4�Q ��;

� ¼ � þ �0 þ �� �ðp; gQÞ

and �0 > 0. The � represents an arbitrarily small
positive constant value.

Before the proof of Theorem 2, we first introduce the
Cantelli’s Inequality [19] described by Lemma 1 which is one-
sided version of the Chebyshev Inequality.

Lemma 1. Let X be an univariate random variable with the
expected value � and the finite variance �2. Then, for any
C > 0, PrðX � � � C � �Þ � 1

1þC2 .

Following is the proof of Theorem 2.

Proof.
Intuition of the Proof. For a given point p 2 S, its

distance to Q can be regarded as an univariate random
variable Y , and we have Pfallðp; �Þ ¼ PrðY � �Þ. Given �,
we can derive the lower and upper bounds of PrðY � �Þ
(Pfallðp; �Þ) based on the statistical inequality in Lemma 1
if the expectation (EðY Þ) and variance(V arðY Þ) of the
random variable Y are available. Although EðY Þ and
V arðY Þ take different values regarding different points,
we show that the upper bounds of EðY Þ and V arðY Þ can
be derived based on mean(gQ), weighted average distance
(�Q), and variance(�Q) of the query Q. Then, the
correctness of the theorem follows.

Details of the Proof. The uncertain query Q is a
random variable which equals x 2 Q:region with prob-
ability Q:pdfðxÞ. For a given point p, let Y denote the
distance distribution between p and Q; that is, Y is an
univariate random variable and

Y :pdfðlÞ ¼
Z
x2Q:regionand�ðx;pÞ¼l

Q:pdfðxÞdx

for any l � 0. Consequently, we have Pfallðp; �Þ ¼
PrðY � �Þ according to (2). Let � ¼ EðY Þ, �2 ¼ V arðY Þ,
and C ¼ ���

� , then based on lemma 1, if � > � we have

PrðY � �Þ ¼ PrðY � � � C � �Þ � 1

1þ ð���� Þ
2
:

Then, it is immediate that

PrðY � �Þ � 1� PrðY � �Þ � 1� 1

1þ ð���Þ
2

�2

: ð5Þ

According to Inequation 5 we can derive the lower
bound of Pfallðp; �Þ. Next, we show how to derive upper
bound of Pfallðp; �Þ. As illustrated in Fig. 6, let p0 denote a
dummy point on the line pgQ with �ðp0; pÞ ¼ � þ �0 þ �
where � is an arbitrarily small positive constant value.
Similar to the definition of Y , let Y 0 be the distance
distribution between p0 and Q; that is, Y 0 is an univariate
random variable where

Y 0:pdfðlÞ ¼
Z
x2Q:region and �ðx;p0Þ¼l

Q:pdfðxÞdx

for any l � 0. Then, as shown in Fig. 6, for any point
x 2 Q with �ðx; p0Þ � �0(shaded area) , we have

�ðx; pÞ > �. This implies that P ðY � �Þ � P ðY 0 � �0Þ. Let
�0 ¼ EðY 0Þ and �0 ¼ V arðY 0Þ, according to Lemma 1
when �0 > �0 we have

PrðY � �Þ � P ðY 0 � �0Þ � 1

1þ ð�0��0Þ
2

�02

: ð6Þ

Because values of �, �2, �0, and �02 may change
regarding different point p 2 S, we cannot precompute
them. Nevertheless, in the following part we show that
their upper bounds can be derived based on the statistic
information of the Q, which can be precomputed based
on the probabilistic distribution of Q.

Based on the triangle inequality, for any x 2 Q we
have �ðx; pÞ � �ðx; gQÞ þ �ðp; gQÞ and �ðx; pÞ � j�ðx; gQÞ �
�ðp; gQÞj for any x 2 Q. Then, we have

� ¼
Z
y2Y

y� Y :pdfðyÞdy ¼
Z
x2Q

�ðx; pÞ � pdfðxÞdx

�
Z
x2Q
ð�ðp; gQÞ þ �ðx; gQÞÞ � pdfðxÞdx

� �ðgQ; pÞ þ �Q ¼ �1;

and

�2 ¼ EðY 2Þ � E2ðY Þ

�
Z
x2Q
ð�ðgQ; pÞ þ �ðx; gQÞÞ2pdfðxÞdx

� ð�ðgQ; pÞ � �QÞ2

¼ 2

Z
x2Q

�ðgQ; pÞ � �ðx; gQÞ � pdfðxÞdx

þ
Z
x2Q

�ðx; gQÞ2 � pdfðxÞdx

þ 2� �ðgQ; pÞ � �Q � �2
Q

¼ �Q � �2
Q þ 4�Q � �ðgQ; pÞ ¼ �2

1:

Together with Inequality 5, we have

PrðY � �Þ � 1� 1

1þ ð���Þ
2

�2

� 1� 1

1þ ð���1Þ2
�2

1

if �1 < �. With similar rationale, let � ¼ �ðgQ; p0Þ ¼
� þ �0 þ �� �ðp; gQÞ we have �0 � �þ �Q ¼ �2 and
�02 � �Q � �2

Q þ 4�Q �� ¼ �2
2. Based on Inequality 6,

we have

PrðY � �Þ � 1

1þ ð�0��0Þ
2

�02

� 1

1þ ð�0��2Þ2
�2

2
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Fig. 6. Proof of upper bound.



if � < �ðgQ; pÞ � �Q � �. Therefore, the correctness of the
theorem follows. tu
The following extension is immediate based on the

similar rationale of Theorem 2.
Extension 1. Suppose r is a rectangular region, we can

use �minðr; gQÞ and �maxðr; gQÞ to replace �ðp; gQÞ in
Theorem 2 for lower and upper probabilistic bounds
computation, respectively.

