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ABSTRACT
Uncertain data is inherent in a few important applications
such as environmental surveillance and mobile object track-
ing. Top-k queries (also known as ranking queries) are often
natural and useful in analyzing uncertain data in those ap-
plications. In this paper, we study the problem of answer-
ing probabilistic threshold top-k queries on uncertain data,
which computes uncertain records taking a probability of at
least p to be in the top-k list where p is a user specified prob-
ability threshold. We present an efficient exact algorithm, a
fast sampling algorithm, and a Poisson approximation based
algorithm. An empirical study using real and synthetic data
sets verifies the effectiveness of probabilistic threshold top-k
queries and the efficiency of our methods.

Categories and Subject Descriptors
H.2.4 [Systems]: Query processing

General Terms
Algorithm, Performance, Experimentation

Keywords
Uncertain Data, Probabilistic Threshold Top-k Queries, Query
Processing

1. INTRODUCTION
In a few emerging important applications such as environ-

mental surveillance using large scale sensor networks, uncer-
tainty is inherent in data due to various factors like incom-
pleteness of data, limitations of equipment, and delay or loss
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RID Loc. Time Sensor-id Duration Conf.

R1 A 6/2/06 2:14 S101 25 min 0.3
R2 B 7/3/06 4:07 S206 21 min 0.4
R3 B 7/3/06 4:09 S231 13 min 0.5
R4 A 4/12/06 20:32 S101 12 min 1.0
R5 E 3/13/06 22:31 S063 17 min 0.8
R6 E 3/13/06 22:28 S732 11 min 0.2

Table 1: Panda presence records.

in data transfer. In those applications, top-k queries (or as
known as ranking queries) are often natural and useful in
analyzing uncertain data.

Example 1 (Motivation). Sensors are often used to
detect presence of endangered, threatened, or special concern
risk categories of animals in remote or preserved regions.
Due to limitations of sensors, detections cannot be accurate
all the time. Instead, detection confidence is often estimated.
Table 1 lists a set of synthesized records of presence of pan-
das detected by sensors. Once a sensor detects a suspect of
presence, it records the duration that the suspect stays in the
detection range of the sensor.

In some locations where the targets are active, multiple
sensors are deployed to improve the detection quality. Two
sensors in the same location (e.g., S206 and S231, as well
as S063 and S732 in Table 1) may detect the presence of
a suspect at the (approximately) same time, such as records
R2 and R3, as well as R5 and R6. In such a case, if the
durations detected by multiple sensors are inconsistent, at
most one sensor can be correct.

The uncertain data in Table 1 carries the possible world
semantics [1, 16, 23, 8]. The data can be viewed as the sum-
mary of a set of possible worlds. The possible worlds are gov-
erned by some underlying generation rules which constrain
the presence of tuple instances. In Table 1, the fact that
R2 and R3 cannot be true at the same time can be captured
by a generation rule R2 ⊕ R3. Another generation rule is
R5 ⊕ R6. Table 2 shows all possible worlds and their exis-
tence probability values.

Top-k queries can be used to analyze uncertain data. For
example, a scientist may be interested in the top-2 longest
durations that a suspect stays in a location at a time. In
different possible worlds the answers to this question are dif-
ferent. The third column of Table 2 lists the top-2 records in
all possible worlds according to the duration attribute.

It is interesting to examine the probability that a tuple
is in the top-2 lists of all possible worlds, as shown in Ta-



Possible world Probability Top-2 on Duration

W1 = {R1, R2, R4, R5} 0.096 R1, R2
W2 = {R1, R2, R4, R6} 0.024 R1, R2
W3 = {R1, R3, R4, R5} 0.12 R1, R5
W4 = {R1, R3, R4, R6} 0.03 R1, R3

W5 = {R1, R4, R5} 0.024 R1, R5
W6 = {R1, R4, R6} 0.006 R1, R4
W7 = {R2, R4, R5} 0.224 R2, R5
W8 = {R2, R4, R6} 0.056 R2, R4
W9 = {R3, R4, R5} 0.28 R5, R3
W10 = {R3, R4, R6} 0.07 R3, R4

W11 = {R4, R5} 0.056 R5, R4
W12 = {R4, R6} 0.014 R4, R6

Table 2: The possible worlds of Table 1.

RID R1 R2 R3 R4 R5 R6

Probability 0.3 0.4 0.38 0.202 0.704 0.014

Table 3: The top-2 probability values of records in
Table 1.

ble 3. The method to calculate the probability values will be
discussed in Section 2. To answer the top-2 query on the un-
certain data, it is helpful to find the tuples whose probability
values in the top-2 lists are at least p, where p is a user-
specified probability threshold. In this example, if p = 0.35,
then {R2, R3, R5} should be returned.

Example 1 demonstrates the probabilistic threshold top-
k queries which will be studied in this paper. Generally,
different from the top-k queries on certain data, probabilis-
tic top-k queries on uncertain data pose several interesting
challenges that will be addressed in this study.

Challenge 1: What does a probabilistic top-k query
mean? A top-k query on certain data returns the best k
results in the ranking function. However, top-k queries on
uncertain data may be formulated differently to address dif-
ferent application interests.

For example, in [26], an uncertain top-k query (U-TopK
query for short) returns a list of k records (i.e., a record vec-
tor of length k) that has the highest probability to be the
top-k list in all possible worlds. In Table 1, 〈R5, R3〉 should
be returned. An uncertain k ranks query (U-KRanks query
for short) returns a list of k records such that the i-th record
has the highest probability to be the i-th best record in all
possible worlds. In the case of Table 1, 〈R5, R5〉 should be
returned since R5 has the highest probability to be ranked
first in all possible worlds, and also has the highest proba-
bility to be ranked second in all possible worlds. Simultane-
ously, in [22], given a query Q, the top-k records that have
the highest probabilities to satisfy Q in all possible worlds
are extracted. For example, on Table 1, if the query is to
find a record where a suspect stays for more than 12 minutes,
then, the top-2 records are R3 and R5. Since the ranking is
on the probability to satisfy the query, R1 is not selected in
the top-2 answers though it has a longer duration than both
R3 and R5.

Our contribution. We address an application scenario
other than the recent proposals in [26, 22]. Given a proba-
bility threshold p, a probabilistic threshold top-k query in our

model, as elaborated in Example 1, finds the set of records
where each takes a probability of at least p to be in the top-k
lists in the possible worlds. The new type of queries can find
tuples like R2 in Example 1 which has a high probability to
appear in the top-k lists, but may not be in the top vector
of tuples or be the top in some positions.

Challenge 2: How can a probabilistic threshold
top-k query be answered efficiently? A näıve method
can examine the top-k list in every possible world, derive the
top-k probability for each uncertain record, and select the
ones passing the threshold. However, it can be very costly
on a large data set where the number of possible worlds can
be huge.

Can the methods for U-Topk and U-kRanks queries [26]
be extended to answer probabilistic threshold top-k queries?
The algorithms in [26] scan the tuples in the ranking de-
scending order and materialize all the possible states based
on the tuples seen so far. A state is a set of possible worlds
which share the top-i tuples and the rest tuples are unknown.
The number of states needs to be maintained is exponential
in the number of tuples searched. In U-Topk query evalua-
tion, the scan stops when there is a top-k tuple vector whose
probability is greater than the upper bound of all other can-
didates. In U-kRanks query answering, the scan stops when
the current answer for each rank is higher than the upper
bound of the rest tuples.

The above algorithms cannot be extended to answer prob-
abilistic threshold top-k queries efficiently because both U-
Topk queries and U-kRanks queries are “rank sensitive”,
which require materializing all the possible states. On the
other hand, a probabilistic threshold top-k query finds the
tuples with a high probability to be in the top-k lists regard-
less of their exact ranks. Thus, there is no need to maintain
as many possible states as in U-Topk query and U-kRanks
query answering. More efficient algorithms are feasible for
answering probabilistic threshold top-k queries.

Our contribution. We develop efficient methods to tackle
the problem. First, we give an exact algorithm which ex-
ploits a few interesting techniques to avoid unfolding all
possible worlds. It finds the exact top-k probability for each
tuple by scanning the sorted list of all tuples only once.
The rule-tuple compression technique is proposed to han-
dle generation rules. Several pruning techniques are pro-
posed to further improve the efficiency using the probability
threshold. Second, we devise a sampling method which can
quickly compute an approximation with quality guarantee
to the answer set by drawing a small sample of the uncer-
tain database. Third, we investigate the statistical proper-
ties of the top-k probability, and derive a general scan stop-
ping condition for query answering algorithms. Moreover, a
Poisson approximation based method is proposed to answer
probabilistic threshold top-k queries in linear time.

