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Skyline computation has many applications including multi-criteria decision making. In

this paper, we study the problem of efficiently computing the skyline over sliding

windows on uncertain data elements against probability thresholds. Firstly, we

characterize the properties of elements to be kept in our computation. Then, we show

the size of dynamically maintained candidate set and the size of skyline. Novel, efficient

techniques are developed to process continuous probabilistic skyline queries over

sliding windows. Finally, we extend our techniques to cover the applications where

multiple probability thresholds are given, ‘‘top-k’’ skyline data objects are retrieved, or

elements have individual life-spans. Our extensive experiments demonstrate that the

proposed techniques are very efficient and can handle a high-speed data stream in

real time.

& 2012 Published by Elsevier Ltd.
1. Introduction

Uncertain data analysis is a key in many important
applications, such as sensor networks, trend prediction,
moving object management, data cleaning and integration,
economic decision making, and market surveillance. In
such applications, uncertain data is often collected in a
streaming fashion. Uncertain streaming data computation
has drawn considerable attention from the database
research community recently (e.g. [9,15,30]).

Skyline analysis is shown as a very useful tool
[4,8,23,26] in multi-criterion decision making. Given a
certain dataset D, an object s1 2 D dominates another
object s2 2 D if s1 is better than s2 in at least one aspect
and not worse than s2 in all other aspects according to the
preferences specified by users. The skyline of D comprises
of objects in D that are not dominated by any other object
from D. Skyline computation against uncertain data has
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also been studied recently [2,21,24]. In this paper, we will
investigate the problem of efficient skyline computation
over uncertain streaming data where each data element
has a probability to occur.

In many online monitoring problems, the appearance of a
data element is often uncertain. Below are two examples. In
an online shopping system, products are evaluated in various
aspects such as price, condition (e.g., brand new, excellent,
good, average, etc.), and brand. A customer may want to
select a product, say laptops, based on the multiple criteria
(preferences) such as low price, good condition, and good
brand. It is well known [4] that the skyline provides a
candidate set of best deals. In the application, each seller is
also associated with a ‘‘trustability’’ value which is derived
from customers’ feedback on the seller’s product quality,
delivery handling, etc.; the trustability value may be
regarded as the ‘‘appearance’’ probability of the product
since it represents the probability that the product occurs
exactly as described in the advertisement in terms of
delivery and quality. For simplicity, we assume that a
customer only prefers ThinkPad T61; thus we remove the
brand dimension from ranking. Table 1 lists four qualified
results. Both L1 and L4 are skyline points regarding (price,
condition), L1 is better than (dominates) L2, and L4 is better
ine operator over sliding windows, Information Systems
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Table 1
Laptop advertisements.

Product ID Time Price Condition Trustability

L1 107 days ago $550 Excellent 0.80

L2 5 days ago $680 Excellent 0.90

L3 2 days ago $530 Good 1.00

L4 today $200 Good 0.48
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than L3. Nevertheless, L1 is posted long time ago, and the
trustability of L4 is quite low. In such applications, customers
may want to continuously monitor online advertisements by
selecting the candidates for the best deal—skyline points.
Clearly, we need to ‘‘discount’’ the dominating ability from
offers with too low trustability. Moreover, too old offers may
not be quite relevant. We could model such an online
selection problem as probabilistic skyline against sliding
windows by treating online advertisements as an uncertain
data stream (see Section 2 for details) such that each data
element (advertisement) has an occurrence probability.

An uncertain data stream may arrive at a very high
speed. Consider stock market applications where clients
may be eager to buy a particular stock and want to online
monitor good offers (for sale) from other clients for this
particular stock. An offer is recorded by two aspects (price,
volume) where price is the price per share in the offer and
volume is the number of shares offered for sale. In such
applications, customers may want to know the top offers
so far, as one of many kinds of statistic information, before
making trade decisions. An offer a is better than another
deal b if a involves a higher volume and is cheaper (per
share) than those of b, respectively. Nevertheless, an offer
from a client may be withdrawn from time to time; thus, it
also has a probability to exist (i.e. has an occurrence
probability). Consequently, a stream of sale offers may be
treated as a stream of uncertain elements such that each
element has a probability to occur. Clearly, some clients
may only want to know ‘‘top’’ offers (skyline) among the
most recent N offers (sliding windows) or the offers made
in the most recent T period; this, together with the
consideration of the uncertainty of each deal gives another
example of probabilistic skyline against sliding windows.

While the two examples above demonstrate the useful-
ness of online monitoring skyline over uncertain data,
online monitoring skyline over uncertain streaming data
regarding sliding windows has many other applications. In
this paper we investigate the problem of efficiently mon-
itoring probabilistic skyline against sliding windows. To the
best of our knowledge, there is no similar work existing in
the literature in the context of skyline computation over
uncertain data steams. In the light of data stream computa-
tion, it is highly desirable to develop online, efficient,
memory based, incremental techniques using small mem-
ory. Our contribution may be summarized as follows.
�

P
(2
We characterize the minimum information needed in
continuously computing probabilistic skyline against a
sliding window.

�
 We show that the volume of such minimum informa-

tion is expected to be bounded by poly-logarithmic sizes
regarding a given window size.
lease cite this article as: W. Zhang, et al., Probabilistic skyl
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�

ine
We develop novel, incremental techniques to continu-
ously compute probabilistic skyline over sliding windows.

�
 We extend our techniques to support multiple pre-

given probability thresholds, ‘‘top-k’’ probabilistic sky-
line data elements, and data elements with individual
life-spans.

Our extensive experiments demonstrate that the devel-
oped techniques can support online computation against
very rapid data streams.

The rest of the paper is organized as follows. In Section 2,
we formally define the problem of sliding-window skyline
computation on uncertain data streams and present back-
ground information. Sections 3 and 4 present the frame-
work, fundamental theories, and techniques for processing
probability threshold based sliding window queries. Section
5 extends our techniques to multi-thresholds, top-k skyline,
and time-based sliding windows where each data element
has a life-span. Results of comprehensive performance
studies are discussed in Section 6. Section 7 summarizes
related work and Section 8 concludes the paper.

2. Background

We use DS to represent a sequence (stream) of data
elements in a d-dimensional numeric space such that each
element a has a probability PðaÞ (0oPðaÞr1) to occur
where a:i (for 1r ird) denotes the i-th dimension value.
Without loss of generality, we assume that on each
dimension, users prefer small values. For two elements u

and v, u dominates v, denoted by u!v, if u:irv:i for
1r ird, and there exists a dimension j with u:jov:j.
Given a set of elements, the skyline consists of all points
which are not dominated by any other element.

2.1. Problem definition

Given a sequence DS of uncertain data elements, a
possible world W is a subsequence of DS. The probability
of W to appear is PðWÞ ¼Pa2W PðaÞ �Pa=2W ð1�PðaÞÞ. Let O
be the set of all possible worlds, then

P
W2OPðWÞ ¼ 1.

We use SKYðWÞ to denote the set of elements in W that
form the skyline of W. The probability that an element a

appears in the skylines of the possible worlds is
PskyðaÞ ¼

P
W2O,a2SKYðWÞPðWÞ. PskyðaÞ is called the skyline

probability of a. Eq. (1) below can be immediately verified.

PskyðaÞ ¼ PðaÞ �Pa02DS,a0!að1�Pða0ÞÞ ð1Þ

Problem statement. In many applications, a data stream
DS is append-only [16,20,27]; that is, there is no deletion of
data element involved. In this paper, we study the skyline
computation problem restricted to the append-only data
stream model. Specifically, we study the problem of
efficiently retrieving skyline elements from the most
recent N elements, seen so far, with the skyline probabil-
ities not smaller than a given threshold q (0oqr1); that
is, q-skyline. We focus on developing techniques to effi-
ciently process such a continuous query. We will also study
some variants of the problem. Note that although the data
streams studied in the paper are append-only, we need to
operator over sliding windows, Information Systems
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Table 2
Summary of math notations.

Notation Definition

DS Stream of uncertain data elements

DSN Sliding window of the most recent N elements

DST,t Sliding window of the most recent time period T

a Data element

anewðaoldÞ Newly (oldest) arrived element in DSN

P(a) Occurrence probability of a

PnewðaÞðPoldðaÞÞ Probability that none of the elements in DSN arriving

later (earlier) than a dominates a

Psky(a) Skyline probability of a in DSN

q Given probability threshold q

SKYN,q q-Skyline of DSN

SKYT ,t,q q-Skyline of DST ,t

SN,q Set of elements a in DSN with PnewðaÞZq

R Aggregate R-tree

E Entry in R

EminðEmaxÞ Lower-left (upper-right) corner of MBB of E

Pnoc(E) Multiplication of non-occurrence probabilities of the

elements in E

kðaÞ Position or time-stamp of a

l(a) Life-span of an element a
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deal with the deletion of data elements due to the
elements expiration from a sliding window.

2.2. Preliminaries

In a DS, elements are positioned according to their
relative arrival ordering and labeled by integers. Note that
the position/label kðaÞ means that the element a arrives
kðaÞth in the data stream.

Various dominating probabilities. Let DSN denote the
most recent N elements. For each element a 2 DSN , we
use PnewðaÞ to denote the probability that none of the
elements arriving later than a dominates a; that is,

PnewðaÞ ¼Pa02DSN ,a0!a,kða0 Þ4kðaÞð1�Pða0ÞÞ ð2Þ

Note that kða0Þ4kðaÞ means that a0 arrives after a. We
use PoldðaÞ to denote the probability that none of the
elements arriving earlier than a dominates a; that is,

PoldðaÞ ¼Pa02DSN ,a0!a,kða0 ÞokðaÞð1�Pða0ÞÞ ð3Þ

Note that PnewðaÞ ¼ 1 if )a0 2 DSN such that a0!a and
kða0Þ4kðaÞ, and PnewðaÞ ¼ 0 if (a0 2 DSN such that a0!a,
kða0Þ4kðaÞ, and Pða0Þ ¼ 1. Similarly, PoldðaÞ ¼ 1 if )a0 2 DSN

such that a0!a and kða0ÞokðaÞ, and PoldðaÞ ¼ 0 if (a0 2 DSN

such that a0!a, kða0ÞokðaÞ, and Pða0Þ ¼ 1. The following
Eq. (4) can be immediately derived from (1).

PskyðaÞ ¼ PðaÞ � PoldðaÞ � PnewðaÞ: ð4Þ

Example 1. Regarding the example in Fig. 1(a) where the
occurrence probability of each element is as depicted,
assume that N¼5, and elements arrive according the
element subindex order; that is, a1 arrives first, a2 arrives
second,y, and a5 arrives last. Pnewða4Þ ¼ 1�Pða5Þ ¼ 0:9
and Poldða4Þ ¼ ð1�Pða2ÞÞð1�Pða3ÞÞð1�Pða1ÞÞ ¼ 0:042, and
Pskyða4Þ ¼ Pða4Þ � Pnewða4Þ � Poldða4Þ ¼ 0:034. &

Dominance relationships. Our techniques are developed
against an in-memory spatial index. In this paper, we
adopt in-memory R-trees though our techniques may be
immediately applied to other spatial index including the
grid index structure [22]. Below we define various rela-
tionships between each pair of entries E0 and E. We use
E:min to denote the lower-left corner of the minimum
bounding box (MBB) of the elements contained by E, and
E:max to denote the upper-right corner of MBB of the
elements contained by E. Note that when E degenerates to
a single element a, E:min¼ E:max¼ a.