Based on Extension 1, we can compute the upper and
lower bounds of Pfallðembb; �Þ where embb is the minimal
bounding box of the entry e, and hence prune or validate e in
Algorithm 1. Since gQ; �Q, and �Q are precomputed, the
dominant cost in filtering phase is the distance computation
between embb and gQ which is OðdÞ.

3.3 PCR-Based Filter

Motivation. Although the statistical filtering technique can
significantly reduce the candidate size in Algorithm 1, the
filtering capacity is inherently limited because only a small
amount of statistics are employed. This motivates us to
develop more sophisticated filtering techniques to further
improve the filtering capacity; that is, we aim to improve the
filtering capacity with more precomputations (i.e., more
information kept for the filter). In this section, the PCR
technique proposed in [26] will be modified for this purpose.

PCR-based Filtering technique. The PCR technique
proposed in [26] cannot be directly applied for filtering in
Algorithm 1 because the range query studied in [26] is a
rectangular window and objects are uncertain. Nevertheless
we can adapt the PCR technique as follows: As shown in
Fig. 7, let Cp;� represent the circle (sphere) centered at p with
radius �. Then, we can regard the uncertain query Q and
Cp;� as an uncertain object and the range query, respectively.
As suggested in [28], we can use Rþ;p (mbb of Cp;�) and R�;p
(inner box) as shown in Fig. 7 to prune and validate the point
p based on the PCRs of Q, respectively. For instance, if � ¼
0:4 the point p in Fig. 7 can be pruned according to case 2 of
Theorem 1 because R1 does not intersect Q:pcrð0:4Þ. Note
that similar transformation can be applied for the inter-
mediate entries as well.

Example 5. Regarding the running example in Fig. 8,
suppose Q:pcrð0:2Þ is precomputed, then p1, p2, and p4

are pruned because Rþ;p1
, Rþ;p2

, and Rþ;p4
do not overlap

Q:pcrð0:2Þ according to Theorem 1 in Section 2.2.
Consequently, only p3 and p5 go to the verification phase
when Q:pcrð0:2Þ is available.

Same as [26], [28], a finite number of PCRs are
precomputed for the uncertain query Q regarding different
probability values. For a given � at query time, if the

Q:pcrð�Þ is not precomputed we can choose two precom-
puted PCRsQ:pcrð�1Þ and Q:pcrð�2Þ where �1 (�2) is the
largest (smallest) existing probability value smaller (larger)
than �. We can apply the modified PCR technique as the
filter in Algorithm 1, and the filtering time regarding each
entry tested is Oðmþ logðmÞÞ in the worst case , where m is
the number of PCRs precomputed by the filter.

The PCR technique can significantly enhance the filtering
capacity when a particular number of PCR s are precom-
puted. The key of the PCR filtering technique is to partition
the uncertain query along each dimension. This may
inherently limit the filtering capacity of the PCR-based
filtering technique. As shown in Fig. 7, we have to use two
rectangular regions for pruning and validation purpose, and
hence the Cp;� is enlarged (shrunk) during the computation.
As illustrated in Fig. 7, all instances of Q in the striped area
is counted for Pfallðp; �Þ regarding Rþ;p, while all of them
have distances larger than �. Similar observation goes to
R�;p. This limitation is caused by the transformation, and
cannot be remedied by increasing the number of PCRs. Our
experiments also confirm that the PCR technique cannot
take advantage of the large index space. This motivates us
to develop new filtering technique to find a better tradeoff
between the filtering capacity and precomputation cost (i.e.,
index size).

3.4 Anchor Points-Based Filter

The anchor (pivot) point technique is widely employed in
various applications, which aims to reduce the query
computation cost based on some precomputed anchor (pivot)
points. In this section, we investigate how to apply anchor

point technique to effectively and efficiently reduce the
candidate set size. Following is a motivating example for
the anchor point-based filtering technique.

Motivating Example. Regarding our running example,
in Fig. 9 the shaded area, denoted by Co;d, is the circle
centered at o with radius d. Suppose the probabilistic mass
of Q in Co;d is 0.8, then when � ¼ 0:2 we can safely prune p1,
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Fig. 8. Running example.

Fig. 9. Running example regarding the anchor point.

Fig. 7. Transform query.



p2, p3, and p4 because Cpi;� does not intersect Co;d for i ¼ 1, 2,
3, and 4.

In the paper, an anchor point a regarding the uncertain
query Q is a point in multidimensional space whose falling
probability against different � values are precomputed. We
can prune or validate a point based on its distance to the
anchor point. For better filtering capability, a set of anchor
points will be employed.