The rest of the paper is organized as follows. In Sec-
tion 2, we formulate probabilistic threshold top-k queries.
We review the related work in Section 3. We develop an ex-
act algorithm in Section 4, and devise a sampling method in
Section 5. The statistical properties of the top-k probability,
a general stopping condition of query answering algorithms,
and a Poisson approximation based algorithm are discussed
in Section 6. A systematic empirical evaluation is reported
in Section 7. The paper is concluded in Section 8.



2. PROBABILISTIC THRESHOLD TOP-K
QUERIES

We consider uncertain data in the possible worlds seman-
tics model [1, 16, 23, 8], which has been extensively adopted
by some of the studies on uncertain data processing, such
as [26, 4, 21].

Generally, an uncertain table T contains a set of (uncer-
tain) tuples, where each tuple t ∈ T is associated with a
membership probability value Pr(t) > 0. When there is no
confusion, we also call an uncertain table simply a table.

A generation rule on a table T specifies a set of exclusive
tuples in the form of R : tr1 ⊕ · · · ⊕ trm where tri ∈ T
(1 ≤ i ≤ m) and

�m
i=1 Pr(tri) ≤ 1. The rule R constrains

that, among all tuples tr1 , . . . , trm involved in the rule, at
most one tuple can appear in a possible world.

Following [26, 4], we assume that each tuple is involved
in at most one generation rule. For a tuple t not involved
in any generation rule, we can make up a trivial rule Rt : t.
Therefore, conceptually, an uncertain table T comes with a
set of generation rules RT such that each tuple is involved
in one and only one generation rule in RT . We write t ∈ R
if tuple t is involved in rule R. The probability of a rule is
the sum of the membership probability values of all tuples
involved in the rule, denoted by Pr(R) =

�
t∈R Pr(t).

The length of a rule is the number of tuples involved in the
rule, denoted by |R| = |{t|t ∈ R}|. A generation rule R is a
singleton rule if |R| = 1. R is a multi-tuple rule if |R| > 1.
A tuple is dependent if it is involved in a multi-tuple rule,
otherwise, it is independent.

For a subset of tuples S ⊆ T and a generation rule R,
we denote the tuples involved in R and appearing in S as
R ∩ S. A possible world W is a subset of T such that for
each generation rule R ∈ RT , |R ∩ W | = 1 if Pr(R) = 1,
and |R ∩ W | ≤ 1 if Pr(R) < 1. We denote by W the set of
all possible worlds. Clearly, for an uncertain table T with a
set of generation rules RT , the number of all possible worlds
is

|W| =
�

R∈RT ,Pr(R)=1

|R|
�

R∈RT ,Pr(R)<1

(|R| + 1)

The number of possible worlds on a large table can be huge.
Each possible world is associated with an existence prob-

ability Pr(W ) that the possible world happens. Following
from the basic probability principles, we have

Pr(W ) =
�

R∈RT ,|R∩W |=1

Pr(R ∩ W )
�

R∈RT ,R∩W=∅
(1 − Pr(R))

(1)

Apparently, for a possible world W , Pr(W ) > 0. More-
over,

�
W∈W Pr(W ) = 1.

A top-k query Qk
P,f contains a predicate P , a ranking func-

tion f , and an integer k > 0. When Q is applied on a set of
certain tuples, the tuples satisfying predicate P are ranked
according to ranking function f , and the top-k tuples are re-
turned. For tuples t1 and t2, t1 	f t2 if t1 is ranked higher
than or equal to t2 according to ranking function f . 	f ,
called the ranking order, is a total order on all tuples. We
often denote a top-k query by Qk or Q when the predicate
and the ranking function are unimportant in our discussion.

Since a possible world W is a set of tuples, a top-k query
Q can be applied to W directly. We denote by Qk(W )the
top-k tuples returned by a top-k query Qk on a possible
world W . Qk(W ) contains k tuples.

A probabilistic threshold top-k query (PT-k query for short)
on an uncertain table T consists of a top-k query Q and a
probability threshold p (0 < p ≤ 1). For each possible world
W , Q is applied and a set of k tuples Qk(W ) is returned.
For a tuple t ∈ T , the top-k probability of t is the probability
that t is in Qk(W ) in all W ∈ W, that is,

Prk
Q,T (t) =

�
W∈W,t∈Qk(W )

Pr(W ) (2)

When Q and T are clear from context, we often write Prk
Q,T (t)

as Prk(t) for the interest of simplicity.
The answer set to a PT-k query is the set of all tuples

whose top-k probability values are at least p, that is,

Answer(Q,p, T ) = {t|t ∈ T, Prk
Q,T (t) ≥ p}.

We are interested in how to efficiently compute the answer
set for a PT-k query on an uncertain table.

A näıve method to answer a PT-k query is to enumer-
ate all possible worlds and apply the query to each possible
world. Then, we can compute the top-k probability of each
tuple and select the tuples passing the probability thresh-
old. Unfortunately, the näıve method is inefficient since,
as discussed before, there can be a huge number of possi-
ble worlds on an uncertain table. In [10], Dalvi and Suciu
showed that even the problem of counting all possible worlds
with different top-k lists is #P -Complete. Therefore, enu-
merating all possible worlds is too costly on large uncertain
data sets. That motivates our development of efficient algo-
rithms which avoid searching all possible worlds.

3. RELATED WORK
In this section, we review the highly related work briefly

from three aspects.

3.1 Top-k Queries on Uncertain Data
In [26], Soliman et al. considered ranking queries on un-

certain data as we do here. The answer to a U-Topk query is
always a top-k tuple list in some valid possible worlds, and
the exact positions of the tuples in the list are preserved.
A U-kRanks query finds the tuple of the highest probabil-
ity at each ranking position. The tuples in the results of
a U-kRanks query may not form a valid top-k tuple list in
a possible world, though a U-kRanks query always returns
k tuples. A tuple may appear more than once in the an-
swer set if it has the highest probability values to appear
in multiple ranking positions, respectively. Lian and Chen
developed the spatial and probabilistic pruning techniques
for U-kRanks queries [19].

However, as discussed in Section 1, our study and [26]
assume different semantics of ranking queries. In Section 7.1,
we will further compare PT-k queries, U-Topk queries and
U-kRanks queries using a real data set.

Simultaneously with our study, Yi et al. [29] proposed ef-
ficient algorithms to answer U-Topk queries and U-kRanks
queries. Their algorithm for U-kRanks also uses the Poisson
binomial recurrence [17] which is used in our exact algo-
rithm (see Theorem 2 in Section 4.2). However, the two
studies address different kinds of top-k queries. Moreover,
our unique prefix sharing technique and three pruning tech-
niques can greatly improve the efficiency in answering prob-
abilistic threshold queries. It is worth noting that our al-
gorithm can be used to answer U-kRanks query straight-



forwardly, while their algorithm may not be used to handle
PT-k query directly.

In [22], Ré et al. considered arbitrary SQL queries and
the ranking is on the probability that a tuple satisfies the
query instead of using a ranking function. [22] and our study
address essentially different queries and applications.

Silberstein et al. [24] model each sensor in a sensor network
as an uncertain object whose values follow some unknown
distribution. Then, a top-k query in the sensor network
returns the top-k sensors such that the probability of each
sensor whose values are ranked top-k in any timestep is the
greatest. A sampling-based method collects all values in the
network as a sample at randomly chosen timesteps, and the
answer to a top-k query is estimated using the samples.

The probabilistic threshold top-k queries proposed here
find all tuples whose probability values of being ranked top-
k across all possible worlds pass a probability threshold. The
ordering among the top-k tuples does not matter. The num-
ber of tuples in the answer set can be smaller than, equal
to, or greater than k, depending on the threshold.

Probabilistic threshold top-k queries are substantially dif-
ferent from the existing work on both query type and se-
mantics. Most recently, the concept of probabilistic thresh-
old top-k queries is touched in [15]. However, [15] gives
only a simple and preliminary exact algorithm and may not
be efficient on large uncertain databases. Simultaneously,
Zhang and Chomicki developed the global top-k semantics
on uncertain data which returns k tuples having the largest
probability in the top-k list, and gave a dynamic program-
ming algorithm [30].