An entry E fully dominates another entry E0, denoted by
E!E0, if E:max!E0:min or E:max¼ E0:min with the property
y
a2

a3

a1
q   =   0 . 5 
p ( a ) = 0 . 9 

p ( a ) = 0 . 4 

p ( a ) = 0 . 3 

p ( a ) = 0 . 9 

p ( a ) = 0 . 1 

y

x

a 2

a 3

a 1 a4

a5

a b

Fig. 1. Exa

Please cite this article as: W. Zhang, et al., Probabilistic skyl
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that there is no element in E allocated at E:max or there is
no element in E0 allocated at E0:min. E partially dominates E0

if E:min!E0:max but E does not fully dominate E0; this is
denoted by E!partialE

0. Otherwise, E does not dominate E0,
denoted by E!notE

0.
Regarding the example in Fig. 1(c), immediately E!E3,

E!partialE1, E!partialE2. Note that E1 does not dominate E

but E2!partialE. Clearly, some elements in E1 might be
dominated by elements in E but elements in E cannot be
dominated by any elements in E1. This can be formally
stated below which can be verified immediately according
to the definitions.

Theorem 1. If E!notE
0, then none of the elements in E0 can

be dominated by any element in E. If E00!E000, then every

element in E00 dominates any element in E000.

Table 2 below summarizes the mathematic notations
used throughout the paper.

3. Framework

A critical requirement in data stream computation is to
have small memory space and fast computation. Conse-
quently, given a probability threshold q and a sliding
window with length N, it would be ideal if the continuous
computation can be conducted against the probabilistic q-
skyline SKYN,q of DSN by excluding all the other elements.
x

a 4

a 5

y

x

E
E2

E1
E3

c

mples.
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However, this is impossible. For instance, regarding the
example in Fig. 1(a), assume that N¼5 and q¼0.5. It is
immediate that Pskyða4Þ ¼ 0:0342oq; that is, a4=2SKYN,q

regarding the first 5 elements. If we do not keep a4 and
none of the newly coming elements dominates a4, then we
miss a4 as q-skyline element after a1 to a3 expire from the
sliding window.

In our algorithm, we continuously maintain a subset
SN,q of DSN with the following property.
1.
P
(2
SKYN,qDSN,q.

2.
 For each element a 2 DSN , the problem of determining if

a 2 SN,q against DSN is equivalent to the problem of
determining if a 2 SN,q against SN,q only.
3.
 For each element a 2 SN,q, if the skyline probability of a

restricted to SN,q is not smaller than the given threshold
q, then the skyline probability of a regarding the sliding
window must not be smaller than q.

The first property ensures that the q-skyline of DSN will
be covered by SN,q, while the second property ensures that
we only need to focus on SN,q when continuously deciding
SN,q. Note that the skyline probability of an element a

restricted to SN,q is not smaller than the skyline probability
of a regarding the sliding window since SN,qDDSN; subse-
quently there is no false negative to determine the skyline
element against SN,q. The third property ensures that there
is no false positive to determine the q-skyline element
against SN,q.

In our algorithm, we propose to maintain the following
subset SN,q of DSN such that each element in SN,q has
PnewZq; that is,

SN,q ¼ fa9a 2 DSN&PnewðaÞZqg ð5Þ

The framework of continuously computing the probabil-
istic q-skyline SKYN,q of DSN is outlined below in Algorithm 1
where aold and anew are the oldest element and newly
arrived element, respectively, in the current window DSN.
Inserting (anew,SN,q,SKYN,q) and Expiring (aold,SN,q,SKYN,q)
incrementally computes SKYN,q. The details of Inserting
(anew,SN,q,SKYN,q) and Expiring (aold,SN,q, SKYN,q) will be
introduced in Section 4.

Algorithm 1. Continuously computing probabilistic skyline.
lease
012),
1
 while a new element anew arrives do�

2

3

if kðanewÞrN then Inserting ðanew ,SN,q ,SKYN,qÞ;

else Expiring ðaold ,SN,q ,SKYN,qÞ; Inserting ðanew ,SN,q ,SKYN,qÞ;

����

4
 end while
Next, we first show the correctness of conducting the
skyline computation on SN,q instead of DSN. Then, we show
that SN,q is the minimum information we should continu-
ously maintain to ensure that the three properties above
hold, and the expected size of SN,q is poly-logarithmic.

3.1. Correctness of using SN,q only

Given an element a, suppose that Pnew9SN,q
ðaÞ, Pold9SN,q

ðaÞ

and Psky9SN,q
ðaÞ denote PnewðaÞ, PoldðaÞ and PskyðaÞ restricted

to SN,q, respectively. Since SN,qDDSN , Pnew9SN,q
ðaÞZPnewðaÞ,

Pold9SN,q
ðaÞZPoldðaÞ, and Psky9SN,q

ðaÞZPskyðaÞ. To continu-
ously conduct the skyline computation on SN,q instead of
cite this article as: W. Zhang, et al., Probabilistic skyl
http://dx.doi.org/10.1016/j.is.2012.03.002
DSN, we calculate Pnew9SN,q
ðaÞ, Pold9SN,q

ðaÞ and Psky9SN,q
ðaÞ

instead of PnewðaÞ, PoldðaÞ and PskyðaÞ; below we show that
this will not give wrong results. Specifically, we show the
following.

Property 1 (No missing skyline points). The following

Lemma is immediate based on (4) and (5).

Lemma 1. Each q-skyline point a (i.e., PskyðaÞZq) must be

in SN,q.

Property 2 (No false hits to determine SN,q). We show that

incrementally maintaining SN,q based on itself is equivalent to

determining SN,q based onDSN. Lemma 2 is the key.

Lemma 2. For two elements a and a0 in DSN, if a0 is newer

than a, PnewðaÞZq, and a0!a, then Pnewða0ÞZq.

Proof. Since a0!a and a0 is newer than a, each element
that is newer than a0 and dominates a0 must dominate a.
Consequently, PnewðaÞrPnewða0Þ. As PnewðaÞZq, Pnewða0ÞZq.
Thus, the lemma holds. &

Lemma 2 immediately implies that for each element a in
SN,q (i.e. PnewðaÞZq), calculating PnewðaÞ against the ele-
ments in SN,q is the same as calculating PnewðaÞ against the
whole window DSN; this is formally stated by Theorem 2.

Theorem 2. For each element a 2 SN,q, Pnew9SN,q
ðaÞ ¼ PnewðaÞ.

Example 2. Regarding the example in Fig. 1 (a), suppose
that elements a1, a2, a3, a4, and a5 arrive at time 1, 2, 3, 4,
and 5, respectively, and N¼5, q¼0.5. We have that
SN,q ¼ fa2,a3,a4,a5g since values of Pnew for a2, a3, and a5

are the same (1), while Pnewða4Þ ¼ 0:9 as shown in Example

1. It can be immediately verified that the Pnew9SN,q
values of

a2, a3, a4, and a5 are also 1, 1, 0.9, and 1, respectively. &

Lemma 2 and Theorem 2 imply that incrementally
maintaining SN,q based on the elements in SN,q is equiva-
lent to maintaining SN,q based on DSN.

Property 3 (No false hits to determine SKYN,q). Continuing

Example2, we can verify that Pold9SN,q
ða4Þ ¼ 0:6� 0:7¼ 0:42

since a1 is not contained in SN,q, while Example1 also shows

that Poldða4Þ ¼ 0:042. This shows that for an element a 2 SN,q,
Pold9SN,q

ðaÞ does not always equal PoldðaÞ. Since Psky9SN,q
ðaÞZ

PskyðaÞ, we only need to show that for each element a 2 SN,q, if

Psky9SN,q
ðaÞZq then PskyðaÞZq; this is formally stated in

Theorem3.

Theorem 3. For each a 2 SN,q, if Psky9SN,q
ðaÞZq then

PskyðaÞZq.

To show Theorem 3, we only need to show that if

PskyðaÞoq then Psky9SN,q
ðaÞoq. Note that PskyðaÞ ¼ PðaÞ �

PnewðaÞ � PoldðaÞ and Psky9SN,q
ðaÞ ¼ PðaÞ � Pnew9SN,q

ðaÞ�

Pold9SN,q
ðaÞ. Theorems 4 and 5 below are the key.

Theorem 4. For each element a 2 SN,q, if PoldðaÞ � PnewðaÞZq

then Pold9SN,q
ðaÞ ¼ PoldðaÞ.

Theorem 4 immediately follows from Lemma 3 below.

Lemma 3. For any element a0 such that a0!a, a0 arrives

earlier than a, and PoldðaÞ � PnewðaÞZq, then a0 2 SN,q.
ine operator over sliding windows, Information Systems
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Proof. Since a0!a, any element dominating a0 must dom-
inate a. Consequently, Pnewða0ÞZPnewðaÞ � PoldðaÞ. Since
PnewðaÞ � PoldðaÞZq, Pnewða0ÞZq. Thus, a0 2 SN,q. &

Theorems 2 and 4 immediately imply the following
corollary.

Corollary 1. For each element a 2 SN,q, if PoldðaÞ �

PnewðaÞZq then Pold9SN,q
ðaÞ � Pnew9SN,q

ðaÞ ¼ PoldðaÞ � PnewðaÞ.

Now we show Theorem 5 below.

Theorem 5. For each element a 2 SN,q, if PoldðaÞ � PnewðaÞoq,
then Pold9SN,q

ðaÞ � Pnew9SN,q
ðaÞoq.

Proof. If all elements dominating a are in SN,q then
Pold9SN,q

ðaÞ � Pnew9SN,q
ðaÞ ¼ PoldðaÞ � PnewðaÞoq. The theorem

holds.
Suppose that at least one element that dominates a is

not in SN,q. From Lemma 2, all such elements must be older
than a. Let DomðaÞ denote the set of elements that
dominate a and are not in SN,q. Suppose that a0 is the
youngest element in DomðaÞ. It is clear that all elements,
which arrive after a0 and dominate a0, must be contained
by SN,q since they dominate a and are younger than a0.

Since a0!a, Pnewða0ÞZPold9SN,q
ðaÞ � Pnew9SN,q

ðaÞ. Note that
Pnewða0Þoq. Consequently, q4Pold9SN,q

ðaÞ � Pnew9SN,q
ðaÞ. &

Corollary 1 and Theorem 5 immediately imply the
following corollary.

Corollary 2. For each element a 2 SN,q, if PskyðaÞoq then

Psky9SN,q
ðaÞoq.

Corollary 2 immediately implies Theorem 3.
Summary. Based on the above discussions, in our

techniques we only need to incrementally maintain SN,q,
calculate all probabilities against SN,q, and select elements
a with Psky9SN,q

ðaÞZq.

3.2. Estimating sizes of SN,q and SKYN,q

Minimality. The following theorem shows that remov-
ing an element from SN,q will make the Property 2 not hold
with the arrival of a new element.

Theorem 6. Suppose that an element a 2 SN,q is removed. If a

is not the oldest element in the sliding window (i.e., a must

expire once a new element arrives), then the Property 2 may not

hold for a new element b regarding any subset of the current

DSN�fag; that is, false positive may happen if a is removed.

Proof. Suppose that before a new element arrives,
p¼ PnewðaÞ; note that pZq. We assume that the new
arrived element b has the occurrence probability q=p. It
is straightforward to get such an element b that b is
dominated by a but is not dominated by any data elements
that do not dominate a. Let c be the latest element c

arriving earlier than a and dominating a. Assume that new
elements keep arriving till c expires, and all those new
elements arriving after b do not dominate b. It can be
immediately verified that the skyline probability of b

restricted to DSN by excluding a and expiring c is q;
consequently, the skyline probability of b restricted to
any subset of DSN is not smaller than q. Nevertheless, once
Please cite this article as: W. Zhang, et al., Probabilistic skyl
(2012), http://dx.doi.org/10.1016/j.is.2012.03.002
c expires PskyðbÞ ¼ q� ð1�pðaÞÞoq. Thus, the Property 2
does not hold for any subset of the current DSN�fag. &

Note that in principle, SN,q might include the oldest data
element that is not a q-skyline point. Such an oldest data
element could be removed since it will expire once the
next element arrives. Thus, SN,q may be one element more
than the minimal in the worst case. In our algorithm, we
do not remove such an element from SN,q for the following
reasons: (1) SN,q may be only one element away from being
minimal, (2) such an element may already have been
excluded from SN,q, (3) in the time-stamp based sliding
window model there is no such data element which can be
specified due to the continuity of time.