In the following part, Section 3.4.1 presents the anchor

point filtering technique. In Section 3.4.2, we investigate how
to construct anchor points for a given space budget, followed
by a time efficient filtering algorithm in Section 3.4.3.

3.4.1 Anchor Point Filtering Technique

For a given anchor point a regarding the uncertain query Q,
suppose Pfallða; lÞ is precomputed for arbitrary distance l.
Lemma 2 provides lower and upper bounds of Pfallðp; �Þ for
any point p based on the triangle inequality. This implies
we can prune or validate a point based on its distance to an
anchor point.

Lemma 2. Let a denote an anchor point regarding the uncertain

query Q. For any point p 2 S and a distance �, we have

1. If � > �ða; pÞ, Pfallðp; �Þ � Pfallða; � � �ða; pÞÞ.
2. Pfallðp; �Þ � Pfallða; �ða; pÞ þ �Þ � Pfallða; �ða; pÞ �
� � �Þ where � is an arbitrarily small positive value.1

Proof. Suppose � > �ða; pÞ, then according to the triangle
inequality for anyx 2 Qwith �ðx; aÞ � � � �ða; pÞ, we have

�ðx; pÞ � �ða; pÞ þ �ðx; aÞ � �ða; pÞ þ ð� � �ða; pÞÞ ¼ �

This implies that Pfallðp; �Þ � Pfallða; � � �ða; pÞÞ accord-
ing to (2). Fig. 10a illustrates an example of the proof in 2D
space. In Fig. 10a, we have Ca;���ða;pÞ � Cp;� if � > �ða; pÞ.
Let S denote the striped area which is the intersection of
Ca;���ða;pÞ and Q. Clearly, we have Pfallða; � � �ða; pÞÞ ¼R
x2S Q:pdfðxÞdx and �ðx; pÞ � � for any x 2 S. Conse-

quently, Pfallðp; �Þ � Pfallða; � � �ða; pÞÞ holds.
With similar rationale, for any x 2 Q we have �ðx; aÞ �

�ða; pÞ þ � if �ðx; pÞ � �. This implies that Pfallðp; �Þ �
Pfallða; �ða; pÞ þ �Þ. Moreover, for any x 2 Qwith �ðx; aÞ �
�ða; pÞ � � � �, we have �ðx; aÞ > �. Recall that � represents
an arbitrarily small constant value. This implies thatxdoes
not contribute to Pfallðp; �Þ if �ðx; aÞ � �ða; pÞ � � � �.
Consequently, Pfallðp; �Þ � Pfallða; �ða; pÞ þ �Þ � Pfallða;
�ða; pÞ � � � �Þ holds. As shown in Fig. 10b, we have
Pfallðp; �Þ � Pfallða; �ða; pÞ þ �Þ because Cp;� � Ca;�ða;pÞþ� .

Since Ca;�ða;pÞ���� � Ca;�ða;pÞþ� and Cp;� \ Cp;�ða;pÞ���� ¼ ;,
this implies that Pfallðp; �Þ � Pfallða; �ða; pÞ þ �Þ � Pfallða;
�ða; pÞ � � � �Þ. tu

Let LPfallðp; �Þ and UPfallðp; �Þ denote the lower and
upper bounds derived from Lemma 2 regarding Pfallðp; �Þ.
Then, we can immediately validate a point p if
LPfallðp; �Þ � �, or prune p if UPfallðp; �Þ < �.

Clearly, it is infeasible to keep Pfallða; lÞ for arbitrary
l � 0. Since Pfallða; lÞ is a monotonic function with respect to
l, we keep a set Da ¼ flig with size nd for each anchor point
such that Pfallða; liÞ ¼ i

nd
for 1 � i � nd. Then, for any l > 0,

we use UPfallða; lÞ and LPfallða; lÞ to represent the upper
and lower bound of Pfallða; lÞ, respectively. Particularly,
UPfallða; lÞ ¼ Pfallða; liÞ where li is the smallest li 2 Da such
that li � l. Similarly, LPfallða; lÞ ¼ Pfallða; ljÞ where lj is the
largest lj 2 Da such that lj � l. Then, we have the following
theorem by rewriting Lemma 2 in a conservative way.

Theorem 3. Given an uncertain query Q and an anchor point a,
for any rectangular region r and distance �, we have

1. I f � > �maxða; rÞ, Pfallðr; �Þ � LPfallða; � � �max
ða; rÞÞ.

2.

Pfallðr; �Þ � UPfallða; �maxða; rÞ þ �Þ
� LPfallða; �minða; rÞ � � � �Þ

where � is an arbitrarily small positive value.

Let LPfallðr; �Þ and UPfallðr; �Þ represent the lower and
upper bounds of the falling probability derived from
Theorem 3. We can safely prune (validate) an entry e if
UPfallðembb; �Þ < � (LPfallðembb; �Þ � �). Recall that embb
represents the minimal bounding box of e. It takes OðdÞ
time to compute �maxða; embbÞ and �minða; embbÞ. Meanwhile,
the computation of LPfallða; lÞ and UPfallða; lÞ for any l > 0
costs OðlogndÞ time because precomputed distance values
in Da are sorted. Therefore, the filtering time of each entry
is Oðdþ logndÞ for each anchor point.