3.2 Probabilistic Data and Query Answering
Modeling and querying uncertain data has been a fast

growing research direction [18, 11, 23, 3].
The working model for uncertain data proposed in [23]

describes the existence probability of a tuple in an uncer-
tain data set and the constraints (i.e., exclusiveness) on the
uncertain tuples, which is essentially the uncertain model
adopted in this study.

Cheng et al. [6] provided a general classification of prob-
abilistic queries and evaluation algorithms over uncertain
data sets. Different from the query answering in tradi-
tional data sets, a probabilistic quality estimate was pro-
posed to evaluate the quality of results in probabilistic query
answering. Dalvi and Suciu [9] proposed an efficient al-
gorithm to evaluate arbitrary SQL queries on probabilistic
databases and rank the results by their probability. Later,
they showed in [10] that the complexity of evaluating con-
junctive queries on a probabilistic database is either PTIME
or #P -complete.

Cheng et al. [7] modeled uncertain data as a set of ranges
and the associated probability density functions. Proba-
bilistic threshold queries are proposed on the above model,
which return the results whose confidence is higher than a
user defined threshold. An R-tree based index structure is
proposed to help answer such queries. However, only sim-
ple queries are discussed in [7], which do not include top-k
queries. Tao et al. [27] proposed a U-tree index to facilitate
probabilistic range queries on uncertain objects represented
by multi-dimensional probability density functions. Singh
et al. [25] extended the inverted index and signature tree to
index uncertain categorical data, where the attribute value
of each tuple was represented by a set of alternatives.

3.3 Poisson Approximation
The problem of answering probabilistic threshold top-k

queries is also related to Bernoulli and Poisson trials and the
Poisson binomial distribution in probability and statistics.

A Bernoulli trial is an experiment whose outcome is ran-
domly selected from two possible outcomes, “success” or
“failure”. Let X1, . . . , Xn be n independent Bernoulli ran-
dom trials. For each trial Xi, the success probability is pi

(1 ≤ i ≤ n). The experiment is called Bernoulli trials if the
trials are identical and thus the success probability of all
the trials are the same. Otherwise, the experiment is called
Poisson trials [28].

The sum X =
�n

i=1 Xi is the total number of successes in
n independent Bernoulli trials. X follows a binomial distri-
bution for identical Bernoulli trials, and a Poisson-binomial
distribution for Poisson trials [17]. The exact distribution of
Pr(X = i) can be calculated recursively using the Poisson
binomial recurrence [17].

Given an uncertain table, a generation rule can be viewed
as a Bernoulli trial, if we consider the appearance of a tu-
ple as a “success”. The probability of a rule is the success
probability of the corresponding trial. The probability of a
tuple t to be ranked top-k is the probability that t appears
and there are fewer than k successes appear before t.

Some results of Poisson trials can be used in answering
probabilistic threshold top-k queries. However, the study
of Poisson trials in probability theory does not address the
concerns on efficient query answering for large databases.
Moreover, multi-tuple generation rules pose new challenges.

In our study, we develop several techniques to process gen-
eration rules efficiently. Pruning rules are also proposed to
achieve early stop without scanning the whole table, which
significantly improves the efficiency in query answering.

4. AN EXACT ALGORITHM
In this section, we first observe a useful property of top-k

probability. Then, we propose an exact algorithm to com-
pute top-k probability efficiently.

Hereafter, by default we consider a top-k query Qk
P,f on

an uncertain table T . P (T ) = {t|t ∈ T ∧P (t) = true} is the
set of tuples satisfying the query predicate. P (T ) is also an
uncertain table where each tuple in P (T ) carries the same
membership probability as in T . Moreover, a generation rule
R in T is projected to P (T ) by removing all tuples from
R that are not in P (T ). Then, the problem of answering
the PT-k query is to find the tuples in P (T ) whose top-k
probability values pass the probability threshold.

P (T ) contains all tuples satisfying the query, as well as the
membership probabilities and the generation rules. Remov-
ing tuples not in P (T ) does not affect the answer to a top-k
query. Therefore, Answer(Q,p, T ) = Answer(Q,p, P (T )).
We only need to consider P (T ) in answering a top-k query.

4.1 The Dominant Set Property
For a tuple t ∈ P (T ) and a possible world W such that

t ∈ W , whether t ∈ Qk(W ) depends only on how many
other tuples in P (T ) ranked higher than t appear in W .
Technically, for a tuple t ∈ P (T ), the dominant set of t is
the subset of tuples in P (T ) that are ranked higher than t,
i.e., St = {t′|t′ ∈ P (T ) ∧ t′ ≺f t}.

Theorem 1 (Dominant set). For a tuple t ∈ T ,
Prk

Q,T (t) = Prk
Q,St

(t).



TID t1 t2 t3 t4 t5 t6 t7 t8 t9
Prob. 0.7 0.2 1 0.3 0.5 0.8 0.1 0.8 0.1

Table 4: The ranked list of uncertain tuples.

Proof sketch. The theorem follows with Equations 1 and 2,
and the assumption that each tuple is involved in only one
generation rule.

Using the dominant set property, the PT-k query answer-
ing algorithm developed in the rest of this section scans the
tuples in P (T ) in the ranking order, and derives the top-
k probability of a tuple t based on the tuples preceding t
in the ranking order. Generation rules involving multiple
tuples are handled by the rule-tuple compression technique.
The probability threshold is used to prune tuples whose top-
k probability values fail the threshold.

4.2 The Basic Case
In this subsection, we consider the basic case where all

tuples are independent. Let L = t1 · · · tn be the list of all
tuples in table P (T ) in the ranking order. Then, in a possible
world W , a tuple ti ∈ W (1 ≤ i ≤ n) is ranked at the j-th
(j > 0) position if and only if exactly (j − 1) tuples in the
dominant set Sti = {t1, . . . , ti−1} also appear in W .

The position probability Pr(ti, j) is the probability that
tuple ti is ranked at the j-th position in possible worlds.
Moreover, the subset probability Pr(Sti , j) is the probability
that j tuples in Sti appear in possible worlds.

Trivially, we have Pr(∅, 0) = 1 and Pr(∅, j) = 0 for 0 <
j ≤ n. Then,

Pr(ti, j) = Pr(ti)Pr(Sti , j − 1) (3)

Apparently, the top-k probability of ti is given by

Prk(ti) =

k�
j=1

Pr(ti, j) = Pr(ti)

k�
j=1

Pr(Sti , j − 1) (4)

Particularly, when i ≤ k, we have Prk(ti) = Pr(ti).

Theorem 2. In the basic case, for 1 ≤ i, j ≤ |T |,
Pr(Sti , 0) = Pr(Sti−1 , 0)(1 − Pr(ti)) =

�i
j=1(1 − Pr(ti)),

and Pr(Sti , j) = Pr(Sti−1 , j − 1)Pr(ti) + Pr(Sti−1 , j)(1 −
Pr(ti)).
Proof sketch. In the basic case, all tuples are independent.
The theorem follows with the basic probability principles. It
is also called the Poisson binomial recurrence in [17].

Theorem 2 can be used to compute the top-k probability
values efficiently, as illustrated in the following example.

Example 2 (The basic case). Consider a top-k query
Q3(true, f). Suppose f ranks the tuples in an uncertain table
T into a list L as in Table 4. Apparently, Sti = L[1..i − 1].
In this example, we assume all tuples are independent.

To compute the top-3 probability of each tuple, we first
initialize Pr(∅, 0) = 1, Pr(∅, 1) = 0 and Pr(∅, 2) = 0. Then,
we scan the ranked list.

For tj (1 ≤ j ≤ 3), Pr3(tj) = Pr(tj). Thus, Pr3(t1) =
0.7, Pr3(t2) = 0.2, and Pr3(t3) = 1.

To compute Pr3(t4), we first compute Pr(St3 , 0) = 0,
Pr(St3 , 1) = 0.24, and Pr(St3 , 2) = 0.62 using Theorem 2.

Then, according to Equation 4, we have

Pr3(t4) = Pr(t4)(Pr(St3 , 0) + Pr(St3 , 1) + Pr(St3 , 2))
= 0.258.

4.3 Handling Generation Rules
In the basic case, Theorem 2 can be used to compute the

top-k probability values for all tuples in time O(kn), where
n is the number of tuples in the uncertain table. However, a
general case may contain some multi-tuple generation rules.

Suppose tuples t1, . . . , tn ∈ P (T ) are in the ranking order.
For a tuple ti, two situations due to the presence of multi-
tuple generation rules complicate the computation.