Estimating sizes. Next we show that the expected sizes
of SN,q and SKYN,q are bounded by a logarithmic number
regarding N when the value distribution of each data
element on any dimension, including arriving order, is
the same and independent.

Suppose that wq,i is a random variable such that it takes
value 1 if the ith arrival element is a q-skyline point; and
wq,i takes 0 otherwise. Clearly, the expected size EðSKYN,qÞ

of SKYN,q is as follows.

EðSKYN,qÞ ¼ E
XN

i ¼ 1

wq,i

 !
¼
XN

i ¼ 1

Pðwq,i ¼ 1Þ ð6Þ

Let IN ¼ fj91r jrNg. Given a set of N probability values
fPj91r jrN&0oPjr1g, let Pð:WÞ ¼

n Q
j2W ð1�PjÞ where W

is a subset of IN. Let PðW!iÞ denote the probability that the
ith element is dominated and only dominated by the elements
in faj9j 2Wg. Theorem 7 immediately follows from (6).

Theorem 7. Let DSN be a sequence of N data elements with

probabilities P1, P2, y, PN. Then,

EðSKYN,qÞ ¼
X

8W2O,i=2W ,Pi�Pð:WÞZq

PðW!iÞ � Pi � Pð:WÞ ð7Þ

Below we show that (7) is bounded by a logarithmic size.
Given a Pi, let qk,i ¼

n
maxfPi � Pð:WÞ99W9¼ kg. Removing the

probability value from each data element in DSN to make DSN

be a sequence DSN
c

of N certain data elements. Let PðDOMk
i Þ

denote the probability that there are exactly k elements in
DSN

c
dominating an element i. The following lemma imme-

diately follows from (7). Clearly, qk,i is monotonically
decreasing regarding k; that is, qk0 ,iZqk,i if k0ok. Let ki

denote the largest integer such that qk,iZq for a given q.

Lemma 4. EðSKYN,qÞr
PN

i ¼ 1

Pki

j ¼ 0 PðDOMj
iÞ � qj,i.

Let PðDOMTk
i Þ denote the probability that there are at

most k elements dominating the element i. Clearly,
PðDOMk

i Þ ¼ PðDOMTk
i Þ�PðDOMTk�1

i Þ.

Corollary 3.

EðSKYN,qÞr
XN

i ¼ 1

Xki�1

j ¼ 0

PðDOMTj
iÞ � ðqj,i�qðjþ1Þ,iÞ

0
@ þPðDOMTki

i Þqki ,i

!
:

ð8Þ

Let H1,l ¼
Pl

i ¼ 1 1=i. The d-th order harmonic mean (for
integers dZ1 and lZ1) is Hd,l ¼

Pl
i ¼ 1 Hd�1,i=i. The theo-

rem below presents the value of PðDOMTk
i Þ.
ine operator over sliding windows, Information Systems
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Theorem 8. For a sequence DSN
c

of N certain data points in a

d-dimensional space, suppose that the value distribution of

each element on any dimension is the same and independent.

Moreover, we assume the values of the data elements on

each dimension are distinct. Then, PðDOMTk
i Þrðkþ1Þ=N �

ð1þHd�1,N�Hd�1,kþ1Þ when dZ2 and PðDOMTk
i Þ ¼ ðkþ1Þ=N

when d¼1.

Proof. Without loss of generality, we assume that the data
elements in DSN

c
are sorted on the first dimension. Since

the value distribution of each element on any dimension is
the same and independent, an element has the equal
probability to take jth position on the first dimension
among total N positions; that is 1=N probability to take
jth position (1r jrN) on the first dimension. Note that

when ai takes jth position, any element takes j0th position

cannot dominate ai if j04 j.
When d¼1, element ai must take the first ðkþ1Þ posi-

tions to ensure there are at most k other elements
dominating ai. Consequently, PðDOMTk

i Þ ¼ ðkþ1Þ=N.
We use mathematic induction to prove the theorem for

dZ2. For d¼2, clearly when ai takes the first ðkþ1Þ
positions, there are at most ðkþ1Þ other elements dom-
inating ai. When ai takes a jth position for j4kþ1, the
conditional probability that there must be at most k

elements dominating ai is ðkþ1Þ=j since for each permuta-
tion with ai at jth position on the first dimension, the value
of ai on the second dimension must take one of the ðkþ1Þ
smallest values among the j elements with the j smallest
values on the first dimension. Thus, we have

PðDOMTk
i Þ ¼
ðkþ1Þ

N
þ

1

N

XN

j ¼ kþ2

kþ1

j

0
@

1
A

¼
kþ1

N
� ð1þH1,N�H1,kþ1Þ ð9Þ

Assume that the theorem holds for d¼ l. For d¼ lþ1, it
still holds that when ai’s value on the first dimension is
allocated at the first ðkþ1Þ positions, then there must be at
most k other elements dominating ai. When ai takes a jth
position for j4kþ1, the conditional probability that there
are at most k elements dominating ai is PðDOMk

i Þj,l regard-
ing a l-dimensional space and j elements for each permu-
tation with ai at jth position on the first dimension. Based
on our assumption, PðDOMk

i Þ9j,lr ðkþ1Þ=j� ð1þHl�1,j�

Hl�1,kþ1Þ; consequently, the PðDOMk
i Þ regarding the

ðlþ1Þ-dimensional space and N data elements is

PðDOMTk
i Þr

kþ1

N
þ

1

N

XN

j ¼ kþ2

kþ1

j
� ð1þHl�1,j�Hl�1,kþ1Þ

Since 1rHl�1,kþ1, we have

PðDOMTk
i Þr

kþ1

N
þ

1

N

XN

j ¼ kþ2

kþ1

j
� ðHl�1,jÞ

¼
kþ1

N
ð1þHl,N�Hl,kþ1Þ &

It can be immediately verified that Hd,N ¼OðlndNÞ;
consequently PðDOMTk

i Þ ¼ Oðk=N lnd�1 NÞ. This together
Please cite this article as: W. Zhang, et al., Probabilistic skyl
(2012), http://dx.doi.org/10.1016/j.is.2012.03.002
with Theorem 8 and Corollary 3 immediately implies that
the expected size of SKYN,q in a d-dimensional space is
poly-logarithmic regarding N with order ðd�1Þ since each
0rqj,ir1.

Size of SN,q. Elements in the candidate set can be
regarded as skyline points in a ðdþ1Þ-space by including
the time as an additional dimension since Pnew can be
regarded as the non-dominance probability in such a
ðdþ1Þ-space. The following theorem is immediate. Let
pk,i ¼

n
max fPð:WÞ99W9¼ kg and Pðskytj

iÞ denote the prob-
ability that there are at most j elements in DSc

N (remove
element probabilities from DSN) that dominate the ith
element and arrive after i.

Theorem 9. In a d-dimensional space, suppose that the

distribution on each dimension, including arriving order, are

independent. On each dimension, the values of the data items

are distinct.

EðSN,qÞr
XN

i ¼ 1

Xki�1

j ¼ 0

Pðskytj
iÞ � ðpj,i�pðjþ1Þ,iÞþPðskytki

i Þpki ,i

0
@

1
A ð10Þ

Note that Pðskytki

i Þ can be estimated in the same way as
that in Theorem 8 by replacing d by dþ1. Therefore, the
expected size of SN,q is poly-logarithmic regarding N with
the order of d. While the upper-bounds of the expected
sizes of SN,q and SKYN,q are shown in poly-logarithmic
regarding N, our experiments also demonstrate that the
sizes of SN,q and SKYN,q are significantly smaller than that
of DSN in a low dimensional space even when distributions
of elements are strongly correlated.

Remark: Note that in our incremental techniques, we
will use 1=ð1�PðaÞÞ. Nevertheless, a data element a could
have occurrence probability 1. This will make ð1�PðaÞÞ ¼ 0.
To resolve this, we will use two probability values, 1 and
ð1�q0Þ, to represent the probability value 1, where q0 is any
number smaller than q. Then, we use 1 to represent PðaÞ

and ð1�q0Þ to represent ð1�PðaÞÞ. Let DSN be a given data
stream and DS0N is the data stream after we modify the
probability value 1 as above. It can be immediately verified
that the SN,q for both DSN and DS0N is the same regarding a
given q, as well as the q-skyline; this is because ð1�PðaÞÞ ¼ 0
is equivalent to ð1�PðaÞÞoq against a given q. Thus, we can
use this modification of probability 1 in our algorithm.
4. Algorithms

A trivial execution of Algorithm 1 is to visit each
element in SN,q to update skyline probability when an
element inserts or deletes; then choose elements a from
SN,q with Psky9SN,q

ðaÞZq. Note a new data element may
cause several elements to be deleted from SN,q, never-
theless, the time complexity is Oð9SN,q9Þ per element which
is expected to be poly-logarithmic regarding N with the
order of d (Section 3.2). In this section, we present novel
techniques to efficiently execute Algorithm 1 based on
aggregate-R trees with the aim to visit as few elements as
possible. We continuously, incrementally maintain SKYN,q

and SN,q.
ine operator over sliding windows, Information Systems
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Our algorithms calculate Psky9SN,q
, Pold9SN,q

, and Pnew9SN,q
.

For notation simplification, in the remaining of this

section, Psky9SN,q
, Pold9SN,q

, and Pnew9SN,q
are abbreviated to

Psky, Pold, Pnew, respectively.
The rest of the section is organized as follows. We first

present data structures to be used. Then we present our
efficient techniques to deal with the arrival of a new
element for a given probability threshold. This is followed
by our techniques to deal with the expiration of an old
element for a given probability threshold. Then, the
correctness and complexity of our techniques are shown.

4.1. Aggregate R-trees

Since SKYN,qDSN,q, we continuously maintain SKYN,q

and ðSN,q�SKYN,qÞ to avoid storing a data element twice.
In-memory R-trees R1 and R2 on the points of SKYN,q

and the points of ðSN,q�SKYN,qÞ, respectively, will be used
and continuously maintained; see Fig. 2 for an example.

To avoid drilling down the R-trees every time, at each
entry E of an R-tree the following aggregate information
will be stored to facilitate deferring the update propaga-
tion of aggregate information to leaves, and removing (or
inserting) entire entries.
�

P
(2
Pglobal
new ðEÞ stores the captured multiplication of non-

occurrence probabilities of the elements which dom-
inate all elements in E and are newer than all elements
in E. Note that Pglobal

new ðEÞ needs to be integrated later.

�
 We use Pglobal

old ðEÞ to store the multiplication of non-
occurrence probabilities of the captured elements which
dominate any element in E and are pruned from SN,q (or
expire). Note that we use Pold

global
since those captured

removed elements must arrive earlier than any element
in the remaining SN,q according to Lemma 2, and the
expired element certainly arrives earlier than any ele-
ment in E. We need to update Pold and Psky by Pglobal

old ðEÞ

since E is no longer in the current SN,q and we con-
tinuously monitor SN,q. Q

�
 We use PnocðEÞ to store e2Eð1�PðeÞÞ. This will be used

to facilitate the computation of Pold
global

when E is pruned
from SN,q.
y a 8

a4

a1

P ( a 1) = 0 . 1 

P ( a 2) = 0 . 1 

P ( a 3) = 0 . 4 

P ( a 4) = 0 . 1 

P ( a 5) = 0 . 8 

0 
.0= 2

a2

a9

a 1 0 

a 3

a1 1 

a5
a7

a 6

P ( a 6) = 0 . 8 

P ( a 7) = 0 . 6 

P ( a 8) = 0 . 2 

P ( a 9) = 0 . 5 

P ( a 1 0 ) = 0 . 2 
P ( a 1 1 ) = 0 . 6 

P ( a 1 2 ) = 0 . 1 

a

P ( a 1 3 ) = 0 . 1 

a 1 4 

P ( a 1 4 ) = 0 . 8 

q 

Fig. 2. Aggrega

lease cite this article as: W. Zhang, et al., Probabilistic skyl
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�

a1 

1 3 

te R

ine
Psky,minðEÞ and Psky,maxðEÞ store the minimum skyline
probability and maximum skyline probability of the
elements rooted at E (excluding the Pold

global
and Pnew

global

recently captured at some entries).