3.4.2 Heuristic with a Finite Number of Anchor Points

Let AP denote a set of anchor points for the uncertain query
Q. We do not need to further process an entry e in
Algorithm 1 if it is filtered by any anchor point a 2 AP.
Intuitively, the more anchor points employed by Q, the more
powerful the filter will be. However, we cannot employ a
large number of anchor points due to the space and filtering
time limitations. Therefore, it is important to investigate
how to choose a limited number of anchor points such that
the filter can work effectively.

Anchor points construction. We first investigate how to
evaluate the “goodness” of an anchor point regarding the
computation of LPfallðp; �Þ. Suppose all anchor points have
the same falling probability functions; that is Pfallðai; lÞ ¼
Pfallðaj; lÞ for any two anchor points ai and aj. Then, the closest
anchor point regarding p will provide the largest LPfallðp; �Þ.
Since there is no a priori knowledge about the distribution of
the points, we assume they follow the uniform distribution.
Therefore, anchor points should be uniformly distributed. If
falling probabilistic functions of the anchor points are
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1. We have Pfallða; �ða; pÞ � � � �Þ ¼ 0 if �ða; pÞ � �.

Fig. 10. Lower and upper bound.



different, besides the distance a point p prefers the anchor
point whose falling probability grows rapidly with respect to
distance l. However, since it is costly to evaluate the falling
probability functions for all possible anchor points, we only
consider that anchor points should be evenly distributed.

As to UPfallðp; �Þ, observations above do not hold.
According to Lemma 2, UPfallðp; �Þ equals Pfallða; �ða; pÞ þ
�Þ � Pfallða; �ða; pÞ � � � �Þ. Clearly Pfallða; �ða; pÞ þ �Þ pre-
fers a small �ða; pÞ, while Pfallða; �ða; pÞ � � � �Þ is in favor of
large �ða; pÞ. Therefore, for UPfallðp; �Þ we evaluate the
“goodness” of an anchor point from another point of view.
As shown in Fig. 10b, let R denote the shaded area which is
the intersection of S and Q, where S represents Ca;�ða;pÞþ� �
Ca;�ða;pÞ����. Intuitively R with smaller area is more likely to
lead to a tighter upper bound. Consequently the anchor
point should be far from Q.

Considering the different preferences of LPfall and UPfall,
we employ two kinds of anchor points, namely inner anchor
points (IAPs) and outer anchor points (OAPs), respectively,
where inner anchor points and outer anchor points are chosen in
favor of validating and pruning, respectively. Let ki and ko
denote the number of IAPs and OAPs, respectively, and the
total number of anchor points is denoted by nap where
nap ¼ ki þ ko. We assume ki ¼ ko in the paper. Note that the
construction time of each anchor point is Oðnd � CIÞ where
CI is the cost to identify each li 2 Da such thatPfallða; liÞ ¼ i

nd
.

Fig. 11 illustrates how to construct anchor points on 2D data
with nap ¼ 16. Considering that points far from Q have less
chance to be validated, we choose 8 IAPs such that their
locations are uniformly distributed within Qmbb. They are
a1; a2; . . . ; a8 in Fig. 11. Then another 8 OAPs (a9; a10; . . . ; a16 in
Fig. 11) are evenly located along CgQ;R where R is set to L

2 in
our experiment and L is the domain size. For each anchor
point a, Pfallða; lÞ is computed for each l 2 Da. This construc-
tion approach can be easily extended to higher dimensions.

3.4.3 Time Efficient Filtering Algorithm

Based on Theorem 3, we can compute LPfall and UPfall for
each entry e against the anchor points as discussed in
Section 3.4.1, and then try to prune or validate e. Never-
theless, we show that the filtering time cost can be
improved by the following techniques.

1. Quick-Filtering Algorithm. Since in Algorithm 1 we
only need to check whether an entry e can be filtered, the
explicit computation of LPfall and UPfall regarding e may be
avoided. Let UDð�Þ represent the smallest li 2 Da such that
Pfallða; liÞ � � and LDð�Þ be the largest li 2 Da with
Pfallða; liÞ � �. Clearly, for any l � LDð�Þ, we have
UPfallða; lÞ � � and LPfallða; lÞ � � for any l � UP ð�Þ.

Algorithm 2 illustrates how to efficiently filter an entry
based on an anchor point. In case 1 of Algorithm 2 (Line 2-8),
� � �ða; embbÞ � UDð�Þ implies Pfallðembb; �Þ � � according to
Theorem 3 and the definition of UDð�Þ. Therefore the entry
e can be safely validated.