First, there may be a rule R such that some tuples involved
in R are ranked higher than ti. Those tuples cannot appear
together in a possible world. To compute subset probability
Pr(Sti , j) correctly, we need to make sure that rule R is
respected.

Second, ti itself may be involved in a generation rule R,
and cannot appear together in a possible world with any
other tuples involved in the same rule.

In both cases, some tuples in Sti are dependent and thus
Theorem 2 cannot be applied directly. Can dependent tuples
in Sti be transformed to independent ones so that Theorem 2
can still be used?

4.3.1 Rule-Tuple Compression
Consider P (T ) = t1 · · · tn in the ranking order, i.e., ti 	f

tj for i < j. Let us compute Prk(ti) for a tuple ti ∈ P (T ).
A multi-tuple generation rule R : tr1 ⊕ · · · ⊕ trm (1 ≤ r1 <
· · · < rm ≤ n) can be handled in one of the following cases
(see Figure 1 for illustration.)

Case 1: ti 	f tr1 , i.e., ti is ranked higher than or equal to
all tuples in R. According to Theorem 1, R can be ignored.

Case 2: trm ≺f ti, i.e., ti is ranked lower than all tuples
in R. R is called completed with respect to ti. At most
one tuple in R can appear in a possible world. According to
Theorem 1, we can combine all tuples in R into a rule-tuple
tR with membership probability Pr(R).

Corollary 1 (Rule-tuple compression). For a tu-
ple t ∈ P (T ) and a multi-tuple rule R, if ∀t′ ∈ R, t′ ≺f t,
then Prk

Q,T (t) = Prk
Q,T (R)(t) where T (R) = (T − {t|t ∈

R}) ∪ {tR}, tuple tR takes any value such that tR ≺f t,
Pr(tR) = Pr(R), and other generation rules in T remain
the same in T (R).

Case 3: tr1 ≺f ti 	f trm , i.e., ti is ranked in between
tuples in R. R is called open with respect to ti. Among the
tuples in R ranked better than ti, let trm0

∈ R be the lowest
ranked tuple i.e.,

rm0 =
m

max
l=1

{rl < i}.

The tuples involved in R can be divided into two parts:
Rleft = {tr1 , . . . , trm0

} and Rright = {trm0+1, . . . , trm}.
Prk(ti) is affected by tuples in Rleft only and not by those
in Rright.

Two subcases may arise. First, if ti �∈ R, similar to
Case 2, we can compress all tuples in Rleft into a rule-tuple
tr1,...,rm0

where membership probability Pr(tr1,...,rm0
) =�m0

j=1 Pr(trj ), and compute Prk(ti) using Corollary 1.
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Figure 1: Computing Prk(ti) for one tuple ti.

Second, if ti ∈ R, i.e., ti = trm0+1, in a possible world
where ti appears, any tuples in R cannot appear. Thus, to
determine Prk(ti), according to Theorem 1, we only need to
consider the tuples ranked higher than ti and not in R, i.e.,
Sti − {t′|t′ ∈ R}.

Corollary 2 (Tuple in rule). For a tuple t ∈ R such
that P (t) = true and |R| > 1, Prk

Q,T (t) = Prk
Q,T ′(t) where

uncertain table T ′ = (Sti − {t′|t′ ∈ R}) ∪ {t}.

For a tuple t and its dominant set St, we can check t
against the multi-tuple rules one by one. Each multi-tuple
rule can be handled by one of the above three cases, and the
dependent tuples in St can be either compressed into some
rule-tuples or removed due to the involvement in the same
rule as t. After the rule-tuple compression, the resulting set
is called the compressed dominant set of t, denoted by T (t).
Based on the above discussion, for a tuple t ∈ P (t), all tuples
in T (t) ∪ {t} are independent, Prk

Q,T (t) = Prk
Q,T (t)∪{t}(t).

We can apply Theorem 2 to calculate Prk(t) by scanning
T (t) once.

Example 3 (Rule-tuple compression). Consider the
uncertain table and the top-k query in Example 2 again.
Now, suppose we have two multi-tuple generation rules: R1 =
t2⊕t4⊕t9 and R2 = t5⊕t7. Let us consider how to compute
Pr3(t6) and Pr3(t7).

Tuple t6 is ranked between tuples in R1, but t6 �∈ R1. The
first subcase of Case 3 should be applied. Thus, we compress
R1left = {t2, t4} into a rule-tuple t2,4 with membership prob-
ability Pr(t2,4) = Pr(t2)+Pr(t4) = 0.5. Similarly, t6 is also
ranked between tuples in R2 and t6 �∈ R2, but R2left = {t5}.
The compression does not remove any tuple. After the com-
pression, we compute Pr3(t6) using T (t6) = {t1, t2,4, t3, t5}.
The tuples in T (t6)∪{t6} are independent. We apply Theo-
rem 2 as illustrated in Example 2 to obtain Pr3(t6) = 0.32.

Since t7 ∈ R2, the tuples in R2 except for t7 itself should
be removed. Thus, we have T (t7) = {t1, t2,4, t3, t6}. We get
Pr3(t6) = 0.025 on T (t7) ∪ {t7}.

We can sort all tuples in P (T ) into a sorted list L in the
ranking order. For each tuple ti, by one scan of the tuples
in L before ti, we obtain the compressed dominant set T (ti)
where all tuples are independent. Then, we can compute
Prk(ti) on T (ti) ∪ {ti} using Theorem 2. In this way, the
top-k probability for all tuples can be computed in O(kn2)
time where n is the number of tuples in the uncertain table.

4.3.2 Scan Reduction by Prefix Sharing

Example 4 (Example 3 revisited). In Example 3, t6
and t7 are neighbors in the sorted list L. However, since t5 is
in T (t6) but not in T (t7), the subset probabilities Pr(T (t6), j)
(0 ≤ j ≤ 2) cannot be used in calculating Prk(t7).

However, T (t6) and T (t7) share the subset {t1, t2,4, t3}.
The subset probability values Pr(St3 , j) computed using T (t6)
can be reused for T (t7). In other words, by sharing the pre-
fix between the two compressed dominant sets, we can reduce
the cost of computing subset probability, which is the major
cost in top-k probability computation.

Equation 4 indicates that, to compute Prk(ti) using sub-
set probability Pr(Sti−1 , j), the order of tuples in Sti−1 does
not matter. This gives us the space to order the tuples in
compressed dominant sets of different tuples so that the pre-
fixes and the corresponding subset probability values can be
shared as much as possible.

How can we achieve good sharing? Consider the list L =
t1 · · · tn of all tuples in P (T ) and a tuple ti in L. Two
observations may help the reordering.

First, for a tuple t that is independent or is a rule-tuple of
a completed rule with respect to ti (Case 2 in Section 4.3.1),
t is in T (t′) for any tuple t′ �f ti. Thus, t should be ordered
before any rule-tuple of a rule open with respect to ti (Case 3
in Section 4.3.1).

Second, there can be multiple rules open with respect to
ti. Each such a rule Rj has a rule-tuple tRjleft

, which will

be combined with the next tuple t′ ∈ Rj to update the rule-
tuple. Thus, if t′ is close to ti, tRjleft

should be ordered

close to the rear so that the rule-tuple compression affects
the shared prefix as little as possible. In other words, those
rule-tuples of rules open with respect to ti should be ordered
in their next tuple indices descending order.

An aggressive method to reorder the tuples is to always
put all independent tuples and rule-tuples of completed rules
before rule-tuples of open rules, and order rule-tuples of open
rules according to their next tuples in the rules. On the
contrary, a lazy method always reuses the maximum common
prefix in T (ti−1), and reorders only the tuples not in the
common prefix using the above two observations.

Example 5 (Reordering). Figure 2 shows a list of
tuples in an uncertain table T in the ranking order with
respect to a top-k query. There are two multi-tuple rules
R1 : t1 ⊕ t2 ⊕ t8 ⊕ t11 and R2 : t4 ⊕ t5 ⊕ t10. The compressed
dominant sets of tuples in the orders made by the aggressive
method and the lazy method are also listed in the figure.



t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11
R1

R2
A sorted list of tuples in P(T)

tuple Aggressive reordering Lazy reordering
Prefix Cost Prefix Cost

t1 ∅ 0 ∅ 0
t2 ∅ 0 ∅ 0
t3 t1,2 1 t1,2 1
t4 t3t1,2 2 t1,2t3 1
t5 t3t1,2 0 t1,2t3 0
t6 t3t4,5t1,2 2 t1,2t3t4,5 1
t7 t3t6t4,5t1,2 3 t1,2t3t4,5t6 1
t8 t3t6t7t4,5 2 t3t6t7t4,5 4
t9 t3t6t7t1,2,8t4,5 2 t3t6t7t4,5t1,2,8 1
t10 t3t6t7t9t1,2,8 2 t3t6t7t9t1,2,8 2
t11 t3t6t7t9t4,5,10 1 t3t6t7t9t4,5,10 1

Total cost: 15 Total cost: 12

Figure 2: Comparison of two reordering methods.