�
 Pnew,minðEÞ and Pnew,maxðEÞ store the minimum and max-

imum Pnew values of the elements rooted at E (exclud-
ing the recently captured Pnew

global
at some entries).
Below, we use one example to show the effectiveness of
using aggregate information in continuously computing
SKYN,q from SN,q.

Illustrative example. Regarding the example in Fig. 2,
assume that N¼13, q¼0.2, the occurrence probabilities are
as depicted, and DSN ¼ fai91r ir13g. Suppose that ele-
ments arrive according to the increasing order of elements
sub-indexes. It can be immediately verified that
Pnewða1Þo0:2, SN,q contains ai for 2r ir13, and SKYN,q

contains only the elements in R1. Two R-trees are built: (1)
R1 is built against the elements in SKYN,q; and (2) R2 is built
against the elements in ðSN,q�SKYN,qÞ.

When a new element a14 arrives and a1 expires. We
need to find out the elements which are dominated by a14

and then to determine the elements which need to be
removed from SN,q and SKYN,q. In fact, a14 dominates
entries E4, E2, and R2:root (root entry of R2). If we keep
the maximum and minimum values of Pnew for the ele-
ments contained by those entries, respectively, we have a
chance not to visit the elements of those entries. Specifi-
cally, at an entry if the maximum value of Pnew (Pnew,max)
multiplied by ð1�Pða14ÞÞ is smaller than q, the entry (i.e. all
elements contained) will be removed from SN,q. On the
other hand if the minimum value of Pnew (i.e., Pnew,min)
multiplied by ð1�Pða14ÞÞ is not smaller than q, then the
entry (i.e. all elements contained) remains in SN,q. Simi-
larly, at each entry we keep the minimum and maximum
values of Psky (i.e., Psky,min and Psky,max) for the elements
contained to possibly terminate the determination of
whether elements contained are in SKYN,q.

Moreover, in this example elements contained by E2 are
in SN,q, we can update their Pnew values globally by keeping
a global value Pglobal

new ¼ Pglobal
new � ð1�Pða14ÞÞ at E2 to avoid

propagating the updates of all elements contained by E2.
x

2 

a4a2 a 1 3 a 1 2 

E8E7

R2

R1

a5 a 6 a 7 a 9 a 1 1 
a1 0 a8 a 3

E1 E2

E3 E4 E5 E6

-trees.
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Furthermore, in this example some elements may be
pruned from SN,q once a14 arrives. For example, when a14

arrives, Pnewða2Þ ¼ 0:18o0:2; thus a2 needs to be pruned.
Note that since Pnewða12Þ ¼ Pnewða13Þ ¼ 0:2 after a14 arrives,
we still need to keep a12 and a13 in SN,q; that is, we still
need to keep E8. To avoid propagating the update of each
element (i.e. a12 and a13) contained by E8 individually due
to the removal of a2, we can keep a global value
Pglobal

old ¼ Pglobal
old � ð1�Pða2ÞÞ at E8 so that we know that the

Pold values for elements in E8 will be updated by multi-
plying 1=Pglobal

old as we focus on SN,q. From time to time, we
may remove an entry E from SN,q and E fully dominates
another entry E0 which stays in SN,q. If we keep the non-
occurrence probability of the elements in E �PnocðEÞ ¼

Pa2Eð1�PðaÞÞ, then we can update Pold
global

at E0 by multi-
plying PnocðEÞ.

Continue the example in Fig. 2 against the first 13
elements. Pold

global
and Pnew

global
at each internal entry are

initialized to 1. When a10 arrives, we update Pglobal
new ðE4Þ

from 1 to ð1�Pða10ÞÞ ¼ 0:8 since a10 dominates the MBB of
E4, while other Pnew

global
values remain 1.

Here, PnocðE3Þ ¼ ð1�Pða10ÞÞð1�Pða8ÞÞ ¼ 0:64. Similarly,
we can calculate values of Pnoc at entries E4, E5, and E6.
Then, PnocðE1Þ ¼ PnocðE3Þ � PnocðE4Þ and PnocðE2Þ ¼ PnocðE5Þ�

PnocðE6Þ. The multiplication of PnocðE1Þ and PnocðE2Þ gives
Pnoc at the root. Similarly, Pnoc values at each internal entry
in R2 can be calculated.

The information that a10 dominates both a5 and a6 has
not been pushed down to the leaf-level and is only captured
at the entry E4; consequently the captured skyline prob-
abilities for a6 and a5 are still Pða6Þ � ð1�Pða8ÞÞ (0.64) and
Pða5Þ (0.8). Therefore, at E4, Psky,max ¼ 0:8 and Psky,min ¼ 0:64;
Pnew,max ¼ 1 and Pnew,min ¼ ð1�Pða8ÞÞ (0.8). These multiplied
by Pnew

global
give the current values of Psky,max, Psky,min, Pnew,max,

and Pnew,min at E4, respectively. At other entries, Psky,max,
Psky,min, Pnew,max and Pnew,min take current values.

Once a2 removes, at E8, Pold
global

is updated from 1 to
ð1�Pða2ÞÞ ¼ 0:9. &

Invariants. As mentioned earlier, the basic idea of our
algorithm is to defer the propagation of updates to the
leaves (data elements) and to move entries at levels as
high as possible. To ensure the correctness, our algorithm
maintains the four invariants in the incremental computa-
tion. Intuitively, the Psky,min and Psky,max at E multiplied by
the Pnew

global
and 1=Pglobal

old at entries from the root to E

(inclusive) give the correct values of Psky,min and Psky,max

at E regarding SN,q. Similar invariants hold for Pnew,min and
Pnew,max (but excluding Pold

global
values). Let LE denote the set

of entries on the path from the root of the Ri to E

(inclusive) where Ri is R1 or R2; we describe the four
invariants precisely below. For each entry E,
Invariant 1
Please cite
(2012), ht
: Psky,minðEÞ �PE02LE
Pglobal

new ðE
0
Þ=Pglobal

old ðE
0
Þ gives the

correct value of Psky,min value at E.

Invariant 2
 : Psky,maxðEÞ �PE02LE

Pglobal
new ðE

0
Þ=Pglobal

old ðE
0
Þ gives

the correct value of Psky,max value at E.
Invariant 3
 : Pnew,minðEÞ �PE02LE
Pglobal

new ðE
0
Þ gives the correct

value of Pnew,min value at E.

Invariant 4
 : Pnew,maxðEÞ �PE02LE

Pglobal
new ðE

0
Þ gives the correct

value of Pnew,max value at E.
this article as: W. Zhang, et al., Probabilistic skyl
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gates. To retain the four invariants and save the computa-
tion costs, in our algorithm we push down (top-down)
Top-down and bottom-up: recalculate the aggre-

Pnew
global

and Pold
global

iteratively to the children entries of an
encountered entry, when we search down along the R-tree,
while we also iteratively use the bottom-up paradigm to
update the values Pnew,min, Pnew,max, Psky,min, and Psky,new at

an encountered entry by its children entries. Below we
detail the top-down and bottom-up methods at an
encountered entry E.

Top-down (E). Here, EDRi and Ri is R1 or R2. We push
Pglobal

old ðEÞ and Pglobal
new ðEÞ down to the children entries of E.

That is, for each child E1 of an entry E, we update Pglobal
old ðE1Þ

to Pglobal
old ðE1Þ � Pglobal

old ðEÞ and then reset Pglobal
old ðEÞ to 1 if

Pglobal
old ðEÞo1; similarly, Pglobal

new ðE1Þ is updated to Pglobal
new ðE1Þ �

Pglobal
new ðEÞ and Pglobal

new ðEÞ is reset to 1 if Pglobal
new ðEÞo1.

Bottom-up (E). Here, EDRi and Ri is R1 or R2. We
recalculate Psky,minðEÞ, Psky,maxðEÞ, Pnew,minðEÞ, and Pnew,maxðEÞ

from its children entries as follows.

Let E denote the set of all children of E. Psky,minðEÞ ¼

minE02EfPsky,minðE
0
Þ � 1=Pglobal

old ðE
0
Þ � Pglobal

new ðE
0
Þg, and Psky,max

ðEÞ ¼ maxE02EfPsky,maxðE
0
Þ � 1=Pglobal

old ðE
0
Þ� Pglobal

new ðE
0
Þg. Simi-

larly, Pnew,minðEÞ ¼minE02EfPnew,min ðE
0
Þ� Pglobal

new ðE
0
Þg, and

Pnew,maxðEÞ ¼maxE02EfPnew,maxðE
0
Þ� Pglobal

new ðE
0
Þg

Bottom-up to update Pnoc. Once an entry E in R1 or R2 is
removed, inserted, or modified, we also update Pnoc in a
bottom-up fashion to reflect the change. For example, if an
entry E is deleted, then for each entry E0 on the path from
its parent entry to the root, PnocðE

0
Þ :¼ PnocðE

0
Þ=PnocðEÞ. Other

cases will be dealt similarly.
Re-balancing. When a re-balancing of R1 or R2 is called,

we treat it as a deletion followed by an insertion.
We detail Inserting (anew,SN,q,SKYN,q) and Expiring

(aold,SN,q,SKYN,q) in Algorithm 1 in the next two subsections.
4.2. Inserting (anew,SN,q,SKYN,q)

Once a new element anew arrives, we need to conduct
the following tasks: (1) update Pnew values of the elements
dominated by anew by multiplying ð1�PðanewÞÞ, (2) remove
(prune) the elements a with updated PnewðaÞoq from R1

and R2 and update Pold values of the remaining elements in
SN,q dominated by some of the pruned elements, (3)
update Psky (via Pold and Pnew) values for the elements
dominated by some of those pruned elements or anew, (4)
move elements a in R1 with PskyðaÞoq to R2, and (5)
calculate PskyðanewÞ and insert anew to R1 or R2 accordingly
since PnewðanewÞ ¼ 1.

The remaining elements in SN,q may be dominated by
some pruned elements. Nevertheless, Lemma 2 implies
that in the task (2) above, we only need to update Pold

values for those remaining elements since the remaining
elements cannot be dominated by pruned elements which
arrive later. Moreover, by dominance transitivity the tasks
(1)–(4) only need to be conducted against the elements
dominated by anew. Clearly, the task (5) is conducted
against entries/elements which dominate anew.
ine operator over sliding windows, Information Systems
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The central idea to deal with a newly arrived element
anew is to iteratively traverse R1 and R2 to identify the
entries which are either fully dominated by anew or fully
dominate anew, where Canew o stores the entries fully
dominated by anew, and C oanew stores the entries fully
dominate anew. Then, entries in Canew o are used for tasks
(1)–(4), and the entries in C oanew are used for task (5).
Algorithm 2 below is an outline of our techniques.

Algorithm 2. Inserting (anew,SN,q,SKYN,q).

Input: N: window size; q: skyline probability threshold; anew: newly

arrived data element.

R1 and R2: two aggregate R-trees on SKYN,q and ðSN,q�SKYN,qÞ,

respectively.

Output: Updated R1 and R2

Step 1: Iteratively, traverse from R1 :root and R2:root to identify the

entries to be loaded into Canew o or C oanew .

Step 2: Use Canew o to conduct the tasks (1)–(4) above, and use

C oanew to conduct the task (5) above.