Algorithm 2. Quick-Filtering (e, a, �, �)

Input: e: entry of RS , a: anchor point

�: query distance, �: probabilistic threshold

Output: status : fvalidated; pruned; unknowng
Description:

1: Compute �maxða; embbÞ;
2: if � � �maxða; embbÞ � UDð�Þ then

3: if �minða; embbÞ þ � þ � > UDð1� �Þ then

4: Return pruned;

5: else

6: Return unknown;

7: end if

8: end if

9: if �minða; embbÞ � � � � � LDð0Þ then

10: if �maxða; embbÞ < LDð�Þ � � then

11: Return pruned;

12: else

13: Return unknown;
14: end if

15: end if

16: if UPfallðembb; �Þ < � then

17: Return pruned;

18: else

19: Return unknown;

20: end if

For case 2 (Line 9-15), �maxða; embbÞ þ � � UDð1Þ implies
UPfallða; �maxða; embbÞ þ �Þ ¼ 1:0. 2 We can prune e i f
�minða; embbÞ þ � þ � > UDð1� �Þ because this implies
UPfallðembb; �Þ < �. With similar rationale, the correctness
of case 3 (Line 16-20) immediately follows:3

Once � and � are given for the query, we can precompute
UDð�Þ, LDð�Þ, LDð0Þ, and UDð1� �Þ for each anchor point.
Therefore, the time cost for Line 1-14 in Algorithm 2 is OðdÞ.
We need to further apply Theorem 3 to compute
UPfallðembb; �Þ in Line 15 if none of above three cases occurs.
Consequently, the filtering time complexity of Algorithm 2
remains Oðdþ logndÞ for each anchor point in the worst case.
Nevertheless, our experiment shows that new technique
significantly improves the filtering time.

2. Accessing order. In Algorithm 1, for a given entry e,
we can apply Algorithm 2 for each anchor point a 2 AP until
e is filtered by any anchor point or all anchor points fail to
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Fig. 11. Anchor points construction.

2. Note that in case 2, we have S2 ¼ ; in Fig. 10b where S2 ¼ fxjx 2 Q
and �ðx; aÞ > �ða; pÞ þ �g. This implies that Pfallðp; �Þ � 1:0� Pfallða;
�ða; pÞ � � � �Þ.

3. Note that in case 3, we have S1 ¼ ; in Fig. 10b where S1 ¼ fxjx 2 Q
and �ðx; aÞ < �ða; pÞ � � � �g. This implies that Pfallðp; �Þ � Pfallða;
�ða; pÞ þ �Þ � 0.



filter e. Intuitively, we should choose a good accessing order
of the anchor points such that the entry e could be eliminated
as early as possible. The ranking criteria for validating is
simple, and anchor points close to e have high priority. As to
the pruning, we prefer anchor points which are close to or
far from e. This is because Line 6 of Algorithm 2 prefers the
large �minða; embbÞ while Line 11 is in favor of small
�maxða; embbÞ. Our experiment shows that a good accessing
order can significantly reduce the filtering cost.

3. Sector-based heuristic. Since we can immediately
apply Algorithm 2 once the minimal and maximal distances
between e and an anchor point are computed, it is less
efficient to decide the accessing order after computing
distances between all anchor points and e. Therefore, we
employ a simple heuristic to order anchor points without
distance computations. We first consider the 2D case, and
the heuristic can be easily extended to higher dimensions.

As shown in Fig. 11, suppose CgQ;R is evenly partitioned
into ns ¼ 8 sectors, labeled from 0 to 7, respectively. Recall
that gQ represents the mean of the uncertain queryQ. Given a
point p, we can find its corresponding sector by computing
the angle 	 between vectors gQp

��! and gQx
��!. Then, p locates at

	�ko
2
 th sector which is 5 in the example. The other sectors are

sorted and the ith sector accessed has subindex sþ ð�1Þi i2þ
ns mod ns for 2 � i � ns where s indicates the subindex of
the first sector visited, which is 5 in the example. Therefore,
the accessing order of the sectors in the example is 5, 6, 4, 7,
3, 0, 2, and 1. Intuitively, anchor points in the sectors
accessed earlier are likely to be closer to the point p. In the
example, we visit inner anchor points with the following
order: a1, a2, a3, a4, a5, a6, a7, and a8.

As to outer anchor points, eight sectors will be ordered
exactly same as previous one. Nevertheless they will be
accessed from head and tail at same time as shown in Fig. 11
because anchor points which are close to or far from p are
preferred. Consequently, the accessing order of the outer

anchor points is a9, a10, a11, a12, a13, a14, a15, and a16 in the
example. Our experiments confirm the effectiveness of this
heuristic.

3.5 Discrete Case

Techniques proposed in this section can be immediately

applied to discrete case. We abuse the notation of pdf and also

use pdf to describe the uncertain queryQ in discrete case; that

is,Q:pdfðxÞ ¼ Px ifx 2 Q andQ:pdfðxÞ ¼ 0 ifx 62 Q.Q:region

corresponds to the minimal bounding box of all instances of

Q. Moreover, the statistic information of the uncertain query

Q in discrete case is defined as follows: gQ ¼
P

q2Q q � Pq,
�Q ¼

P
q2Q �ðq; gQÞ � Pq, and �Q ¼

P
q2Q �ðq; gQÞ

2 � Pq.
Then, the techniques proposed in this section can be

applied to discrete case.