The two methods order the compressed dominant sets in
the same way for t1, t2 and t3.

For t4, the aggressive method orders t3, an independent
tuple, before t1,2, the rule-tuple for rule R1 which is open
with respect to t4. The subset probability values computed in
T (t3) cannot be reused. The lazy method reuses the prefix
t1,2 from T (t3), and appends t3 after t1,2. All subset proba-
bility values computed in T (t3) can be reused.

Contrarily, the lazy method reorders only tuples not in the
maximum common prefix. For example, for t8, t1,2 is not in
T (t8) and thus no subset probability values computed in T (t7)
by the lazy method can be reused. Then, the lazy method
reorders the tuples in T (t8) by putting the independent tuples
before the rule-tuples of open rules.

For two consecutive tuples ti and ti+1 in the sorted list
L of all tuples in P (T ), let L(ti) and L(ti+1) be the sorted
lists of the tuples in T (ti) and T (ti+1), respectively, given
by a reordering method such as the aggressive method and
the lazy method. Let Prefix(L(ti), L(ti+1)) be the longest
common prefix between L(ti) and L(ti+1). The total number
of subset probability values needed to be calculated is

Cost =

n−1�
i=1

(|L(ti+1)| − |Prefix(L(ti), L(ti+1))|) (5)

In Example 5, Costaggressive = 15 and Costlazy = 12.
We can show that the lazy method is never worse than the
aggressive method. Limited by space, we omit the details
here. In our experiments, the lazy method shows a great
advantage against the aggressive method.

4.4 Pruning Techniques
So far, we implicitly have a requirement: all tuples satis-

fying the predicate in the PT-k query, i.e., P (T ), should be
sorted in the ranking order. However, a PT-k query is inter-
ested in only those tuples whose top-k probabilities pass the
probability threshold. Can we avoid retrieving or checking
all tuples satisfying the query predicates?

Some existing methods such as the well known TA algo-
rithm [12] can retrieve in batch tuples satisfying the pred-

icate in the ranking order. Using such a method, we can
retrieve tuples in P (T ) progressively. Now, the problem be-
comes how we can use the tuples seen so far to prune some
tuples ranked lower in the ranking order.

Hereafter, by default we consider a PT-k query with prob-
ability threshold p. We give four pruning rules: Theorems 3
and 4 can avoid checking some tuples that cannot satisfy
the probability threshold, and Theorems 5 and 6 specify
stopping conditions. The tuple retrieval method ( e.g., an
adaption of the TA algorithm [12]) uses the pruning rules in
the retrieval. Once it can determine all remaining tuples in
P (T ) fail the probability threshold, the retrieval can stop.

Please note that we still have to retrieve a tuple t failing
the probability threshold if some tuples ranked lower than t
may satisfy the threshold, since t may be in the compressed
dominant sets of those promising tuples.

Theorem 3 (Pruning by membership probability).

Prk(t) ≤ Pr(t). Moreover, for an independent tuple t, if
Prk(t) < p, then (1) for any independent tuple t′ such that
t 	f t′ and Pr(t′) ≤ Pr(t), Prk(t′) < p; and (2) for any
multi-tuple rule R such that t is ranked higher than all tuples
in R and Pr(R) ≤ Pr(t), Prk(t′′) < p for any t′′ ∈ R.

To use Theorem 3, we maintain the largest membership
probability pmember of all independent tuples and rule-tuples
for completed rules checked so far whose top-k probability
values fail the probability threshold. All tuples identified by
the above pruning rule should be marked failed.

A tuple involved in a multi-tuple rule may be pruned using
the other tuples in the same rule.

Theorem 4 (Pruning by tuples in the same rule).

For tuples t and t′ in the same multi-tuple rule R, if t 	f t′,
Pr(t) ≥ Pr(t′), and Prk(t) < p, then Prk(t′) < p.

Based on the above pruning rule, for each rule R open
with respect to the current tuple, we maintain the largest
membership probability of the tuples seen so far in R whose
top-k probability values fail the threshold. Any tuples in R
that have not been seen should be tested against this largest
membership probability.

Our last pruning rule is based on the observation that the
sum of the top-k probability values of all tuples is exactly
k. That is

�
t∈T Prk(t) = k.

Theorem 5 (Pruning by total top-k probability).

Let A be a set of tuples whose top-k probability values have
been computed. If

�
t∈A Prk(t) > k−p, then for every tuple

t′ �∈ A, Prk(t′) < p.

Moreover, we have a tight stopping condition as follows.

Theorem 6 (A tight stopping condition). Let
t1, . . . , tm, . . . , tn be the tuples in the ranking order. Assume
L = t1, . . . , tm are read. Let LR be the set of open rules with
respect to tm+1. For any tuple ti (i > m),

1. if ti is not in any rule in LR, the top-k probability of

ti Prk(ti) ≤
k−1�
j=0

Pr(L, j).

2. if ti is in a rule in LR, the top-k probability of ti

Prk(ti) ≤ max
R∈LR

(1 − Pr(tRleft))
k−1�
j=0

Pr(L − tRleft , j).



Input: an uncertain table T , a set of generation rules RT , a
top-k query Qk

P,f , and a probability threshold p;
Output: Answer(Q,p, T );
Method:
1: retrieve tuples in P (T ) in the ranking order one by one,

for each ti ∈ P (T ) do
2: compute T (ti) by rule-tuple compression;
3: compute subset probability values and Prk(ti);
4: if Prk(ti) ≥ p then output ti;
5: check whether ti can be used to prune future tuples;
6: if all remaining tuples in P (T ) fail the probability

threshold then exit;
end for

Figure 3: The exact algorithm.

Proof. For item (1), consider the compressed dominant set
T (ti) of ti. L ⊆ T (ti). Therefore,

Prk(ti) = Pr(ti)

k−1�
j=0

Pr(T (ti), j) ≤
k−1�
j=0

Pr(L, j).

The equality holds if tuple tm+1 is independent with mem-
bership probability 1.

For item (2), suppose ti is involved in an open rule R ∈
LR. Pr(ti) ≤ 1− Pr(tRleft). Moreover, for the compressed
dominant set T (ti) of ti, (L − tRleft) ⊆ T (ti). Therefore,

Prk(ti) = Pr(ti)
�k−1

j=0 Pr(T (ti), j)

≤ (1 − Pr(tRleft))
�k−1

j=0 Pr(L − tRleft , j)

The equality holds when tuple tm+1 is involved in rule R′

with membership probability 1 − Pr(tR′
left

), where

R′ = arg max
R∈LR

(1 − Pr(tRleft))

k−1�
j=0

Pr(L − tRleft , j).

Theorem 6 provides the upper bounds for tuples that have
not been seen yet. If the upper bounds are both lower than
the probability threshold p, then the unseen tuples do not
need to be checked.

In summary, the exact algorithm for PT-k query answer-
ing is shown in Figure 3. We analyze the complexity of the
algorithm as follows.

For a multi-tuple rule R : tr1 ⊕· · ·⊕trm where tr1 , . . . , trm

are in the ranking order, let span(R) = rm − r1. When
tuple trl (1 < l ≤ m) is processed, we need to remove rule-
tuple tr1,...,rl−1 , and compute the subset probability values
of the updated compressed dominant sets. When the next
tuple not involved in R is processed, tr1,...,rl−1 and trl are
combined. Thus, in the worst case, each multi-tuple rule
causes the computation of O(2k·span(R)) subset probability
values. Moreover, in the worst case where each tuple P (T )
passes the probability threshold, all tuples in P (T ) have to
be read at least once. The time complexity of the whole
algorithm is O(kn + k

�
R∈RT

span(R)).
As indicated by our experimental results, in practice the

four pruning rules are effective. Often, only a very small por-
tion of the tuples in P (T ) are retrieved and checked before
the exact answer to a PT-k query is obtained.

5. A SAMPLING METHOD
One may trade off the accuracy of answers against the

efficiency. In this section, we present a simple yet effective
sampling method.