Next we detail Step 1 and Step 2.
Step 1. Recall the definitions of full dominance, partial

dominance, and non-dominance relationships between
two entries in Section 2.2. We use C1 to keep the entries
in R1 and R2 which is partially dominated by anew but do
not dominate anew, C2 to keep the entries which partially
dominate anew but are not dominated by anew, and C1;2 to
keep the entries which partially dominate anew and are
partially dominated by anew. Note that the descendent
entries of C1 may be fully dominated by anew but cannot
fully dominate anew according to Theorem 1. Similarly, the
descendent entries of C2 may fully dominate anew but
cannot be fully dominated by anew. That is, the descendent
entries of the entries in C1 could only be loaded into Canew o ,
and the descendent entries of the entries in C2 could only
be loaded into C oanew . It is immediate that the descendent
entries of the entries in C1;2 could be loaded into either
Canew o or Coanew .

We initially feed C1;2 the root entries of R1 and R2. Then,
we iteratively dequeue an entry E from C1;2 to do the
following (till C1;2 ¼ |). For each child entry E1 of E, E1 is
allocated to Canew o , or C oanew , or C1, or C2, or C1;2; otherwise
E1 is just discarded. This can be immediately conducted
based on their definitions.

We also iteratively dequeue an entry E from C1. For
each child entry E1 of E, E1 is allocated to Canew o , or C1;
otherwise E1 is just discarded. Similarly, we iteratively
identify the descendent entries of the entries in C2 to be
loaded to C oanew .

Note that while iteratively conducting the above
search, we push down Pold

global
and Pnew

global
at the entries E

encountered by top-down (E) in Section 4.1.
Step 2. Note that in Canew o [ Coanew , there do not exist

two entries such that one is decedent of the other. For each
entry E1 in C1, we conduct the following.
Step 2.1
Please ci
(2012), h
: Update Pglobal
new ðE1Þ to Pglobal

new ðE1Þ � ð1�PðanewÞÞ

and push down Pglobal
new ðE1Þ to the children entries

of E1 by top-down (E1) in Section 4.1.

Step 2.2
 : Recalculate Pnew,minðE1Þ, Pnew,maxðE1Þ, Psky,minðE1Þ,

and Psky,maxðE1Þ by bottom-up (E1) in Section 4.1.
te this article as: W. Zhang, et al., Probabilistic skyl
ttp://dx.doi.org/10.1016/j.is.2012.03.002
Step 2.3
ine operat
: Iteratively search down the sub-R tree rooted
at E1 to identify the decedent entries of E1

which should be removed from SN,q—store
them in Sr, or should be moved from R1 to
R2—store them in Sswitch

1 , or should stay in the
original R-trees—store them in Sstay

1 and Sstay
2

accordingly.
Note that when we iteratively search down level-by-
level from E1, we also push down Pold

global
and Pnew

global
at each

entry E encountered by top-down (E) in Section 4.1, and
then recalculate Pnew,minðEÞ, Pnew,maxðEÞ, Psky,minðEÞ, and
Psky,maxðEÞ by bottom-up (E).

In Step 2.3, we put an entry E into: (1) Sr if the updated
Pnew,maxðEÞoq; (2) Sswitch

1 if E was in R1, the updated
Psky,maxðEÞoq, and Pnew,minðEÞZq; (3) Sstay

1 if E was in R1

and Psky,minðEÞZq, and (4) Sstay
2 if E was in R2, Pnew,minðEÞZq,

and Psky,maxðEÞoq. If none of the above four cases, we
continue to drill down E.

Update Pold
global

. Once Sr, Sswitch
1 , Sstay

1 , and Sstay
2 are deter-

mined, we need to update Pold
global

for the (descendent)
entries in Smix

¼ Sswitch
1 [ Sstay

1 [ Sstay
2 dominated by elements

in Sr. We use the synchronous traversal paradigm [12] to
traverse Sr and Smix level-by-level by following the R-tree
structures of the entries in Sr and Smix. Here, we create a
dummy root entry for Sr with all entries in Sr to be children
of the root; similar treatments are done for Smix. We put
the root entry of Sr to S1 and the root entry of Smix to S2.
Iteratively, for each pair E1 2 S1 and E2 2 S2,

If E1 fully dominates E2, then update Pglobal
old ðE2Þ by

multiplying PnocðE1Þ; otherwise, if E1 partially domi-
nates E2 then put the children of E1 to S1 and the
children of E2 to S2 for the next iteration.

Note that when we iteratively traverse down Smix, we
also push down Pold

global
and Pnew

global
at each encountered entry

in Smix.
Update entries and probability mass. For each entry E in

Sswitch
1 (i.e., in R1), we find an appropriate level in R2 to

insert E; we propose to use the level with the length to the
leaf to be the same as that of E in R1. Note that we also
iteratively push down Pold

global
and Pnew

global
to the children of

each encountered entry while searching down in R2 for the
insertion.

To ensure the four invariants, we need to update the
values of Psky,min, Psky,max, Pnew,min, and Pnew,max in the
bottom-up fashion. Details are given below.

For each entry E in Sr, we iteratively recalculate those
values from the parent E0 of E along the path between E0

and the root of the corresponding R-tree (i.e., R1 or R2) in a
bottom-up fashion. That is, we first recalculate those
values in E0 by bottom-up (E0), then the parent of E0, so
on and so fourth. Here, E will be excluded when recalcu-
lating E0. Each entry E in Sstay

1 or Sstay
2 will be processed in

exactly the same way except that we should include E to
recalculate E0. Each entry E in Sswitch

1 inserted into R2 will be
treated as a deletion from R1 and an insertion to R2;
consequently, do updates from E to the root of R1 in
exactly the same as those in Sr and do updates to R2 in
exactly the same way as those in Sstay

2 .
or over sliding windows, Information Systems
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In the above bottom-up updates regarding an E 2 Sr , we
also update Pnoc at each entry from E0 (the parent of E) to
the root (inclusive) by multiplying 1=Pnoc. Regarding an
entry E 2 Sswitch

1 , in the bottom-up updates in R1, Pnoc in R1

will be updated in the same way as those regarding Sr,
while Pnoc in R2 will also be updated in the same way
except multiplying by PnocðEÞ instead of 1=PnocðEÞ.

Remark: To avoid processing an entry multiple times, in
our implementation we integrate together the bottom-up
updates for entries in Sr, Sswitch

1 , Sstay
1 , and Sstay

2 from the
lowest level.

Inserting anew. It involves the following two steps: (1)
assign PoldðanewÞ and PskyðanewÞ by PE2C o anew

PnocðEÞ and
PðanewÞ �PE2C o anew

PnocðEÞ, respectively, and assign
PnewðanewÞ by (1) and (2) insert anew into R1 or R2 according
to the value of PskyðanewÞ.

All updates in Step (2) will be processed in the same
way as an entry in Sswitch

1 to be inserted in R2.

4.3. Expiring (aold,SN,q,SKYN,q)

Once an element aold expires, we first check if it is in
SN,q. If aold is already pruned from SN,q, then we do nothing.

Otherwise, if it is in SN,q then we need to do the
following: (1) increase the Pold values for elements domi-
nated by aold by multiplying 1=ð1�PðaoldÞÞ; and (2) we need
to determine the elements that need to be moved from R2

to R1. These will be dealt as follows.
Particularly, we adopt the techniques in the part of

‘‘Update Pold
global

’’ in last subsection to update Pold
global

values in
R1 and R2; that is, treat Sr ¼ faoldg and treat R1 [ R2 as Smix.

Then we identify the entries in R2 which will be moved to
R1 after updating Pold

global
. Therefore, we still have three cate-

gories, (1) the set S1 of entries in R1 with the Pold
global

values
changed (note that entries in R1 are impossible to be moved to
R2 since the skyline probability will only be increased), (2) the
set S2 of entries in R2 with the Pold

global
values changed but still

staying in R2, and (3) the set S3 of entries in R2 which will be
moved to R1 due to the change of Pold

global
. We iteratively drill

down each entry in R2 with the updated Pold
global

to identify S2

and S3. Then we update R1 by S1 in the same way as updating
R1 by Sstay

1 , and update R2 by S2 in the same way as updating R2

by Sstay
2 in the last subsection. We move S3 from R2 to R1 and

do the updates similarly to that we move Sswitich
1 from R2 to R1

and do the corresponding updates in the last subsection.
Finally, we need to remove aold from R1 or R2. This will

be treated similarly to that we remove Sr from R1 in the
last subsection.

4.4. Algorithm analysis

Correctness. Our sliding window techniques maintain
aggregate information against SN,q and then get skyline
according to the skyline probabilities restricted to SN,q.
Since the four invariants are retained, Theorems, Lemmas
and Corollaries in Section 3.1 ensure that our algorithms
are correct.

Space complexity. Clearly, in our algorithm we use
aggregate-R trees to keep each element in SN,q and each
element is kept only once. Thus, the space complexity is
Oð9SN,q9Þ.
Please cite this article as: W. Zhang, et al., Probabilistic skyl
(2012), http://dx.doi.org/10.1016/j.is.2012.03.002
Time complexity. It seems hard to provide a sensible
time complexity analysis; nevertheless, our experiment
demonstrates the algorithms in this section are much
faster than the trivial algorithm against SN,q as what are
discussed in the beginning of this section.

5. Variants

The techniques developed in the paper can be imme-
diately extended to cover the following variants.

5.1. Multiple confidences

Continuous queries. Different users may specify different
confidences; that is, different thresholds q. A naive way to
process this is to run k queries, with k different thresholds,
separately. This not only involves the continuous compu-
tation k times but also needs to store k different SN,q and
many elements may be stored k times. In the applications
where all the queries are centrally handled by one com-
puter, sharing computation and minimizing the memory
usage is critical. Below, we extend our techniques for a
single given confidence to achieve this goal.

Suppose that users specify k confidences q1, q2, y, qk

where qioqiþ1. Instead of maintaining a single solution
set R1, we maintain k solution sets R1, R2, y, Rk such that
elements in Ri (for 1r irk�1) have the skyline probabil-
ities in ½qi,qiþ1Þ and the elements in Rk have the skyline
probabilities in ½qk,1�, while R0 keeps the elements in
ðSN,q1

�
Sk

i ¼ 1 Ri
Þ. Those Ri for i¼0 to k are also maintained

as aggregate R-trees with the same aggregate information
as that in Section 4.1.

All the techniques from Algorithms in Section 4 are
immediately applicable except that now, we need to detect
the switch from Rj to Ri for any j4 i when inserting a new
element, and for any i4 j when expiring an element.

Note that once a new query q0 issues, if q04q1, we can
immediately process it by splitting a Rj. If q0oq1, then we
need to process q0 from the scratch.

Ad hoc queries. Users may also issue an ad hoc query,
‘‘find the skyline with skyline probability at least q0’’.
Assume that currently we maintain k skylines as discussed
above and q0Zq1. Then, we first find an Ri such that
qirq0oqiþ1. Clearly, the elements {Rj: jZ iþ1g are all
contained in the solution. We can apply the iteratively drill
down search paradigm in Section 4 to get all elements in Ri

with skyline probabilities Zq but without updating aggre-
gate probabilities information.

As a by-product to continuously computing skyline, we
can answer any ad hoc query in the way above. Never-
theless, when q0oq1, the current maintained Rj for
jrðkþ1Þ will miss the solution; therefore, we need to
retrieve the skyline against the whole sliding windows by
the non-index based existing techniques.

5.2. Probabilistic top-k skyline elements

Given an uncertain data stream, a threshold q, and a
sliding window size N, find the k skyline points with the
highest skyline probabilities (but not smaller than q).
ine operator over sliding windows, Information Systems
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The algorithms in Section 4 can be immediately
extended to continuously computing the top-k skyline
points as follows. SN,q is maintained by removing points
with Pnewoq and is maintained by R1 and R2 where R1 is
the solution set. The aggregate information at each entry is
also retained, including the probabilities Psky, Pold, Pnew,
etc., as described in Section 4.