4 EXPERIMENT

We present results of a comprehensive performance study
to evaluate the efficiency and scalability of the techniques
proposed in the paper. Following the frame work of
Algorithm 1 in Section 3, four different filtering techniques
have been implemented and evaluated.

. MMD. The maximal/minimal distance filtering techni-
que is employed as a benchmark to evaluate the
efficiency of other filtering techniques.

. STF. The statistical filtering technique proposed in
Section 3.2.

. PCR. The PCR technique discussed in Section 3.3.
For the fairness of the comparison, we always choose
a number of PCRs for the uncertain query such that
space usage of PCR is same as that of APF.

. APF. The anchor point filtering technique proposed in
Section 3.4.

The euclidean distance is used in the experiments. All
algorithms are implemented in C++ and compiled by GNU
GCC. Experiments are conducted on PCs with Intel P4 2.8 GZ
CPU and 2 G memory under Debian Linux.

Two real spatial data sets, LB and US, are employed as
target data sets which contain 53k and 1M 2D points
representing locations in the Long Beach country and the
United State, respectively.4 All of the dimensions are
normalized to domain ½0; 10000�. To evaluate the perfor-
mance of the algorithms, we also generate synthetic data set
Uniform with dimensionality 2 and 3, respectively, in which
points are uniformly distributed. The domain size is
½0; 10000� for each dimension, and the number of the points
varies from 1 M to 5 M. All of the data sets are indexed by
aggregate R trees with page size 4,096 bytes. US data set is
employed as the default data set.

A workload consists of 200 uncertain queries in our
experiment. The uncertain regions of the uncertain queries in
our experiment are circles or spheres with radius qr. qr varies
from 200 to 1,000 with default value 600 which is 6 percent of
the domain size. The centers of the queries are randomly
generated within the domain. Recall that the domain of each
dimension is normalized to ½0; 10000� for all data sets in our
experiment. Two popular distributions, normaland Uniform,
are employed in our experiment to describe the PDF of the
uncertain queries, where normal serves as default distribu-
tion. Specifically, we use the constrained normal distribution
such that the possible location of the uncertain query are
restricted in the uncertain region of query Q. The standard
deviation � is set to qr

2 by default. 10 k sampled locations are
chosen from the distributions.5 For an uncertain query Q,
instances of the normal have the same appearance probabil-
ities. Half of the instances of the Uniform have appearance
probabilities 1=40;000, and another half have appearance
probabilities 3=40;000. We assume instances of each query are
maintained by an in memory aggregateR tree with fan-out 8
where the aggregate probability of the child instances is kept
for each entry. The query distance � varies from 600 to 2,000
with default value 1,200. Note that queries in a workload
share the same system parameters. In order to avoid favoring
a particular � value, we randomly choose the probabilistic
threshold between 0 and 1 for each uncertain query.

According to the analysis of Section 3.1, the dominant
cost of Algorithm 1 comes from the IO operation and
verification. Therefore, we measure the performance of the
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filtering techniques by means of IO cost and candidate size
during the computation. The IO cost is the number of pages
visited from RP , and the candidate size is the number of
points which need verification. In addition, we also
evaluate the filtering time and the query response time.

In each experiment, we issue 200 uncertain queries and
use the average candidate size, number of nodes accessed,
filtering time, and query response time to evaluate the
performance of the techniques.

Table 2 lists parameters which may potentially have an
impact on our performance study. In our experiments, all
parameters use default values unless otherwise specified.

4.1 Evaluate Anchor Point Filtering Technique

In the first set of experiments, we evaluate the three
techniques proposed for the anchor point filtering technique.
All system parameters are set to default values. Let APF1
represent the algorithm which computes the lower and upper
probabilistic bounds for each entry based on Theorem 3.
Algorithm 2 is applied in algorithmAPF2,APF3, andAPF .
APF2 always accesses anchor points in a random order, while
APF3 chooses a “good” order based on the distances
between the entry and anchor points. The sector-based heuristic
is employed in APF. As expected, Fig. 12a demonstrates the
effectiveness of the APF, which outperforms others and its
filtering cost grows slowly against the number of anchor
points. This implies the number of anchor points involved in the
filtering process is less sensitive tonap for APF. Consequently,
APF is used to represent the anchor point filtering technique in
the rest of the experiments.

In the second set of experiments, we evaluate the impact
of nd (i.e., the number of different � values precomputed for
each anchor point) against the performance of the APF
technique based on US data set. As expected, Fig. 12b
shows that the candidate size decreases against the growth
of nd. We set nd ¼ 30 in the rest of the experiments unless
otherwise specified.

Fig. 13 evaluates the effect of nap (i.e., the number of
anchor points) against the filtering capacity of APF and PCR.
Fig. 13a shows that APF outperforms PCR when there are
not less than 5 anchor points. Moreover, the performance of

the APF is significantly improved when the number of
anchor points grows. Recall that we always choose a number
of PCRs such that PCR uses the same amount of space as
APF. However, there is only a small improvement for PCR
when more space is available. Although the filtering cost of
APF increases with the number of anchor points and it is
always outperformed by PCR in terms of filtering cost as
shown in Fig. 13b, the cost is clearly paid off by the
significant reduction of candidate size. This implies that
APF can make a better tradeoff between the filtering
capacity and space usage. We set nap ¼ 30 in the rest of
the experiments unless otherwise specified.