For a tuple t, let Xt be a random variable as an indicator
to the event that t is ranked top-k in possible worlds. Xt =
1 if t is ranked in the top-k list, and Xt = 0 otherwise.
Apparently, the top-k probability of t is the expectation of
Xt, i.e., Prk(t) = E[Xt]. Our objective is to draw a set of
samples S of possible worlds, and compute the mean of Xt

in S, namely ES[Xt], as the approximation of E[Xt].
We use uniform sampling with replacement. For table T =

{t1, . . . , tn} and the set of generation rules RT , a sample unit
(i.e., an observation) is a possible world. We generate the
sample units under the distribution of T : to pick a sample
unit s, we scan T once. An independent tuple ti is included
in s with probability Pr(ti). For a multi-tuple generation
rule R : tr1 ⊕ · · · ⊕ trm , s takes a probability of Pr(R) to
include one tuple involved in R. If s takes a tuple in R, then

tuple trl (1 ≤ l ≤ m) is chosen with probability
Pr(trl

)

Pr(R)
. s

can contain at most 1 tuple from any generation rule.
Once a sample unit s is generated, we compute the top-k

tuples in s. For each tuple t in the top-k list, Xt = 1. The
indicators for other tuples are set to 0.

The above sample generation process can be repeated so
that a sample S is obtained. Then, ES[Xt] can be used to
approximate E[Xt]. When the sample size is large enough,
the approximation quality can be guaranteed following from
the well known Chernoff-Hoeffding bound [2].

Theorem 7 (Sample size). For any δ (0 < δ < 1), ε
(ε > 0), and a sample S of possible worlds, if

|S| ≥ 3 ln 2
δ

ε2

then for any tuple t,

Pr{|ES[Xt] − E[Xt]| > εE[Xt]} ≤ δ.

We can implement the sampling method efficiently using
the following two techniques, as verified by our experiments.

First, we can sort all tuples in P (T ) in the ranking order
into a sorted list L. The first k tuples in a sample unit
are the top-k answers in the unit. Thus, when generating
a sample unit, instead of scanning the whole table T , we
only need to scan L from the beginning and generate the
tuples in the sample as described before. However, once the
sample unit has k tuples, the generation of this unit can
stop. In this way, we reduce the cost of generating sample
units without losing the quality of the sample. For example,
when all tuples are independent, if the average membership
probability is µ, the expected number of tuples we need to
scan to generate a sample unit is � k

µ
�, which can be much

smaller than |P (T )| when k � |P (T )|.
Second, in practice, the actual approximation quality may

converge well before the sample size reaches the bound given
in Theorem 7. Thus, progressive sampling can be adopted:
we generate sample units one by one and compute the esti-
mated top-k probability of tuples after each unit is drawn.
For given parameters d > 0 and φ > 0, the sampling process
stops if in the last d sample units the change of the estimated
Xt for any tuple t is smaller than φ.



6. A POISSON APPROXIMATION BASED
METHOD

In this section, we further analyze the properties of top-k
probability from the statistics aspect, and derive a general
stopping condition for query answering algorithms which de-
pends on parameter k and threshold p only and is indepen-
dent from data set size. We also devise an approximation
method based on the Poisson approximation.

6.1 Distribution of Top-k Probability
Let X1, . . . , Xn be a set of independent random variables,

such that Pr(Xi = 1) = pi and Pr(Xi = 0) = 1 − pi

(1 ≤ i ≤ n). Let X =
�n

i=1 Xi. Then, E[X] =
�n

i=1 pi. If
all pi’s are identical, X1, . . . , Xn are called Bernoulli trials,
and X follows a binomial distribution; otherwise, X1, . . . , Xn

are called Poisson trials, and X follows a Poisson binomial
distribution.

For a tuple t ∈ P (T ), according to Equation 4, the top-k
probability of t is

Prk(t) = Pr(t)

k�
j=1

Pr(T (t), j − 1),

where Pr(t) is the membership probability of t, T (t) is the
compressed dominant set of t. Moreover, the probability
that fewer than k tuples appear in T (t) is

k�
j=1

Pr(T (t), j − 1).

If there is any tuple or rule-tuple with probability 1, we
can remove the tuple from T (t), and compute the top-(k−1)
probability of t. Thus, we can assume that the membership
probability of any tuple or rule-tuple in T (t) is smaller than
1.

To compute Prk(t), we construct a set of Poisson trials
corresponding to T (t) as follows. For each independent tuple
t′ ∈ T (t), we construct a random trial Xt′ whose success
probability Pr(Xt′ = 1) = Pr(t′). For each multi-tuple
rule R (R ∩ T (t) �= ∅), we combine the tuples in R ∩ T (t)
into a rule-tuple tR such that Pr(tR) =

�
t′∈R∩T (t) Pr(t′),

and construct a random trial XtR whose success probability
Pr(XtR = 1) = Pr(tR).

Let X1, . . . , Xn be the resulting trials. Since the inde-
pendent tuples and rule-tuples in T (t) are independent and
their membership probabilities vary in general, X1, . . . , Xn

are independent and have unequal success probability val-
ues. They are Poisson trials. Let X =

�n
i=1 Xi, then

Pr(T (t), j) = Pr(X = j) (0 ≤ j ≤ n) where Pr(X = j)
is the probability of j successes. Thus, the probability that
t is ranked the k-th is Pr(t, k) = Pr(t)Pr(X = k − 1).
Moreover, the top-k probability of t is given by

Prk(t) = Pr(t)Pr(X < k)

X follows the Poisson binomial distribution. Therefore,
Pr(t, k) also follows the Poisson binomial distribution, and
Prk(t) follows the cumulative distribution function of Pr(t, k).

In a Poisson binomial distribution X, The probability den-
sity of X is unimodal (i.e., first increasing then decreasing),
and attains its maximum at µ = E[X] [14]. Therefore, when
the query parameter k varies from 1 to |T (t)| + 1, Pr(t, k)
follows the similar trend.

Corollary 3 (Distribution of position probability).

For a tuple t ∈ P (T ),

1. Pr(t, k) = 0 for k > |T (t)| + 1;

2. Pr(t, k) < Pr(t, k + 1) for k ≤ µ − 1, and Pr(t, k) >
Pr(t, k + 1) for k ≥ µ; and

3.

arg
|T (t)|+1
max
j=1

Pr(t, j) = µ + 1,

where µ =
�

t′∈T (t) Pr(t′).

6.2 A General Stopping Condition
Corollary 3 shows that, given a tuple t and its compressed

dominant set T (t), the most possible ranks of t are around
µ + 1. In other words, if k � µ + 1, then the top-k proba-
bility of t is small. Now, let us use this property to derive
a general stopping condition for query answering algorithms
progressively reading tuples in the ranking order. That is,
once the stopping condition holds, all unread tuples cannot
satisfy the query and can be pruned. The stopping condi-
tion is independent from the number of tuples in the data
set, and dependent on only the query parameter k and the
probability threshold p.

Theorem 8 (A General Stopping Condition).

Given a top-k query Qk(P, f) and probability threshold p, for
a tuple t ∈ P (T ), let µ =

�
t′∈T (t) Pr(t′). Then, Prk(t) < p

if

µ ≥ k + ln
1

p
+

�
ln2 1

p
+ 2k ln

1

p
.

To prove Theorem 8, we need Theorem 4.2 in [20].

Lemma 1 (Chernoff Bound of Poisson Trials [20]).

Let X1, . . . , Xn be independent Poisson trials such that, for
1 ≤ i ≤ n, Pr[Xi = 1] = pi, where 0 < pi < 1. Then, for
X =

�n
i=1 Xi, µ = E[X] =

�n
i=1 pi, and 0 < ε ≤ 1, we

have

Pr[X < (1 − ε)µ] < e−
µε2
2 .

Proof of Theorem 8. As discussed in Section 6.1, we can
construct a set of Poisson trials corresponding to the tuples
in T (t) such that, for each tuple or rule-tuple t′ ∈ T (t),
there is a corresponding trial whose success probability is
the same as Pr(t′). Moreover,

k−1�
j=0

Pr(T (t), j) = Pr[X < k].

For 0 < ε ≤ 1, inequality Pr[X < k] ≤ Pr[X < (1 − ε)µ]
holds when

k ≤ (1 − ε)µ (6)

Using Lemma 1, we have

Pr[X < k] ≤ Pr[X < (1 − ε)µ] < e−
µε2
2

Pr[X < k] < p holds if

e−
µε2
2 ≤ p (7)



Combining Inequality 6 and 7, we get

2 ln
1

p
≤ µ(1 − k

µ
)2

The inequality in Theorem 8 is the solution to the above
inequality.