Note that when a new element anew arrives, we need to
determine Sr, Sswitch

1 , Sstay
1 , and Sstay

2 . While determining Sr is
exactly the same as that in Section 4.2, we treat R1 and R2 as
two ‘‘heap trees’’ to efficiently determine Sswitch

1 , Sstay
1 , and Sstay

2 .
Here, we treat R1 as a min-heap against Psky, and R2 as a max-
heap against Psky. Since Psky,maxðEÞ, Psky,minðEÞ, Pglobal

old ðEÞ, and
Pglobal

new ðEÞ are maintained at each entry E, Psky,min may be used
as the min-heap search key together with Pglobal

new and Pglobal
old at

each entry and Psky,max may be used as the max-heap search
key at each entry together with Pglobal

new and Pglobal
old . Subsequently,

we use min-heap on R1 and max-heap on R2 to move
elements in top-k from R2 to R1 and move elements in R1,
which are not in top-k, to R2.

It will be ideal if we could remove the constraint of ‘‘but
not smaller than q’’ and keep candidates of the top-k points
with the maximal skyline probabilities. Clearly, the smallest
skyline probability in the top-k points may change from time
to time. This makes our incremental techniques for maintain-
ing a candidate set not applicable since our techniques are
applicable only when a fixed q is given or q increases.

5.3. Time stamp based sliding windows

In many applications, a sliding window may be speci-
fied against the time. In addition, each data element also
has an expiration time.

Problem definition. In a data stream DS on a d-dimen-
sional numeric space, each data element has (1) a time-
stamp kðaÞ—the issuing time of a; and (2) a life-span
lðaÞ—a is unavailable after lðaÞþkðaÞ.

In this subsection, we study the problem of efficiently
computing the skyline elements among the available data
elements issued in the most recent time period T, with the
skyline probabilities not smaller than a given threshold q

(0oqr1). Suppose that the current system time is t; we
calculate the q-skyline of the data elements in DST ,t where

DST ,t ¼ fa9t�kðaÞrminfT ,lðaÞgg ð11Þ

In such a sliding model, we expire an element if it is not
within a pre-given most recent time period T or its life-
span is over. Note that the larger the vale of kðaÞ, the
younger the element a.

Example 3. As depicted in Fig. 3, the window size T is
7 min and q¼0.5. Suppose that a1 arrives at 9:00 am, a2
q   =   0 . 5 

p ( a 1)   =   0 . 9 

p ( a 2)   =   0 . 4 

p ( a 3)   =   0 . 3 

p ( a 4)   =   0 . 9 

p ( a 5)   =   0 . 2 

l ( a 1)   =   8   mi n 

l ( a 2)   =   5   mi n 

l ( a 3)   =   6   mi n 

l ( a 4)   =   3   mi n 

l ( a 5)   =   5   mi n 

a1

a2

a3

a4

a5

Fig. 3. An example.

Please cite this article as: W. Zhang, et al., Probabilistic skyl
(2012), http://dx.doi.org/10.1016/j.is.2012.03.002
arrives at 9:01 am, a3 arrives at 9:02 am, a4 arrives at
9:03 am, and a5 arrives at 9:04 am, where the life-span
lða1Þ ¼ 8 min, lða2Þ ¼ 5 min, lða3Þ ¼ 6 min, lða4Þ ¼ 3 min, and
lða5Þ ¼ 5 min. Moreover, pða1Þ ¼ 0:9, pða2Þ ¼ 0:4, pða3Þ ¼ 0:3,
pða4Þ ¼ 0:9, and pða5Þ ¼ 0:1. The threshold is q¼0.5.

Let t1 ¼ 9 : 065 am and t2 ¼ 9 : 08 am. It can be immedi-
ately verified that DST ,t1

¼ fa1,a3,a5g since the life-span of
a2 and a4 are exhausted, and DST ,t2

¼ fa3,a5g since a1

expires from the sliding window, and the life-spans of a2

and a4 are exhausted.

SN,q insufficient. Recall that in the sliding window
defined against the most recent N data elements,
SN,q ¼ fa9PnewðaÞZq&a 2 DSNg. We could immediately
extend the definition of SN,q to define ST ,t,q against a sliding
window regarding the most recent time period T where
ST,t,q ¼ fa9PnewðaÞZq&a 2 DST,tg.

It can be immediately verified that the techniques
developed in Sections 3 and 4 can be applied to a sliding
window T regarding ST,t,q if all elements in the sliding
window follow FIFO—‘‘First In, First Out’’.

Nevertheless, with an arbitrary life-span value of each
element a, FIFO does not always hold; consequently,
continuously maintaining ST ,t,q based on ST ,t,q is not suffi-
cient. Below is an example.

Example 4. Continue Example 3. Suppose that t¼9:05 am
then ST ,t,q ¼ fa3,a4,a5g since Pnewða1Þoq and Pnewða2Þoq

where q¼0.5. Continuously maintaining ST ,t,q based on
ST,t,q cannot bring a1 back since a1 is removed. Never-
theless, when t1 ¼ 9:065 am, a1 2 DST,t1

and Pskyða1Þ ¼

0:634q; thus, a1 should be included as a skyline point.
This means the skyline point a1 is lost if we continuously
maintain ST,t,q based on ST ,t,q only.

To resolve this, we need to replace Pnew and Pold by Plate

and Pearly. For each element a, PlateðaÞ is the probability that
the elements, expiring not earlier than a in the sliding
window T and dominating a, do not occur, while PearlyðaÞ is
the probability that the elements, expiring earlier than a in
the sliding window T and dominating a, do not occur.
Given a sliding window defined over the time period T, for
each element a its expiration time eðaÞ regarding T is
defined as

eðaÞ ¼ kðaÞþminfT ,lðaÞg ð12Þ

Precisely, Plate and Pearly are defined as follows at time t.

PlateðaÞ ¼Pa02DST ,t ,a0!a,eða0 ÞZ eðaÞð1�Pða0ÞÞ ð13Þ

PearlyðaÞ ¼Pa02DST,t ,a0!a,eða0 ÞoeðaÞð1�Pða0ÞÞ ð14Þ

Immediately, the skyline probability of each element a

in DST ,t is PT
skyðaÞ ¼ PðaÞ � PearlyðaÞ � PlateðaÞ. Let CT ,t,q ¼

fa9PlateðaÞZq&a 2 DST,tg.

Example 5. Continue Example 3. eða1Þ ¼ 9 : 07 am,
eða2Þ ¼ 9 : 06 am, eða3Þ ¼ 9 : 08 am, eða4Þ ¼ 9 : 06 am,
eða5Þ ¼ 9 : 09 am.

At t¼ 9 : 05 am, DST ,t ¼ fa1,a2,a3,a4,a5g where Plateða1Þ ¼

0:7, Pearlyða1Þ ¼ 0:1, Plateða2Þ ¼ 0:0056, Pearlyða2Þ ¼ 1,
Plateða3Þ ¼ 1, Pearlyða3Þ ¼ 1, Plateða4Þ ¼ 1, Pearlyða4Þ ¼ 1,
Plateða5Þ ¼ 1, Pearlyða5Þ ¼ 1. Thus, CT ,t,q ¼ fa1,a3,a4,a5g.
ine operator over sliding windows, Information Systems
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Framework. Given a threshold q and a sliding window T,
the problem of continuously computing the probabilistic
q-skyline SKYT,t,q can be conducted by continuously main-
taining CT ,t,q and retrieving the points continuously from
CT,t,q with PT

skyðaÞ9CT,t,q
Zq where SKYT ,t,q ¼ fa9a 2 DST ,t&

PT
skyðaÞZqg. The framework is similar to Algorithm 1 and

is outlined below in Algorithm 3.

Algorithm 3. Continuously computing SKYT,t,q.
Please
(2012
1
 while a new element anew arrives do�

2
 Inserting ðanew ,CT ,t,q ,SKYT,t,qÞ;�

3
 end while

4
 while an old element aold expires do�

5
 Expiring ðaold ,CT,t,q ,SKYT ,t,qÞ;�

6
 end while
As with the techniques in Sections 3 and 4, we con-
tinuously insert new elements into CT,t,q and remove the
elements a from CT,t,q which expire or are discovered with
PT

lateðaÞ9CT,t,q
oq.

Using CT,t,q only. We can show that we only need to
continuously maintain CT ,t,q instead of DST ,t . Particularly,
we can show that the lemmas and theorems in Section 3
hold if we replace Pnew by Plate, Pold by Pearly, Psky by PT

sky,
and SN,q by CT ,t,q. Below is a summary.
�
 No missing skyline points. Lemma 1 holds if we replace
Psky by PT

sky and SN,q by CT ,t,q.

�
 No false hits to determine ST ,t,q. Lemma 2 holds if we

replace Pnew by Plate and replace ‘‘a0 is newer than a’’ by
‘‘a0 expires no later than a’’. Theorem 2 holds if Pnew is
replaced by Plate and SN,q by CT,t,q.

�
 No false hits to determine SKYT,t,q. Theorems 3 and 4,

Lemma 3, Corollaries 1 and 2 hold if we replace Pnew by
Plate, Pold by Pearly, Psky by PT

sky, and SN,q by CT ,t,q, as well
as we replace ‘‘a0 is newer than a’’ by ‘‘a0 expires no later
than a’’ in Lemma 3.

We can also show that Theorem 6 also holds if we replace
SN,q by CT,t,q, Pnew by Plate, Pold by Pearly, and Psky by PT

sky.
Moreover, we can remove the constraint ‘‘If a is not the
oldest element in the sliding window (i.e., a must expire
once a new element issues)’’ from Theorem 6. Therefore, we
can conclude that CT ,t,q is the minimum set of data elements
to be retained to ensure the above three properties.

Size estimation. Theorem 8 can be immediately applied
to estimate SKYT,t,q; consequently, the expected size of
SKYT ,t,q in a d-dimensional space is poly-logarithmic
regarding NT with order ðd�1Þ if the distributions’ assump-
tion in Theorem 8 is adapted where NT is the maximum
number of elements issued with a sliding window T.
Moreover, using the same arguments in the proof of
Theorems 8 and 9, it can be immediately shown that
expected size of CT,t,q is poly-logarithmic regarding NT

with order d if the distributions’ assumptions in Theorem
8 are used and kðaÞþ lðaÞ follows a uniform distribution.

Aggregate R-trees. Similar to Section 4.1, two aggregate
R-trees R1 and R2 will be maintained where R1 is built on
the elements in SKYT ,t,q and R2 is built on the elements in
cite this article as: W. Zhang, et al., Probabilistic skyl
), http://dx.doi.org/10.1016/j.is.2012.03.002
ðCT ,t,q�SKYT,t,qÞ. In the aggregate R-trees R1 and R2, we
replace Pnew

global
, Pold

global
, Pnew,min, Pnew,max, Psky,min, and Psky,max

against SN,q by Plate
global

, Pearly
global

, Plate,min, Plate,max, PT
sky,min, and

PT
sky,max against CT ,t,q, respectively.

In addition, we also maintain PRE
global

at each entry. PRE
global

records the multiplication of non-occurrence probabilities
of the captured elements which dominate all elements in
E, expire earlier than all elements in E, and are still kept in
R1 and R2. This is because a new arriving element may
expire earlier than some existing elements and may expire
later than the other elements. To continuously maintain
PRE

global
, Pearly

global
, and PRE

global
, at each entry E we maintain tminðEÞ

and tmaxðEÞ where tmin records the earliest expiration time
of the elements in E and tmax records the latest expiration
time of the elements in E. Below are the details.
�

ine
Pglobal
late ðEÞ stores the multiplication of non-occurrence

probabilities of the captured elements which dominate
all elements in E and expire not earlier than all
elements in E.

�
 Pglobal

early ðEÞ stores the multiplication of non-occurrence
probabilities of the captured elements which dominate
all elements in E and expire earlier than all elements in
E, and removed because they either expire or are pruned.

�
 Pglobal

RE ðEÞ records the multiplication of non-occurrence
probabilities of the captured elements which dominate
all elements in E and expire earlier than all elements in
E but are still kept in R1 and R2.