4.2 Performance Evaluation

In this section, we conduct comprehensive experiments to
evaluate the effectiveness and efficiency of our filtering
techniques proposed in the paper.

In the first set of experiments, we evaluate the impact of
query distance � on the performance of the filtering
techniques in terms of candidate size, IO cost, query
response time, and filtering cost. All evaluations are
conducted against US and 3d Uniform data sets.

Fig. 14 reports the candidate size of MMD, STF, PCR, and
APF when query distance � grows from 400 to 2,000. We set
dap to 30 and 60 for US and 3d Uniform data sets, respectively.
As expected, larger � value results in more candidate data
points in the verification phase. It is interesting to note that
with only a small amount of statistic information, STF can
significantly reduce the candidate size compared with
MMD. PCR can further reduce the candidate size while
APF significantly outperforms others especially for the large
�: only 19,650 data points need to be further verified for APF
when � ¼ 2;000 on US data set, which is 96,769, 1,83,387 and
284,136 for PCR, STF, and MMD, respectively.

Fig. 15 reports the IO cost of the techniques. As expected,
APF is more IO efficient than other filtering techniques on
both data sets.

Fig. 16 reports the filtering time of four techniques
against different query distance �. It is shown that STF
outperforms MMD under all settings. This is because both
of them need at most two distance computations (i.e.,
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Fig. 13. Filter performance versus space usage.

Fig. 14. Candidate size versus �.
Fig. 12. Filter Performance Evaluation.



maximal and minimal distance) for each entry, while the

filtering capability of STF is much better than that of MMD.

As expected, APF takes more time for filtering especially on

3D Uniform data set because more distance computations

are required in APF and each costs OðdÞ time. Nevertheless,

it only takes less than 0.4 second for 3d Uniform data set

with � ¼ 2;000, which is only a small portion of the

computation cost as shown in Fig. 17.
In Fig. 17, we report the average processing time of

200 uncertain queries. It is not surprising to see that APF

outperforms other filtering techniques on the query

response time evaluation because with reasonable filtering

cost, APF has best filtering capability regarding candidate

size and IO cost.
The second set of experiments depicted in Fig. 18 is

conducted to investigate the impact of probabilistic thresh-

old � against the performance of the filtering techniques,

where candidate size, the number of nodes assessed, and

the average query response time are recorded. The

performance of MMD does not change with � value on

the candidate size and number of nodes accessed because

the probabilistic threshold is not considered in MMD

technique. Intuitively, the larger the threshold, there should

be less entries which have a chance to get involved in the

computation. This is confirmed by PCR and APF whose

performances are better when � is large, especially for PCR.

It is interesting that STF has better performance when � is

small, even as good as PCR when � ¼ 0:1.
We investigate the impact of qr against the performance

of the techniques in the third set of experiments. LB data set

is employed and uncertain queries follow Uniform distribu-

tion, while other system parameters are set to default

values. Clearly, the increment of qr degrades the perfor-

mance of all filtering techniques because more objects are

ZHANG ET AL.: EFFICIENT COMPUTATION OF RANGE AGGREGATES AGAINST UNCERTAIN LOCATION-BASED QUERIES 1255

Fig. 18. Performance versus Diff. �.

Fig. 19. Performance versus qr (LB).

Fig. 16. Filtering time versus �.

Fig. 17. Query response time versus �.Fig. 15. # node accesses versus �.



involved in the computation. Nevertheless, as illustrated in
Fig. 19 PCR and APF techniques are less sensitive to qr.

In the last set of experiments, we study the scalability of
the techniques against 2d Uniform data set with size varying
from 2M to 10M. As shown in Fig. 20, the performance of
PCR and APF are quite scalable toward the size of data set.

4.3 Summary

It has a much better performance than MMD with the help
of a small amount of precomputed statistic information.
When more space is available, PCR and APF have better
performance than MMD and STF. Compared with PCR, our
experiments show APF can achieve a better tradeoff
between the filtering capability and the space usage.

5 DISCUSSIONS

Sum, min, max, and average. Since the aggregate R tree is
employed to organize the data points, instead of the
number of descendant data points, other aggregate values
like sum, max, and min can be kept to calculate correspond-
ing aggregate values. Note that for average we need to keep
count and sum for each entry.

Uncertain query with nonzero absent probability. In
some applications, the probability sum of the uncertain query
might be less than 1 because the query might have a particular
probability of being absent; that is,

R
x2Q:region Q:pdfðxÞdx ¼ c

or
P

q2Q Pq ¼ c where 0 � c � 1. The current techniques can
be immediately applied by normalizing probabilities of the
instances and the probabilistic threshold. For instances,
suppose the uncertain query Q has two instances with
appearance probability 0.3 and 0.2, respectively, and the
probability threshold � is set to 0.2. Then, we can set the
appearance probability of two instances to 0.6 and 0.4,
respectively, and � is set to 0.4.