Since µ =
�

t′∈T (t) Pr(t′), the µ value is monotonically
increasing if tuples are sorted in the ranking order. Using
Theorem 8 an algorithm can stop and avoid retrieving fur-
ther tuples in the rear of the sorted list if the µ value of the
current tuple satisfies the condition in Theorem 8.

The value of parameter k is typically set to much smaller
than the number of tuples in the whole data set. Moreover,
since a user is interested in the tuples with a high probability
to be ranked in top-k, the probability threshold p is often
not too small. Consequently, µ is often a small value. For
example, if k = 100, p = 0.3, then the stopping condition is
µ ≥ 117.

In the experiments, we show in Figure 4 that the exact
algorithm and the sampling algorithm stop close to the gen-
eral stopping condition. The results verify the tightness of
the stopping condition.

6.3 A Poisson Approximation Based Method
When the success probability is small and the number of

Poisson trials is large, Poisson binomial distribution can be
approximated well by Poisson distribution [13].

For a set of Poisson trials X1, . . . , Xn such that Pr(Xi =
1) = pi, let X =

�n
i=1 Xi. X follows a Poisson binomial

distribution. Let µ = E[X] =
�n

i=0 pi. The probability of
X = k can be approximated by Pr(X = k) ≈ f(k; µ) =
µk

k!
e−µ, where f(k; µ) is the Poisson probability mass func-

tion. Thus, the probability of X < k can be approximated
by

Pr(X < k) ≈ F (k;µ) =
Γ(�k + 1�, µ)

�k�! ,

where F (k; µ) is the cumulative distribution function corre-
sponding to f(k; µ), and Γ(x, y) =

�∞
y

tx−1e−tdt is the up-

per incomplete gamma function. Theoretically, Le Cam [5]
showed that the quality of the approximation has the fol-
lowing upper bound.

sup
0≤l≤n

�����
l�

k=0

Pr(X = k) −
l�

k=0

f(k; µ)

����� ≤ 9max
i

{pi}

The above upper bound depends on only the maximum
success probability in the Poisson trials. In the worst case
where maxi{pi} = 1, the error bound is very loose. However,
our experimental results (Figure 7) show that the Poisson
approximation method achieves very good approximation
quality in practice.

To use Poisson approximation to evaluate a top-k query
Qk(P, f), we scan the tuples in P (T ) in the ranking order.
The sum of membership probabilities of the scanned tuples
is maintained in µ. Moreover, for each generation rule R,
let Rleft be the set of tuples in R that are already scanned.
Correspondingly, let µR be the sum of membership proba-
bilities of the tuples in Rleft.

When a tuple t is scanned, if t is an independent tuple,
then the top-k probability of t can be estimated using

Pr(t)F (k − 1; µ) = Pr(t)
Γ(k, µ)

(k − 1)!
.

If t belongs to a generation rule R, then the top-k probability
of t can be estimated by

Pr(t)F (k − 1; µ′) = Pr(t)
Γ(k, µ′)
(k − 1)!

,

where µ′ = µ − µR. t is output if the estimated proba-
bility Prk(t) passes the probability threshold p. The scan
stops when the general stopping condition in Theorem 8 is
satisfied.

In the Poisson approximation based method, we need to
maintain the running µ and µR for each open rule R. Thus,
the space requirement of the Poisson approximation based
method is O(|RT | + 1), where RT is the set of generation
rules. The time complexity is O(n′), where n′ is the num-
ber of tuples read before the general stopping condition is
satisfied, which depends on parameter k, probability thresh-
old p and the probability distribution of the tuples and is
independent from the size of the uncertain table.

7. EXPERIMENTAL RESULTS
We conducted a systematic empirical study using a real

data set and some synthetic data sets on a PC computer with
a 3.0 GHz Pentium 4 CPU, 1.0 GB main memory, and a 160
GB hard disk, running the Microsoft Windows XP Profes-
sional Edition operating system. Our algorithms were imple-
mented in Microsoft Visual C++ V6.0. The executable code
of our algorithms and the source code of the data generator
are available at http://www.cs.sfu.ca/~jpei/software.

htm.

7.1 Results on IIP Iceberg Database
We use the International Ice Patrol (IIP) Iceberg Sightings

Database (http://nsidc.org/data/g00807.html) to exam-
ine the effectiveness of top-k queries on uncertain data in
real applications. The International Ice Patrol (IIP) Iceberg
Sightings Database collects information on iceberg activities
in the North Atlantic. The mission is to monitor iceberg
danger near the Grand Banks of Newfoundland by sight-
ing icebergs (primarily through airborne Coast Guard re-
connaissance missions and information from radar and satel-
lites), plotting and predicting iceberg drift, and broadcasting
all known ice to prevent icebergs threatening.

In the database, each sighting record contains the sighting
date, sighting location (latitude and longitude), number of
days drifted, etc. Among them, the number of days drifted
is derived from the computational model of the IIP, which is
crucial in determining the status of icebergs. It is interesting
to find the icebergs drifting for a long period.

However, each sighting record in the database is associ-
ated with a confidence level according to the source of sight-
ing, including: R/V (radar and visual), VIS (visual only),
RAD(radar only), SAT-L(low earth orbit satellite), SAT-M
(medium earth orbit satellite) and SAT-H (high earth or-
bit satellite). In order to quantify the confidence, we assign
confidence values 0.8, 0.7, 0.6, 0.5, 0.4 and 0.3 to the above
six confidence levels, respectively.

Moreover, generation rules are defined in the following
way. For the sightings with the same time stamp, if the
sighting locations are very close – differences in latitude and
longitude are both smaller than 0.01 (i.e.,0.02 miles), they
are considered referring to the same iceberg, and only one
of the sightings is correct. All tuples involved in such a
sighting form a multi-tuple rule. For a rule R : tr1 ⊕ · · · ⊕



Rank 1 2 3 4 5 6 7 8 9 10
Tuple R1 R2 R3 R5 R6 R9 R9 R11 R11 R18

Probability at this rank 0.8 0.64 0.512 0.348 0.328 0.258 0.224 0.234 0.158 0.163

Table 5: The answers to the U-kRanks query.

Tuple R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R14 R18
Drifted days 435.8 341.7 335.7 323.9 284.7 266.8 259.5 240.4 233.6 233.3 232.6 230.9 229.3

Membership prob. 0.8 0.8 0.8 0.6 0.8 0.8 0.4 0.15 0.8 0.7 0.8 0.6 0.8
Top-10 prob. 0.8 0.8 0.8 0.6 0.8 0.8 0.4 0.15 0.8 0.7 0.79 0.52 0.359

Table 6: Some tuples in the IIP Iceberg Sightings Database 2006.

trm , Pr(R) is set to the maximum confidence among the
membership probability values of tuples in the rule. Then,
the membership probability of a tuple is adjusted to

Pr(trl) =
conf(trl )�

1≤i≤m conf(tri)
Pr(R) (1 ≤ l ≤ m)

, where conf(trl ) is the confidence of trl . After the above
preprocessing, the database contains 4, 231 tuples and 825
multi-tuple rules. The number of tuples involved in a rule
varies from 2 to 10. We name the tuples in the number of
drifted days descending order. For example, tuple R1 has
the largest value and R2 has the second largest value on the
attribute.

We applied PT-k query, U-TopK query and U-KRanks
query on the database by setting k = 10 and p = 0.5.
The ranking order is the number of drifted days descend-
ing order. The PT-k query returns a set of 10 objects
{R1, R2, R3, R4, R5, R6, R9, R10, R11, R14}. The U-Topk
query returns a vector 〈R1, R2, R3, R4, R5, R6, R7, R9, R10,
R11〉 with probability 0.0299. The U-kRanks query returns
10 tuples as shown in Table 5. The probability values of
the tuples at the corresponding ranks are also shown in the
table. To understand the answers, in Table 6 we also list
the membership probability values and the top-10 probabil-
ity values of some tuples including the ones returned by the
PT-k, U-Topk, and U-kRanks queries.

All tuples with top-10 probability at least 0.5 are returned
by the PT-k query. The top-10 probability of R14 is higher
than R7, but R7 is included in the answer of the U-Topk
query and R14 is missing. Moreover, the presence probabil-
ity of the top-10 list returned by the U-Topk query is quite
low. Although it is the most probable top-10 tuple list, the
low presence probability limits its usefulness and interest-
ingness.