�
 PT

sky,minðEÞ and PT
sky,maxðEÞ store the minimum skyline

probability and maximum skyline probability, respec-
tively, of the elements in E (excluding the recently
Pglobal

late ðEÞ, Pglobal
early ðEÞ, and PRE

global
at some entries).
�
 Plate,minðEÞ and Plate,maxðEÞ store the minimum and max-
imum Plate values of the elements in E (excluding the
recently captured Plate

global
at some entries).

Moreover, we still maintain Pnoc at each entry.
Algorithms. In our algorithm, we also continuously

maintain the four invariants similarly to those in Section
4.1 except that we replace Pnew

global
, Pold

global
, Pnew,min, Pnew,max,

Psky,min, and Psky,max against SN,q by Plate
global

, Pearly
global

, Plate,min,

Plate,max, PT
sky,min, and PT

sky,max against CT,t,q, respectively, and

we also include PRE
global

in the numerator multiplying Plate
global

.
All the techniques developed in Section 4 can be

immediately applied to continuously maintaining R1 and
R2, and computing SKYT ,t,q if we use Plate

global
, Pearly

global
, Plate,min,

Plate,max, PT
sky,min, PT

sky,max and CT ,t,q instead of Pnew
global

, Pold
global

,

Pnew,min, Pnew,max, Psky,min, and Psky,max, and SN,q. There is one

additional request that we need to update Plate
global

, Pearly
global

,
and PRE

global
using tmin and tmax. For example, for each entry

E 2 Canew o , we do the following:
�
 If anew!E and tmaxoeðanewÞ, then Pglobal
late ðEÞ :¼ Pglobal

late ðEÞ

�ð1�PðanewÞ.

�
 If anew!E and tmin4eðanewÞ, then Pglobal

RE ðEÞ :¼ Pglobal
RE ðEÞ

�ð1�PðanewÞ.

�
 Otherwise, put the children entries into Canew o .

PRE
global

will be iteratively pushed down in the same way
as Pnew

global
described in Section 4. We update Plate

global
and Pearly

global
operator over sliding windows, Information Systems
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in a similar way by using tmin and tmax combining with the
techniques in Section 4. The bottom-up update of PT

sky,min

and PT
sky,max will be conducted in the same way as PT

sky,min

and PT
sky,max, respectively, except that we need to multiply

PRE
global

in the numerators.
After expiring or pruning elements, we also need to

update tmin and tmax; these will be conducted in a bottom-
up fashion along with the updates to PT

sky,min and PT
sky,max.

Moreover, the expiration of elements regarding the time-
frame sliding window model is triggered by the expiration
time eðaÞ of an element. As we maintain tmin in R1 and R2,
respectively, the tmin in R1 (and R2) can serve as such a
trigger; that is, once the time reaches tmin we expire
elements in R1 (and R2) with their expiration time tmin.

The correctness immediate follows from the four invar-
iants, and the space complexity can be analyzed in the
same way as that in Section 4.4. Also, it is hard to provide
any sensible analysis of the time complexity. It is worth to
note that similar extension can be conducted to solve the
queries in Sections 5.1 and 5.2.
6. Performance evaluation

In this section, we only evaluate our techniques since this
is the first paper studying the problem of probabilistic skyline
computation and its variations over sliding windows. Specifi-
cally, we implement and evaluate the following techniques.
SSKY
Please cit
(2012), h
Techniques in Section 4 to continuously com-
pute q-skyline (i.e., skyline with the probability
no less than a given q) against a sliding
window.
MSKY
 Techniques in Section 5.1 to continuously com-
pute multiple q-skylines concurrently regard-
ing multiple given probability thresholds.
QSKY
 Techniques in Section 5.1 to process a skyline
query with an ad hoc probability threshold.
TOPK
 Techniques in Section 5.2 to retrieve k elements
with the largest skyline probabilities.
TIME
STAMP
Techniques in Section 5.3 to continuously com-
pute q-skyline against the TIME STAMP based
sliding window model.
Table 3
System parameters.

Notation Definition (default values)

n Number of elements in the dataset (2 M)

N Sliding window size (1 M)

d Dimensionality of the of the dataset (3)

D Dataset (anti)

DP Occurrence probability distribution of elements (uniform)

Pm Expected occurrence probability (0.5)

q Probabilistic threshold (0.3)

q0 Probabilistic threshold q0 with qrq0r1

k Number of elements retrieved in TOPK queries (30)
All algorithms are implemented in Cþþand compiled by
GNU GCC. Experiments are conducted on PCs with Intel
Xeon 2.4 GHz dual CPU and 4 G memory under Debian
Linux. Our experiments are conducted on both real and
synthetic datasets.

Real dataset is extracted from the stock statistics from
NYSE (New York Stock Exchange). We choose 2 million
stock transaction records of Dell Inc. from Dec1st, 2000 to
May22nd, 2001. For each transaction, the average price per
volume and total volume are recorded. This 2-dimensional
dataset is referred to as stock in the experiment. We
randomly assign a probability value to each transaction;
that is, probability values follow the uniform distribution.
The arrival order of elements follows their transaction time.

Synthetic datasets are generated as follows. We first use
the methodologies in [4] to generate 2 million data
elements with the dimensionality from 2 to 5 and the
e this article as: W. Zhang, et al., Probabilistic skyl
ttp://dx.doi.org/10.1016/j.is.2012.03.002
spatial locations of data elements follow two kinds of
distributions, independent and anti-correlated. Then, we
use two models, uniform or normal distributions, to ran-
domly assign occurrence probability of each element to
make them be uncertain. In uniform distribution, the
occurrence probability of each element takes a random
value between 0 and 1, while in the normal distribution,
the mean value Pm varies from 0.1 to 0.9 and standard
deviation Sd is set to 0.3. Note that, since the domain of the
normal distribution is ð�1,1Þ, we truncate the values
which are smaller than 0 or larger than 1. We assign a
random order for elements’ arrival in a data stream.

In the TIME STAMP sliding window model, we use the
arriving order as the issuing time of an element; that is,
the issuing time of an element a is 1 if it arrives first. The
life-span of an element follows uniform distribution in [0,
N] where N is the size of sliding window, which corre-
sponds to the time period T in Section 5.3.

Choosing q. q is the probability threshold in evaluating
the efficiency of the queries. To evaluate SSKY, TOPK, and
TIME STAMP, we use 0.3 as a default value of q, while to
evaluate MSKY with 9Q9 given probability thresholds q1,
y, q9Q9, we let these 9Q9 values evenly spread ½0:3,1�. To
evaluate QSKY, we issue 1000 queries across ½q,1� where q

is the minimum probability threshold when multiple
thresholds are pre-given for multiple continuous skylines.
We record the average time to process these 1000 queries.

Table 3 summarizes parameters and their correspond-
ing default values. In our experiments, all parameters take

default values unless otherwise specified.

In our experiments, we evaluate the time efficiency of
our algorithm as well as the space efficiency (i.e., space
usage) against dimensionality, size of sliding window,
probabilistic threshold, distribution of objects’ spatial
location and occurrence probability distribution. The pro-
cessing time of an element e is the delay regarding the
arrival of e, including the CPU costs for the insertion of e

and the deletion of expired elements invoked by e. Since
the processing time of one element is too short to capture
precisely, we record the average time for each batch of 1 K
elements to estimate the delay per element. In the paper,
each intermediate entry of the R-Tree occupies a page and
the page size is 1024 bytes in our implementation.

6.1. Evaluating against baseline algorithms

In order to evaluate the effectiveness of the SSKY algo-
rithm, we implement two baseline algorithms, named
ine operator over sliding windows, Information Systems
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SSKY-NSC and SSKY-NS respectively. SSKY-NSC is a naive
algorithm to continuously compute the probabilistic sky-
line; it keeps all elements in the sliding window by 2 R-
trees, R1 stores the current skyline, and R2 keeps the
remaining elements. We incrementally maintain R1 and
R2 by using R-trees to prune irrelevant entries and data
elements. SSKY-NS algorithm is a naive version of SSKY -
where we use R1 and R2 to store SKYN,q and ðSN,q�SKYN,qÞ,
respectively, while no statistic information (e.g., Pglobal

new ,
Pglobal

old ) will be kept. Consequently, any update will have
to be immediately pushed down to the leaf levels.

Fig. 4(a) records the maximum numbers of the MBRs
accessed for each update of SSKY, SSKY-NS and SSKY-
NSC algorithms where the window size varies from 200 k
to 1 M. As expected, SSKY-NSC algorithm accesses much
more MBRs and the number grows linearly against the
window size because all elements in the sliding window
are kept. This implies that only a small portion of the
elements are kept in the candidate set in SSKY and SSKY-
NS. As shown in Fig. 4(a), SSKY can further reduce the
number of the MBRs accessed by taking advantage of the
statistic information. Similar trends are observed in
Fig. 4(b), where the average numbers of the MBRs accessed
are reported.

We compare the time efficiency of SSKY, SSKY-NS,
SSKY-NSC in Fig. 5(a) and (b) by varying the probability
threshold q and the sliding window size N, respectively. As
shown, SSKY-NSC is up to 2 orders of magnitude slower
than SSKY since it keeps all elements in the sliding
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window. As expected, SSKY is more efficient than SSKY-
NS with the help of statistic information.

In Fig. 6, we study the performance of the algorithms in
the worst case scenario, in which every element e dom-
inates all elements which arrive later than e. Thus, every
element e in the sliding window is kept since its Pnew value
equals 1. Note that SSKY-NS and SSKY-NSC have the same
performance in the worst case since all elements in the
sliding window are kept, and hence we only evaluate
SSKY and SSKY-NS in this experiment. As expected, the
performances of both algorithms degrade due to the large
candidate set size. Nevertheless, SSKY significantly outper-
forms SSKY-NS because SSKY can take advantage of the
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statistics information and stop to travel the aR-tree on
high levels.

We also report the number of pages accessed for each
update of SSKY, SSKY-NS and SSKY-NSC algorithms when
the window slides in Fig. 7. It shows that the numbers
increase in the initialization phase (i.e., the window is not
full) and become stable when the window is full. This is
because the number of the elements in the window grows
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with n (the number of elements arrived) in the initializa-
tion phase and becomes a fixed number (i.e., window size)
when the window is full.

6.2. Evaluating SSKY, MSKY and QSKY

In this subsection, we evaluate the performance of
SSKY, MSKY and QSKY algorithms in terms of the space
usage and the time efficiency.

6.2.1. Space efficiency

We evaluate the space usage of SSKY algorithm in
terms of the number of elements kept in SN,q against
different settings. As this number may change when the
window slides, we record the maximum value over the
whole stream. Meanwhile, we also keep the maximum
number of elements in SKYN,q.

In Fig. 8, we report the performance of SSKY algorithm
against four datasets: Inde-Uniform (Independent distri-
bution for spatial locations of the elements and Uniform
distribution for occurrence probability values associated
with the elements), Anti-Uniform, Anti-Normal, and Stock-
Uniform. We record the maximum sizes of SN,q and SKYN,q.
Anti (4d) Anti (5d) Stock
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It is shown that a very small portion of the 2-dimensional
dataset needs to be kept. Although this proportion
increases with the dimensionality, our algorithm can still
achieve a 89% space saving even in the worst case, 5-
dimensional anti-correlated data. Size of SKYN,q is much
smaller than that of candidates. Since the anti-correlated -
dataset is the most challenging, it will be employed as the
default dataset in the rest of the experiments.

Fig. 9 evaluates the impact of the sliding window size N

on the space efficiency. As depicted in Fig. 9, the space
usage grows with the window size because more elements
are involved when the window size increases.

Fig. 10 reports the impact of the occurrence probability
distribution against the space usage on different datasets.
The occurrence probability follows the normal distribution
and the mean of the occurrence probability Pm increases
from 0.1 to 0.9. It demonstrates that the smaller the
average occurrence probability of the elements, the more
elements will be kept in SN,q. As shown in Fig. 10(a), the
size of the candidate decreases with the increase of
average occurrence probability. Interestingly, although
the candidate size is large with smaller average occurrence
probability, the number of probabilistic skyline is small, as
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illustrated in Fig. 10(b). This is because the small occur-
rence probability prevents the uncertain objects from
becoming probabilistic skyline.