Computing expected value. In some applications, in-
stead of finding the number objects whose falling prob-
abilities exceed a given probabilistic threshold, users may
want to compute the expected number of objects falling in Q
regarding �, denoted by navg; that is

navg ¼
X
p2P

Pfallðp; �Þ: ð7Þ

Clearly, a point p 2 P can be immediately pruned (validated)
if we can claim Pfallðp; �Þ ¼ 0 (Pfallðp; �Þ ¼ 1). Then, we need
to compute the exact falling probabilities for all points
survived, i.e., points not being pruned or validated. As a
future direction, it is interesting to develop efficient

algorithm to compute navg such that the computational cost
can be significantly reduced.

Computing range aggregate against mutual exclusion.
In the motivating application 1 of the paper, the actual
number of civilian objects destroyed may be less than
jQ�;�ðP Þj because the events of objects to be destroyed may
be mutually exclusive; that is, once the falling position of
the missile is determined, two objects p1 and p2 cannot be
destroyed at same time (e.g., when �ðp1; p2Þ > 2�). There-
fore, in addition to counting the number of civilian objects
which are at risk, i.e., with falling probability at least �, it is
also interesting to find out the maximal possible number of
objects being destroyed with probability at least �. Although
the algorithm in the paper can provide an upper bound for
this problem, the techniques developed cannot be trivially
applied for the exact solution because it is computational
expensive to check the mutually exclusive property for each
pair of objects in the candidate set. Therefore, as a future
direction, it is desirable to develop novel techniques to
efficiently solve this problem.

6 RELATED WORK

To the best of our knowledge, this is the first work on the
problem of computing range aggregates against uncertain
location-based query. Our study is related to the previous
work on querying uncertain objects [13], [21], [30], [8], [10],
[1], [26], [28], [6], [29], [12].

Cheng et al. present a broad classification of probabilistic
queries over 1d uncertain data as well as techniques for
evaluating probabilistic queries [8]. There are four types in
all, and the problem we studied in the paper belongs to the
value-based aggregates. In recent years, probability-thresh-
olding range queries has attracted much attention of the
literature because of the importance of the problem. For the
given region rq and probabilistic threshold �, such a query
returns all objects which appear in rq with likelihood at least
�. Based on the notation of x-bounds, a novel index,
probability threshold index (PTI), is proposed in [10] to
efficiently process the query against one dimension un-
certain objects. Recently, Agarwal et al. [1] develop novel
indexing technique for one dimension uncertain object to
support range query with theoretical guarantee.

As a general version of the x-bounds, the concept of
probabilistic constrained region(PCR) is introduced by Tao et
al. [26] to support the range query on uncertain objects in a
multidimensional space where the pdf of the uncertain
object might be an arbitrary function. In order to prune or
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validate a set of uncertain objects at the same time, the U-
Tree technique is proposed to index the uncertain objects
based on PCR technique. Tao et al. further improve the
PCR technique in [28] and they also study another range
query problem in which locations of query and objects are
uncertain. A similar problem is studied by Chen and Cheng
[6] where the PCR technique is also applied to efficiently
prune or validate data points or uncertain objects. Recently,
Yang et al. [29] investigate the problem of range aggregate
query processing over uncertain data in which two
sampling approaches are proposed to estimate the aggre-
gate values for the range query.

In [12], Dai et al. investigate the probabilistic range query
on existentially uncertain data in which each object exists
with a particular probability. Bohm et al. [3], [4] study range
queries with the constraint that instances of uncertain
objects follow Gaussian distribution. Results are ranked
according to the probability of satisfying range queries. A
more recent work addressing indexing high dimensional
uncertain data is [2].

Besides the range query over uncertain data, many other
conventional queries are studied in the context of uncertain
data such as clustering [17], [20], similarity join [16], [9], top-k
queries [25], [14], nearest neighbor queries [7], and skyline
query [23], [18]. Among the previous work on uncertain data,
[28], [6] and [15] are the most closely related to the problem we
studied. However, the target objects considered in [28] are
uncertain objects which are organized by U-tree, so their
algorithms cannot be directly applied to the problem studied
in the paper. Our problem definition is similar with the C-IPQ
problem studied in [6], but their query search region is
rectangle which might be less interesting to the applications
mentioned in our paper. Moreover, we investigate the range
aggregates computation in our paper which is different from
[28], [6]. We also show that although the PCR technique
employed by Tao et al. [28], [6] can be modified to our
problem as discussed in the paper, it is less efficient compared
with anchor point filtering technique proposed in the paper.
Although Ishikawa et al. [15] study the range query in which
the location of the query is imprecise, their techniques are
based on the assumption that the possible locations of the
query follow the Gaussian distribution, hence cannot support
the general case. Therefore, their techniques cannot be
applied to the problem studied in the paper.

7 CONCLUSION

In this paper, we formally define the problem of uncertain
location-based range aggregate query in a multidimensional
space; it covers a wide spectrum of applications. To
efficiently process such a query, we propose a general
filtering and verification framework and two novel filtering
techniques, named STF and APF, respectively, such that the
expensive computation and IO cost for verification can be
significantly reduced. Our experiments convincingly de-
monstrate the effectiveness and efficiency of our techniques.
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