R10 and R14, whose top-10 probability values are high,
are missing in the results of the U-kRanks query, since none
of them is the most probable at any rank. Nevertheless, R18
is returned by the U-kRanks query at the 10-th position,
though its top-10 probability is much lower than R10 and
R14. Moreover, R9 and R11 each occupies two positions in
the answer of the U-kRanks query.

The results clearly show that the PT-k query captures
some important tuples missed by the U-TopK query and the
U-KRanks query. This example elaborates the differences
among the three types of top-k queries on uncertain data.

7.2 Results on Synthetic Data Sets
To evaluate the query answering quality and the scala-

bility of our algorithms, we generate various synthetic data

sets. The membership probability values of independent tu-
ples and multi-tuple generation rules follow the normal dis-
tribution N(µPt , σPt) and N(µPR , σPR), respectively. The
rule complexity, i.e., the number of tuples involved in a rule,
follows the normal distribution N(µ|R|, σ|R|).

By default, a synthetic data set contains 20, 000 tuples and
2, 000 multi-tuple generation rules. The number of tuples in-
volved in each multi-tuple generation rule follows the normal
distribution N(5, 2). The probability values of independent
tuples and multi-tuple generation rules follow the normal
distribution N(0.5, 0.2) and N(0.7, 0.2), respectively. We
test the probabilistic threshold top-k queries with k = 200
and p = 0.3.

We assume that all tuples in the synthetic data sets satisfy
the predicates in the top-k queries. Since ranking queries
are extensively supported by modern database management
systems, we treat the generation of a ranked list of uncertain
tuples as a black box, and test our algorithms on top of the
ranked list.

We compare the exact algorithm, the sampling method,
and the Poisson approximation based method. For the ex-
act algorithm, we compare three versions: RC (rule-tuple
compression only), RC+AR (RC with aggressive reorder-
ing), and RC+LR (RC with lazy reordering). The sampling
method uses the two improvements described in Section 5.

We test the number of tuples scanned by the methods
(Figure 4). We count the number of distinct tuples read by
the exact algorithm and the sample length as the average
number of tuples read by the sampling algorithm to gener-
ate a sample unit. For reference, we also plot the number
of tuples in the answer set, i.e., the tuples satisfying the
probabilistic threshold top-k queries, and the number of tu-
ples computed by the general stopping condition discussed
in Section 6.

In Figure 4(a), when the expected membership probability
is high, the tuples at the beginning of the ranked list likely
appear, which reduce the probabilities of the lower ranked
tuples to be ranked in the top-k lists in possible worlds. If
the membership probability of each tuple is very close to
1, then very likely we can prune all the tuples after the
first k tuples are scanned. In contrary, if the expectation of
the membership probability is low, then more tuples have
a chance to be in the top-k lists of some possible worlds.
Consequently, the methods have to check more tuples.

In Figure 4(b), when the rule complexity increases, more
tuples are involved in a rule. The average membership prob-
ability of those tuples decreases, and thus more tuples need
to be scanned to answer the query. In Figure 4(c), both the
scan depth and the answer set size increase linearly when k
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Figure 4: Scan depth (each test data set contains 20, 000 tuples and 2, 000 generation rules).
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Figure 5: Efficiency (same settings as in Figure 4).

increases, which is intuitive. In Figure 4(d), the size of the
answer set decreases linearly as the probability threshold p
increases. However, the number of tuples scanned decreases
much slower. As discussed in Section 4.4, a tuple t failing
the probability threshold still has to be retrieved if some
tuples ranked lower than t may satisfy the threshold.

Figure 4 verifies the effectiveness of the pruning techniques
discussed in Section 4.4. With the pruning techniques, the
exact algorithm only accesses a small portion of the tuples
in the data set. Interestingly, the average sample length is
close to the number of tuples scanned in the exact algorithm,
which verifies the effectiveness of our sampling techniques.
Moreover, the exact algorithm and the sampling algorithm
access fewer tuples than the number computed by the gen-
eral stopping condition, while the number computed by the
stopping condition is close to the real stopping point, which
shows the effectiveness of the stopping condition.

Figure 5 compares the runtime of the three versions of
the exact algorithm and the sampling algorithm with re-
spect to the four aspects tested in Figure 4. The runtime
of the Poisson approximation based method is always less
than one second, so we omit it in Figure 5 for the sake of
the readability of the figures. We also count the number of
times in the three versions of the exact algorithm that sub-
set probability values are computed. The trends are exactly
the same as their runtime. Limited by space, we omit the
figures here. The results confirm that the rule-tuple com-
pression technique and the reordering techniques speed up
the exact algorithm substantially. Lazy reordering always
outperforms aggressive reordering substantially.

Compared to the exact algorithm, the sampling method
is generally more stable in runtime. Interestingly, the exact
algorithm (RC+LR) and the sampling algorithm each has
its edge. For example, when k is small, the exact algorithm
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Figure 6: The approximation quality of the sampling-based method.
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Figure 7: The approximation quality of the sampling method and the Poisson approximation-based method.

is faster. The sampling method is the winner when k is
large. As k increases, more tuples need to be scanned in
the exact algorithm, and those tuples may be revisited in
subset probability computation. But the only overhead in
the sampling method is to scan more tuples when generating
a sample unit, which is linear in k. This justifies the need
for both the exact algorithm and the sampling algorithm.

Figure 6(a) tests the average error rate of the top-k prob-
ability approximation using the sampling method. Suppose
the top-k probability of tuple t is Prk(t), and the top-k

probability estimated by the sampling method is �Prk(t),
the average error rate is defined as�

Prk(t)>p |Prk(t) − �Prk(t)|/Prk(t)

|{t|Prk(t) > p}|
For reference, we also plot the error bound calculated from
the Chernoff-Hoeffding bound [2] given the sample size. We
can clearly see that the error rate of the sampling method in
practice is much better than the theoretical upper bound.

Moreover, Figure 6(b) shows the precision and recall of
the sampling method. The precision is the percentage of tu-
ples returned by the sampling method that are in the actual
top-k list returned by the exact algorithm. The recall is the
percentage of tuples returned by the exact method that are
also returned by the sampling method. The results show
that the sampling method only needs to draw a small num-
ber of samples to achieve good precision and recall. With

a larger k value, more samples have to be drawn to achieve
the same quality

Figure 7 compares the precision and the recall of the sam-
pling method and the Poisson approximation based method.
The sampling method achieves better results in general. How-
ever, the precision and the recall of the Poisson approxima-
tion based method is always higher than 85% with the run-
time less than one second. Thus, it is a good choice when
the efficiency is a concern.

The recall of the Poisson approximation based method in-
creases significantly when the query parameter k increases.
As indicated in [13], the Poisson distribution approximates
the Poisson binomial distribution well when the number of
Poisson trials is large. When the parameter k increases,
more tuples are read before the stopping condition is satis-
fied. Thus, the Poisson approximation based method pro-
vides better approximation for the top-k probability values.

Last, Figure 8 shows the scalability of the exact algorithm
and the sampling algorithm. In Figure 8(a), we vary the
number of tuples from 20, 000 to 100, 000, and set the num-
ber of multi-tuple rules to 10% of the number of tuples. We
set k = 200 and p = 0.3. The runtime increases mildly
when the database size increases. Due to the pruning rules
and the improvement on extracting sample units, the scan
depth (i.e., the number of tuples read) in the exact algo-
rithm and the sampling algorithm mainly depends on k and
is insensible to the total number of tuples in the data set.
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Figure 8: Scalability.

In Figure 8(b), we fix the number of tuples to 20, 000, and
vary the number of rules from 500 to 2, 500. The runtime
of the algorithms increases since more rules lead to smaller
tuple probabilities and more scans tuples back and forth in
the span of rules. However, the reordering techniques can
handle the rule complexity nicely, and make RC+AR and
RC+LR scalable.

In all the above situations, the runtime of the Poisson
approximation based method is insensitive to those factors,
and remains within 1 second.

8. CONCLUSIONS
In this paper, we studied the novel probabilistic thresh-

old top-k queries on uncertain data, which are different in
semantics from the recent proposals of top-k queries on un-
certain data. An exact algorithm, a sampling method, and
a Poisson approximation based method were developed and
examined empirically. The results show that they are effi-
cient and each of them has its unique edge.

It is interesting to extend our study to handle different
kinds of ranking and preference queries on uncertain data.
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