Fig. 11 reports the effect of the probabilistic threshold q

on the space efficiency. As expected, both candidate set
size and skyline size drop as q increases because more
objects are pruned when q becomes large.

We measure the memory usage of SSKY algorithm by
the number of pages. Note that the memory usage changes
when window slides. Thus, we report the maximum and
average memory usage in terms of the number of pages in
Fig. 12(a) and (b), respectively, regarding different sizes of
sliding windows. As shown, both the average memory
usage and maximal memory usage increase with the
increment of the sliding window size.
6.2.2. Time efficiency

We evaluate the time efficiency of our continuous
query processing techniques, SSKY and MSKY, as well as
ad hoc query processing.

Evaluating SSKY and MSKY. Fig. 13 records the delay
(processing costs) of each element when it arrives, where n
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indicates the number of elements arrived so far. As shown,
the delay for each element increases before the window is
full, and becomes stable after the window is full (number
of arrived elements reaches 1 M). This is because in the
initialization phase, the sizes of SN,q and SKYN,q are smaller.
Also before the window is full, we only need to handle the
insertion of new elements, and do not need to process the
expiration of elements. Moreover, it shows that SSKY is
very efficient, especially when the dimensionality is low.
For 2-dimensional dataset, SSKY can support a workload
where elements arrive at the speed of more than 38 K
per second even for stockand anti-correlated dataset. For 5d

anti-correlated data, our algorithm can still support up to
728 elements per second, which is a medium speed for
data streams.

Fig. 14 evaluates the system scalability towards the size
of the sliding window. The performance of SSKY is not
sensitive to the size of sliding window. This is because the
candidate size increases slowly with the window size N, as
reported in Fig. 9.

Fig. 15 evaluates the impact of occurrence probability
distribution on time efficiency of SSKY where normal
distribution is used for probability values. As expected,
large Pm leads to better performance since the candidate
size is small when Pm is large.

Fig. 16 evaluates the effect of probability threshold q on
SSKY. Since both the size of candidate set and the size of
Please cite this article as: W. Zhang, et al., Probabilistic skyl
(2012), http://dx.doi.org/10.1016/j.is.2012.03.002
skyline set are small when q is large as depicted in Fig. 11,
SSKY is more efficient when q increases.

We study the effectiveness of the index structure and
statistics in Fig. 17. If an entry E (in R1 or R2) is not accessed
based on the dominance relationship (i.e., full dominance or
partial dominance) derived by R-tree index, we increase the
number of elements pruned by the index by the number of
elements in E. Similarly, we increase the number of elements
pruned by the statistics by the number of elements in E if E is
pruned based on the statistics information. Fig. 17 shows the
ine operator over sliding windows, Information Systems
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number of elements pruned by the index structure and
statistics information, respectively. As expected, both the
index structure and the statistics information are very useful
and hence significantly reduce the number of elements
probed.

Fig. 18 illustrates the performance of MSKY, and two
naive implementations of MSKY, named Multi-q and Min-q

respectively. As described in Section 5.1, in Multi-q, instead
of maintaining 9Q9 disjoint R-trees for SKYN,q and one R-tree
for SN,q, we maintain SN,q and SKYN,q for each q 2 Q . In Min-

q, we maintain SN,q and SKYN,q for the smallest q 2 Q only;
besides the regular update cost, whenever the probability or
elements change in SKYN,q, we scan R1 to output the skyline
Please cite this article as: W. Zhang, et al., Probabilistic skyl
(2012), http://dx.doi.org/10.1016/j.is.2012.03.002
results. The results in Fig. 18 show that MSKY is much more
efficient than these two implementations.

The last experiment in this subsection evaluates the
efficiency of our multi-probability thresholds based con-
tinuous query processing techniques MSKY and ad hoc
query processing techniques QSKY. Results are reported in
Fig. 19(a) and (b), respectively. As expected, Fig. 19(a)
shows that the average maintenance cost for the update of
each element in MSKY increases when 9Q9 increases
because we need to maintain more R-trees. As the multiple
ad hoc queries with different probability threshold (q) may
share computation if queries are issued at the same time,
the average response time of each query decreases with
the growth of 9Q9. This is illustrated in Fig. 19(b).

6.3. Evaluating TOPK

The space usage of TOPK is the same as that of SSKY -
because we only consider elements with skyline probabil-
ities not smaller than q. Therefore, we only evaluate the
time efficiency of TOPK in this subsection.

We evaluate the performance of TOPK on different
datasets when the window slides from 1 M to 2 M. As
shown in Fig. 20, the algorithm is very efficient, especially
when the dimensionality is low because of the small
candidate and skyline sizes and the use of statistic infor-
mation. It is shown that the performances of the algo-
rithms are stable because the number of elements in the
sliding window remains unchanged after the window
becomes full (i.e., nZ1 M ).

We also investigate the impact of the sliding window
size N which varies from 200 K to 1 M. Fig. 21 shows that
the performance of the algorithm slightly degrades when
the size of the window increases. As shown in Fig. 9, that is
because the number of elements in the skyline and
candidate sets grows with the window size.

The impact of the occurrence probability on time
efficiency of TOPK is studied in Fig. 22. Probability values
follow normal distribution and the expected value Pm
varies from 0.1 to 0.9. Similar to SSKY, larger Pm leads to
smaller skyline and candidate set sizes and hence higher
time efficiency. The effect of probability threshold q is
evaluated in Fig. 23. As depicted, the performance of the
algorithm is better when q is set to larger values because
the number of elements in skyline and candidate sets
decreases with q as shown in Fig. 11.

Figs. 24 and 25 report the effect of the value k on
TOPK when the occurrence probability follows uniform

and normal distributions, respectively. As shown, the
performance of TOPK is not sensitive to the value of k

because the skyline and candidate set sizes are not
dependent on k.

6.4. Evaluating TIME STAMP model

In this subsection, we evaluate the space and time
efficiency of TIME STAMP algorithm.

6.4.1. Space efficiency

We first evaluate the space usage of TIME STAMP a-
gainst different datasets, Inde-Uniform (spatial locations of
ine operator over sliding windows, Information Systems
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elements follow independent distribution and occurrence
probability follows uniform distribution), Anti-Uniform,
Anti-Normal, and Stock-Uniform (real dataset with uni-
form occurrence probability distribution). We capture and
report the maximum sizes of candidate and skyline sets
over the whole data stream. As shown in Fig. 26, TIME
STAMP is very space efficient and only a very small portion
of the elements need to be kept as candidates. Both
candidate and skyline sets grow as dimensionality
Please cite this article as: W. Zhang, et al., Probabilistic skyl
(2012), http://dx.doi.org/10.1016/j.is.2012.03.002
increases. Nevertheless, even in the most challenging
scenario of Anti-Normal distribution where dimensionality
is 5, a 95% space saving can be achieved.

As the space usage of the TIME STAMP is similar to that
of SSKY against various potential parameters such as the
window size, the occurrence probabilities and the prob-
ability threshold, we omit the figures due to the space
limitation.
ine operator over sliding windows, Information Systems
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6.4.2. Time efficiency

To evaluate the time efficiency of TIME STAMP, we
record the average delay of the TIME STAMP against
different datasets when the time window slides. As illu-
strated in Fig. 27, the algorithm is quite efficient, especially
when the dimensionality is low. Fig. 28 reports the impact
of the window size N. As shown, the average delay per
element increases slowly with the growth of N.

The effect of the occurrence probability is depicted in
Fig. 29. Elements’ occurrence probabilities follow normal

distribution where the mean value Pm varies from 0.1 to
0.9. Fig. 30 reports the impact of query probability thresh-
old q. As shown, the performance of the algorithm
becomes more efficient when Pm or q increase.

6.5. Summary

As a short summary, our performance evaluation indi-
cates that we only need to keep a small portion of stream
objects in order to compute the probabilistic skyline and
its variations over sliding windows. As expected, the
performance of the algorithms, in terms of space usage
and processing time, grows slowly with the sliding win-
dow size. It is sensitive to the dimensionality and spatial
location distribution of the dataset because the number of
candidates is large for high dimensional data and ‘‘hard’’
distributions. Moreover, our continuous query processing
Please cite this article as: W. Zhang, et al., Probabilistic skyl
(2012), http://dx.doi.org/10.1016/j.is.2012.03.002
algorithms are very efficient and can support data streams
with high speed for 2d and 3d datasets. Even for the most
challenging data distribution, anti-correlated, we can still
support the data stream with medium speed of more than
700 elements per second when dimensionality is 5.

7. Related work

We review related work in two aspects, skylines and
uncertain data streams.

Skylines. Börzsönyi et al. [4] first study the skyline
operator in the context of databases and propose an SQL
syntax for the skyline query. They also develop two
computation techniques based on block-nested-loop and
divide-and-conquer paradigms, respectively. Another block-
nested-loop based technique SFS (sort-filter-skyline) is pro-
posed by Chomicki et al. [8], which takes advantage of a
presorting step. SFS is then significantly improved by
Godfrey et al. [11]. The progressive paradigm that aims to
output skyline points without scanning the whole dataset
is firstly proposed by Tan et al. [26]. It is supported by two
auxiliary data structures, bitmap and search tree. Kossmann
et al. [18] present another progressive technique based on
the nearest neighbor search technique. Papadias et al. [23]
develop a branch-and-bound algorithm (BBS) to progres-
sively output skyline points based on R-trees with the
guarantee of minimal I/O cost. Variations of the skyline
operator have also been extensively explored, including
skylines in a distributed environment [3,13], skylines for
partially ordered value domains [5], skyline cubes
[25,28,29], reverse skylines [10], approximate skylines
[6,7,17], etc.

Skyline queries processing in data streams is investi-
gated by Lin et al. [20] against various sliding windows.
Tao et al. [27] independently develop efficient techniques
to compute sliding window skylines. While effectively
using R-trees for pruning purposes, the techniques are
not applicable to uncertain data stream due to the inher-
ent difference between the two environments. To the best
of our knowledge, this paper is the first one to address the
problem of skyline queries on uncertain data streams.

The skyline query processing on uncertain data is firstly
approached by Pei et al. [24] where Bounding-pruning-
refining techniques are developed for efficient computa-
tion. Lian et al. [19] combine reverse skylines [10] with
uncertain semantics and model the probabilistic reverse

skyline query in both monochromatic and bichromatic
fashion. Efficient pruning techniques are developed to
reduce the search space for query processing.

Uncertain data streams. Although numerous research
aspects have been addressed on managing certain stream
data, works on uncertain data streams have abounded only
very recently. Aggregates over uncertain data streams have
been studied recently [9,14,15,31,32]. Problems such as
clustering uncertain data stream [1], frequent items retrie-
val in probabilistic data streams [30], and sliding window
top-k queries on uncertain streams [16] are also investi-
gated. Since skyline queries are inherently different from
these problems, techniques proposed in none of the above
papers can be applied directly to the problems studied in
this paper.
ine operator over sliding windows, Information Systems
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8. Conclusion

In this paper, we investigate the problem of efficiently
computing skyline against sliding windows over an uncer-
tain data stream. We first model the probability threshold
based skyline problem. Then, we present a framework
which is based on efficiently maintaining a candidate set.
We show that such a candidate set is the minimum
information we need to keep. Efficient techniques have
been presented to process continuous queries. We extend
Please cite this article as: W. Zhang, et al., Probabilistic skyl
(2012), http://dx.doi.org/10.1016/j.is.2012.03.002
our techniques to concurrently support processing a set of
continuous queries with different thresholds, as well as to
process an ad hoc skyline query. Finally, we show that our
techniques can also be extended to support probabilistic
top-k skyline against sliding windows over an uncertain
data streams, as well as elements with different life-spans.
Our extensive experiments demonstrate that our techni-
ques can deal with a high-speed data stream in real time.
ine operator over sliding windows, Information Systems
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